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ABSTRACT
With the rapid growth of publicly available GPS traces, robust

and efficient automatic road network reconstruction has become

a crucial task in GIS data analysis and applications. In [20], an

effective and robust road network reconstruction algorithm was

developed based on the discrete Morse theory, which has the state-

of-the-art performance in automatic road-network reconstruction.

Based on a discrete Morse-based graph reconstruction framework,

we provide two improvements of the previous algorithm [20]: (1) we

further simplify it and obtain a better empirical time performance;

and (2) we develop a simple but effective editing strategy that helps

adding missing road segments in the output reconstruction.

CCS CONCEPTS
• Information systems → Geographic information systems;
• Theory of computation → Theory and algorithms for ap-
plication domains;
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1 INTRODUCTION
Robust and efficient automatic road network reconstruction from

GPS traces has become a crucial task in GIS data analysis and ap-

plications. Indeed, a range of reconstruction algorithms have been

proposed and developed in the past few years. In particular, an algo-

rithm based on the discrete Morse theory proposed in [20] turns out

to be quite effective for robust road network reconstruction. This

Morse-based approach can reconstruct the road network (roads

and their connections) in a conceptually simple and clean manner.

The framework also provides a meaningful and systematic way to

remove noise based on the concept of persistent homology, which is

one of the most important developments in the field of topological
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data analysis in the past two decades [11]. This approach provides

the state-of-the-art performance in automatic road-network re-

construction, and is particularly effective for handling noisy and

non-uniformly distributed trajectories.

Our contribution. Reconstruction of a road network from a noisy

data is tantamount to reconstructing a graph from a noisy function

on a 2D domain. One needs to eliminate noise and at the same

time preserve the signal. Persistence homology and discrete Morse

theory are used for these two purposes respectively in the algorithm

of [20]. To understand this algorithm, one needs to understand the

persistence based discrete Morse cancellation, specifically in the

context of graph reconstruction.

Based on the persistence-guided discrete Morse complex simpli-

fication in the literature, especially the work on Morse cancellation

by Bauer et al. [3] and the view of region merging from [9], we pro-

vide further understanding of the approach of [20]. These insights

allow us to eliminate two steps, which simplify such a discrete

Morse-based graph reconstruction framework. The insights fur-

ther let us develop a simple yet effective editing strategy to adding

missing road pieces in the output reconstruction.

Related work. In recent years, reconstructing road networks from
a collection of trajectories has generated significant interests. A

large number of automatic reconstruction algorithms have been

proposed [2, 4–7, 10, 16, 18, 20] including the surveys [1] [4].

The idea of using persistence-guided discrete Morse simplifi-

cation for skeleton recovery is not new, see e.g, several works in

[3, 8, 14, 15, 17]. The most relevant work are perhaps [3, 8], where

the relation between persistent homology for sub-level set filtration

and simplification of discrete Morse functions has been explored.

Specifically, in [8], Delgado-Friedrichs et al. clarify the connection

between persistence-pairing and the simplification of discrete Morse
chain complex for 2D and 3D domains, which is closely related,

but different from the cancellation in the discrete gradient vector

field. In particular, a cancellable pair of critical cells in the discrete

Morse chain complex may not be cancellable in the discrete gradi-

ent vector field in 3D, although the inverse is always true. For 2D

domains, Bauer et al. [3] developed a theory for Morse cancellation

which they use for optimal simplification of a function, which uses

a persistence guided discrete Morse simplification for combinatorial

surfaces. The relation of persistence and discrete Morse functions

is also studied and leveraged (together with edge contraction) to

build a multi-scale model for discrete Morse functions (gradient

vector fields) [15].
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2 PROBLEM SETUP AND NOTATIONS
2.1 Algorithm of [20]
Given a set of noisy GPS traces, the goal is to have an algorithm that

can reconstruct the hidden road network (which can be modeled

as a planar geometric graph) automatically. In [20], Wang et al
propose the following approach for this automatic road network
reconstruction problem: See Figure 1. First, they convert the input

set of GPS traces into a density map ρ : Ω → R defined on the

planar domain Ω = [0, 1] × [0, 1]. Viewing the graph of this density

function as a terrain, Wang et al argue that the “mountain ridges” of

this terrain tend to correspond to road segments. These are the flow

lines following the steepest descending direction and connecting

saddles and maximas. They propose to recover the mountain ridges

(and thus the road network) via the use of 1-unstable manifolds

in Morse theory. To obtain a robust implementation, they use the

discrete Morse theory to compute the 1-unstable manifolds, as well

as to simplify the output (removing noise).

