CSE 5525: Foundations of Speech and Language Processing

Conditional Random Fields (CRFs)

Huan Sun (CSE@OSU)

Many thanks to Prof. Greg Durrett @ UT Austin for sharing his slides.
Recall: HMMs

- **Observations** O (= input x)

 Output Q (sequence of states) = labels y

\[
P(y, x) = P(y_1) \prod_{i=2}^{n} P(y_i | y_{i-1}) \prod_{i=1}^{n} P(x_i | y_i)
\]

- **Training**: maximum likelihood estimation (with smoothing)

- **Inference problem**: \(\arg\max_y P(y|x) = \arg\max_y \frac{P(y, x)}{P(x)} \)

- **Viterbi**: \(\text{score}_i(s) = \max_{y_{i-1}} P(s|y_{i-1}) P(x_i|s) \text{score}_{i-1}(y_{i-1}) \)
Recall: Viterbi Algorithm

- **Initialization**
 \[v_1(j) = a_{0j} b_j(o_1) \quad 1 \leq j \leq N \]

- **Recursion**
 \[v_t(j) = \max_{i=1}^N v_{t-1}(i)a_{ij}b_j(o_t) \quad 1 \leq j \leq N, \quad 1 < t \leq T \]

- **Termination**
 \[P^* = v_{T+1}(s_F) = \max_{i=1}^N v_T(i)a_{iF} \]

This only calculates the max. To get final answer (argmax),
- keep track of which state corresponds to the max at each step
- build the answer using these back pointers

\[a_0: \text{Initial state distribution} \]
\[a_{ij}: \text{Probability of } i-j \text{ transition} \]
\[b_j(o_t): \text{Probability of emitting symbol } o_t \text{ from state } j \]

slide credit: Ray Mooney
Viterbi/HMMs: Other Resources

- Lecture notes from our course website (posted online)
 - http://web.cse.ohio-state.edu/~sun.397/courses/au2020/cse5525.html

- Eisenstein Chapter 7.3 **but** the notation covers a more general case than what’s discussed for HMMs

- Jurafsky+Martin 8.4.5
This Lecture

- CRFs: model (+features for NER), inference, learning

- Named entity recognition (NER)

Read more in lecture notes:
(1) Sutton CRFs 2.3, 2.6.1, Eisenstein 7.5, 8.3,
(2) Wallach CRFs tutorial, Illinois NER especially, (1)

Helpful blog: https://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/
Barack Obama will travel to Hangzhou today for the G20 meeting.

- BIO tagset: begin, inside, outside
- Sequence of tags — should we use an HMM?
- Why might an HMM not do so well here?
 - Lots of O’s
 - Insufficient features/capacity with multinomials (especially for unks)
CRFs
Where we’re going

- Flexible discriminative model for tagging tasks that can use arbitrary features of the input. Similar to logistic regression, but structured (?)

Barack Obama will travel to Hangzhou today for the G20 meeting.

Curr_word=Barack & Label=B-PER
Next_word=Obama & Label=B-PER
Curr_word_starts_with_capital=True & Label=B-PER
Posn_in_sentence=1st & Label=B-PER
Label=B-PER & Next-Label = I-PER
...

HMMs, Formally

- HMMs are expressible as Bayes nets (factor graphs)

- This reflects the following decomposition:

\[
P(y, x) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2) \ldots
\]

- **Locally** normalized model: each factor is a probability distribution that normalizes
HMMs vs. CRFs

- HMMs: \(P(y, x) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2) \ldots \)

- CRFs: discriminative models with the following \textbf{globally-normalized} form:

\[
P(y|x) = \frac{1}{Z} \prod_k \exp(\phi_k(x, y))
\]

any real-valued scoring function of its arguments
HMMs vs. CRFs

- **HMMs:**
 \[P(y, x) = P(y_1)P(x_1|y_1)P(y_2|y_1)P(x_2|y_2) \ldots \]

- **CRFs:** discriminative models with the following globally-normalized form:
 \[P(y|x) = \frac{1}{Z} \prod_k \exp(\phi_k(x, y)) \]
 where \(Z \) is the normalizer and \(\phi_k(x, y) \) is any real-valued scoring function of its arguments.

- **Special case:** linear feature-based potentials
 \[\phi_k(x, y) = w^\top f_k(x, y) \]
 \[P(y|x) = \frac{1}{Z} \exp \left(\sum_{k=1}^{n} w^\top f_k(x, y) \right) \]

- Looks like our single weight vector multiclass logistic regression model
HMMs vs. CRFs

\[P(y|x) = \frac{1}{Z} \exp \left(\sum_{k=1}^{n} w^\top f_k(x, y) \right) \]

- Conditional model: x’s are observed
- Naive Bayes : logistic regression :: HMMs : CRFs
 local vs. global normalization <-> generative vs. discriminative
 (locally normalized discriminative models do exist (MEMMs))
HMMs vs. CRFs

\[P(y|x) = \frac{1}{Z} \exp \left(\sum_{k=1}^{n} w^T f_k(x, y) \right) \]

- Conditional model: x’s are observed

- Naive Bayes : logistic regression :: HMMs : CRFs
 local vs. global normalization <-> generative vs. discriminative
 (locally normalized discriminative models do exist (MEMMs))

- HMMs: in the standard setup, emissions consider one word at a time

- CRFs: features over many words simultaneously, non-independent features (e.g., suffixes and prefixes), doesn’t have to be a generative model
Problem with CRFs

\[P(y|x) = \frac{1}{Z} \exp \left(\sum_{k=1}^{n} w^\top f_k(x, y) \right) \]

- Normalizing constant

\[Z = \sum_{y'} \exp \left(\sum_{k=1}^{n} w^\top f_k(x, y') \right) \]

- Inference: \(y_{\text{best}} = \arg\max_{y'} \exp \left(\sum_{k=1}^{n} w^\top f_k(x, y') \right) \)

- If \(y \) consists of 5 variables with 30 values each, how expensive are these?

- Need to constrain the form of our CRFs to make it tractable
Sequential CRFs

Sequential CRF: (one form)

\[P(y| x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

- Two types of factors: \textit{transitions} \(\phi_t \) (look at adjacent y’s, but not x) and \textit{emissions} \(\phi_e \) (look at y and all of x)

Linear-chain CRFs (Sutton, Section 2.3)
Sequential CRFs

Sequential CRF: (one form)

\[P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

- Notation: omit \(x\) from the factor graph entirely (implicit), but every \(\phi_e\) feature function connects to it

- Two types of factors: transitions \(\phi_t\) (look at adjacent \(y\)’s, but not \(x\)) and emissions \(\phi_e\) (look at \(y\) and all of \(x\))

Linear-chain CRFs (Sutton, Section 2.3)
Features for NER
Feature Functions

\[P(y|\mathbf{x}) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, \mathbf{x})) \]

- Phi’s are flexible (can be NN with 1B+ parameters). Here: sparse linear fcns (looks like HW 1 features)

\[\phi_e(y_i, i, \mathbf{x}) = w^\top f_e(y_i, i, \mathbf{x}) \quad \phi_t(y_{i-1}, y_i) = w^\top f_t(y_{i-1}, y_i) \]

\[P(y|\mathbf{x}) \propto \exp w^\top \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, \mathbf{x}) \right] \]
Basic Features for NER

\[P(y|x) \propto \exp w^\top \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \right] \]

Barack Obama will travel to **Hangzhou** today for the G20 meeting.

Transitions: \(f_t(y_{i-1}, y_i) = \text{Ind}[y_{i-1} \& y_i] = \text{Ind}[O \rightarrow \text{B-LOC}] \)

Emissions: \(f_e(y_6, 6, x) = \text{Ind}[\text{B-LOC} \& \text{Current word} = \text{Hangzhou}] \)
\[\text{Ind}[\text{B-LOC} \& \text{Prev word} = \text{to}] \]
Leicestershire is a nice place to visit...

I took a vacation to Boston

Apple released a new version...

According to the New York Times...

Leonardo DiCaprio won an award...