(a) (b)

Figure 1: Pipeline of algorithm of [20]. (a) Input GPS traces.
(b) Terrain corresponding to the graph of the density func-
tion computed from input GPS traces. Black lines are the
output of algorithm of [20], which captures the ’mountain
ridges’ of the terrain, corresponding to the reconstructed
road-network. The upper right is a top view of the terrain.

2.2 Discrete Morse theory
To realize the idea described above, the algorithm of [20] uses the

discrete Morse theory, originally introduced by Forman [13].

A k-simplex τ = {p0, . . . ,pk } is the convex hull of k + 1 affinely

independent points. Now suppose we are given a simplicial complex

K , which is a collection of simplicies and all their faces so that two

simplices may intersect only at a common face. A discrete (gradient)
vector is a pair of simplices (σ ,τ ) such that σ is a facet of τ . AMorse
pairing in K is a collection of discrete vectors M(K) = {(σ ,τ )}
where each simplex appears in at most one pair; simplices that are

not in any pair are called critical.
Given a Morse pairingM(K), a V-path is a sequence

τ0,σ1,τ1, . . . ,σℓ ,τℓ ,σℓ+1,

where (σi ,τi ) ∈ M(K) for every i = 1, . . . , ℓ, and each σi+1 is a facet
of τi for each i = 0, . . . , ℓ. If ℓ = 0, the V-path is trivial. This V-path
is cyclic if ℓ > 0 and (σℓ+1,τ0) ∈ M(K); otherwise, it is acyclic in
which casewe call this V-path a gradient path. We say that a gradient

path is a vertex-edge gradient path if dimension(σi ) = 0. Similarly,

it is an edge-triangle gradient path if dimension(σi ) = 1. We call

M(K) a discrete gradient vector field or gradient Morse pairing if

there is no cyclic V-path induced byM(K).
For a critical edge e , its stable manifold is the union of edge-

triangle gradient paths that ends at e . Its unstable manifold is defined
to be the union of vertex-edge gradient paths that begins with e .

Morse cancellation / simplification. A pair of critical simplices

⟨σ ,τ ⟩ is cancellable, if there is a unique gradient path

τ = τ0,σ1, . . . ,τℓ ,σℓ+1 = σ

starting at the k + 1-simplex τ and ends at the k-simplex σ . The
Morse cancellation operation on ⟨σ ,τ ⟩ then modifies the vector field

M(K) by removing all gradient vectors (σi ,τi ), for i = 1, . . . , ℓ,

while adding new gradient vectors (σi ,τi−1), for i = 1, . . . , ℓ + 1. If

there is no gradient path, or more than one gradient path between

this pair of critical simplices ⟨σ ,τ ⟩, then this pair is not cancellable .

2.3 Persistent pairing
Given a simplicial complex K , let S denote an ordered sequence

σ1, . . . ,σn of all n simplices inK such that for any simplex σi ∈ K ,

its faces must appear before it in this sequence. Then S induces a

(simplex-wise) filtration

F (K) : ∅ = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂ KN = K,

where Ki =
⋃
j≤i σj is the subcomplex formed by the prefix

σ1, . . . ,σi of S . Given such a filtration, the birth and death of ho-

mological features are tracked and encoded by the persistent ho-

mology [12], which can be uniquely represented by a collection of

pairs of simplices P(K) = {(σi ,σj )} called the persistence-pairing
P(K). Each persistence pair (σi ,σj ) ∈ P(K) indicates that a new

k-homological feature with k = dimension(σi ) is created at Ki and

destroyed atKj . If a simplex σ creates a homological feature which

is never destroyed, we introduce a pair (σ ,∞) ∈ P(K).

3 SIMPLIFICATION AND EDITING
STRATEGIES

3.1 Simplification of algorithm in [20]
First, we present our simplified version of algorithm of [20] in

Algorithm 1. We will describe shortly the main differences (sim-

plifications). The input to the algorithm is a triangulation K of

the domain Ω, the density function ρ : V → R defined at ver-

tices V of K , and a parameter δ for simplification (noise-removal).

The algorithm outputs a graph G that aims to recover the true

road network encoded by the density map ρ. Setting the function
value of a simplex σ to be the highest f -value of its vertices, with
f = −ρ, the persistence of a persistence-pair (σ ,τ ) is defined to be

pers(σ ,τ ) = | f (τ ) − f (σ )|. If τ = ∞, then the persistence is∞.

Our Algorithm SimpMorseRecon() follows the same high-level

structure as the algorithm of [20], but has two main simplifications:

(S1) In Line 6, originally, the algorithm of [20] needs to first check

whether a persistence pair (σ ,τ ) ∈ P(K) is cancellable or
not (which requires one to maintain a data structure that

enables checking if there is a unique gradient path between

σ and τ ). The Morse cancellation operation is carried out

only when the pair is cancellable. However, it turns out that

once the persistence pairs are computed and ordered, each
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Algorithm 1: SimpMorseRecon(K ,ρ, δ )

Data: Triangulation K of Ω, density function ρ : K → R,
threshold δ

Result: Graph G
1 begin
2 Compute persistence pairings P(K) induced by the

sub-level set filtration of K by −ρ
3 Order persistence pairs in P(K) in increasing order of

their persistences

4 Set initial discrete gradient fieldM on K to be trivial

5 for each vertex-edge pair (σ ,τ ) ∈ P(K) with pers(σ ,τ ) ≤ δ

do
6 Perform Morse cancellation of (σ ,τ ) and update the

discrete gradient vector fieldM

7 G = ∅
8 for each remaining critical edge e with persistence larger

than δ do
9 G = G

⋃{1-unstable manifold of e}
10 Return G

such persistence pair remains cancellable and thus the check

for the same becomes redundant.

The second one is more significant:

(S2) There are two types of pairs in the collection of persistence-

pairing P(K) induced by the sub-level set filtration of K by

−ρ : vertex-edge pairs and edge-triangle pairs. We claim that

it is not necessary to perform edge-triangle pair cancella-

tions, and the output remains the same. Hence in Line 5 of

the algorithm, we only consider vertex-edge pairs, while the

original algorithm of [20] processes both types of pairs.

The validity of these two simplifications is supported by the

lemma below, which can be derived from results in [3]:

Lemma 3.1. LetK be the triangulation of an orientable 2-manifold.
At the beginning of each for-loop in lines 5-6 of Algorithm Simp-
MorseRecon(), the simplices σ and τ remain critical in the current
discrete gradient vector field and the pair (σ ,τ ) is cancellable.

If the for-loop were executed also for edge-triangle pairs along with
the vertex-edge pairs, the critical simplices in the discrete gradient
vector field M would have been exactly those simplices of K w.r.t.
f = −ρ with persistence larger than δ .

In a persistence-guided discrete Morse simplification, a priori, it

is possible that many persistent pairs from P(K) cannot be canceled,
and/or high-persistent critical edges (correspond to important sad-

dles in the smooth case) may no longer remain critical after the

modification of the discrete gradient vector field M during the

Morse cancellation process . Lemma 3.1 suggests that this does not

happen for the special case when the input domain K is a triangu-

lation of a 2-manifold such as the plane. Simplification (S1) is thus

valid as the pair (τ ,σ ) is always cancellable according Lemma 3.1.

To see why Simplification (S2) is valid, first, by Lemma 3.1, ob-

serve that if we would have canceled pairs (σ1,τ1), . . . , (σm ,τm ) in
order (withm being the largest index such that pers(σm ,τm ) ≤ δ ),

simplices with higher persistence would have remained critical in

the discrete gradient vector fieldsM = Mm . Hence the set of critical

edges that algorithm SimpMorseRecon() considers at lines 8–9 can
be retrieved directly once persistence pairings are computed in line

2 without performing any Morse cancellation at all.

However, we still need to argue that that the discrete gradient

vector field obtained by cancelling only vertex-edge pairs as in the

for loop offers the same 1-unstable manifolds as it would have with

cancelling edge-triangle pairs as well. For 1-unstable manifolds, we

only need to maintain the vertex-edge type of gradient vectors in

M . As the initial gradient vector field is trivial (i.e, all simplices

are critical), it is easy to verify that any such vertex-edge gradient

vector can only be obtained by inverting an vertex-edge gradient

path during the cancellation of a vertex-edge persistence pair. This

justifies Simplification (S2).

In general, the vertex-edge type gradient vectors are much easier

to maintain than the edge-triangle type (as they form spanning

forests in the 1-skeleton of the input complex K). Hence these two

observations above significantly simplify the algorithm as well as

clarify the essential operations necessary.

We have implemented our simplified algorithm. (The original

algorithm of [20] uses the software of [19] to compute discrete

Morse cancellation and 1-unstable manifold extraction.) Below we

give the size of the data and the comparison of the running times

on the data sets used in [20]. In general, we see a factor of 4 time-

speedup by simplification.

City #traces #points time[20](s) Our time(s)

Athens 118 1778400 311 48

Beijing 19287 3754580 390 111

Berlin 27189 326740 35 9

Table 1: Size and running time of three data sets. # points is
the number of points in the grid after computing the den-
sity. The running time of computing 1-unstable manifolds
(in seconds) by the algorithm of [20] and by our simplified
algorithm is listed in the 3rd and 4th columns, respectively.

3.2 Editing strategies to add missing branches
Proposition 3.2. Let v ∈ K be any vertex participating in a

persistence pair (v,σ ) with pers(v,σ ) > δ . Then the output graph G
of SimpMorseRecon() must contain v unless it is empty.

Proof. One can view the cancellation of vertex-edge Morse pair

as follows: at any moment, we maintain a spanning forest where

each tree in this forest is represented by the only critical vertex in it

at this point. At the beginning, all vertices are critical and each tree

contains only one vertex. When we cancel a Morse pair (u, e) with
e = (u1,u2), we are merging two trees one of which is represented

by u. After running SimpMorseRecon(), v is still a critical vertex.

This follows from Lemma 3.1 as pers(v,σ ) > δ . For simplicity, we

assume that we have not yet simplified all vertex-edge persistence

pairs; the latter case can be handled by a slightly modified argument

which we omit due to limited space. The treeTv containing v must

have a critical edge e ′ in its co-boundary, which will merge Tv to

another tree had we continued to perform Morse-cancellation of all

vertex-edge persistence pairs. As this edge e ′ = (w1,w2) is critical,
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(a) (b) (c)

Figure 2: (a) Red points are added, red branches are newly reconstructed for the Athens map (black curves are original recon-
struction, blue curves are input GPS traces). (b) We also add blue triangles to capture many missing loops as well. (c) Upper:
An example to show that adding extra triangles will capture more loops. Bottom: Berlin with adding both branches and loops.

in Lines 8–9 of SimpMorseRecon(), we will extract its 1-unstable
manifold and add toG . Assume w.o.l.g that the endpointw1 of e

′
is

fromTv , then the gradient path from e ′ to v is the unique tree-path

in Tv fromw1 to v . Hence v is included in the output graph G . □

We remark that the output graphG is empty only if after Line
7, there is no critical edge left – all mountain ridges are considered

to be noise, and the algorithm rightfully output an empty set.

This result suggests the following strategy to augment the recon-

struction with some missing branches: Suppose we obtain a recon-

structionG from an input density field via SimpMorseRecon(K, ρ,δ ).
The user can inspect the output, and identify places with poten-

tial missing road segments. For each such location, the user only

needs to click at a vertex u ∈ K . Let U = {u1, . . . ,uℓ} be a col-

lection of such locations. See the set of red dots in Figure 2 (a).

We can then modify the input density field ρ into ρ ′ by setting

ρ ′(ui ), for each i ∈ [1, ℓ], to be sufficiently large, say ∆ + 2δ , where
∆ = maxv ∈V (K) ρ(v); and set ρ ′(v) = ρ(v) for all other vertices in
K . We then re-run SimpMorseRecon(K, ρ ′,δ ) with the modified

density field. Vertices inU necessarily have persistence larger than

δ in the lower-star filtration induced by −ρ ′. Hence by Proposition

3.2, the output graph will find “mountain ridges” to connect them.

See Figure 2 (a). We note however, this strategy does not com-

plete missing loops. Hence we also propose an analogous strategy

for the dual scenario, where the users can click a few triangles

around regions with missing roads that form loops. We then set

the new density ρ ′ value of some vertex of each of such triangle

very low (meaning that this triangle eventually will correspond to

a maximum in f = −ρ ′). By a dual argument as the one used for

Proposition 3.2 (which we omit due to lack of space), these triangles

will remain critical after δ -Morse cancellation and loops around

them will be captured. See Figure 2 (b) and (c).
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