Texas governor Greg Abbott said...
Emission Features for NER

- Word features (can use in HMM)
 - Capitalization
 - Word shape
 - Prefixes/suffixes
 - Lexical indicators
- Context features (can’t use in HMM!)
 - Words before/after
 - Tags before/after
- Word clusters
- Gazetteers (i.e., a list of known entity names)

Leicestershire
Boston
Apple released a new version...
According to the New York Times...
CRFs Outline

- **Model:**

\[
P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x))
\]

\[
P(y|x) \propto \exp \mathbf{w}^\top \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \right]
\]

- **Inference**

- **Learning**

\[t: \text{transition feature functions; } e: \text{emission feature functions} \]
Inference and Learning in CRFs
Computing (arg)maxes

\[P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

- \text{argmax}_y P(y|x): Inference can use Viterbi exactly as in HMM case

\[
\max_{y_1, \ldots, y_n} e^{\phi_t(y_{n-1}, y_n)} e^{\phi_e(y_n, n, x)} \cdots e^{\phi_e(y_2, 2, x)} e^{\phi_t(y_1, y_2)} e^{\phi_e(y_1, 1, x)}
\]
Computing \((\text{arg})\max\)es

\[P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

\(\text{argmax}_y P(y|x)\): Inference can use Viterbi exactly as in HMM case

\[\max_{y_1, \ldots, y_n} e^{\phi_t(y_{n-1}, y_n)} e^{\phi_e(y_n, n, x)} \ldots e^{\phi_e(y_2, 2, x)} e^{\phi_t(y_1, y_2)} e^{\phi_e(y_1, 1, x)} \]

\[= \max_{y_2, \ldots, y_n} e^{\phi_t(y_{n-1}, y_n)} e^{\phi_e(y_n, n, x)} \ldots e^{\phi_e(y_2, 2, x)} \max_{y_1} e^{\phi_t(y_1, y_2)} e^{\phi_e(y_1, 1, x)} \]

\[= \max_{y_3, \ldots, y_n} e^{\phi_t(y_{n-1}, y_n)} e^{\phi_e(y_n, n, x)} \ldots \max_{y_2} e^{\phi_t(y_2, y_3)} e^{\phi_e(y_2, 2, x)} \max_{y_1} e^{\phi_t(y_1, y_2)} \text{score}_1(y_1) \]

\(\exp(\phi_t(y_{i-1}, y_i))\) and \(\exp(\phi_e(y_i, i, x))\) play the role of the P’s (in HMM decoding) now, same dynamic program (consider using log for computations).
CRFs Outline

- **Model:**
 \[P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

\[P(y|x) \propto \exp \sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \]

- **Inference:** argmax \(P(y|x) \) from Viterbi *(Review HMM, if needed)*

- **Learning**
Training CRFs

\[P(y|x) \propto \exp w^\top \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \right] \]

- Logistic regression: \(P(y|x) \propto \exp w^\top f(x, y) \)
- Maximize \(\mathcal{L}(y^*, x) = \log P(y^*|x) \)
- Gradient is completely analogous to logistic regression (LR):

\[
\frac{\partial}{\partial w} \mathcal{L}(y^*, x) = \sum_{i=2}^{n} f_t(y^*_{i-1}, y^*_i) + \sum_{i=1}^{n} f_e(y^*_i, i, x)
\]

Review how we computed gradients for LR, if needed
Training CRFs

\[
\frac{\partial}{\partial w} \mathcal{L}(y^*, x) = \sum_{i=2}^{n} f_t(y_{i-1}^*, y_i^*) + \sum_{i=1}^{n} f_e(y_i^*, i, x)
\]

\[
- \mathbb{E}_y \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \right]
\]

\[\mathbb{E}_y \left[\sum_{i=1}^{n} f_e(y_i, i, x) \right] = \sum_{y \in \mathcal{Y}} P(y|x) \left[\sum_{i=1}^{n} f_e(y_i, i, x) \right] = \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} P(y|x) f_e(y_i, i, x) = \sum_{i=1}^{n} \sum_{s} P(y_i = s|x) f_e(s, i, x) \]
How do we compute these marginals \(P(y_i = s|x) \)?

\[
P(y_i = s|x) = \sum_{y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n} P(y|x)
\]
How do we compute these marginals $P(y_i = s|x)$?

$$P(y_i = s|x) = \sum_{y_1, \ldots, y_i-1, y_{i+1}, \ldots, y_n} P(y|x)$$

What did Viterbi compute?

$$P(y_{\text{max}}|x) = \max_{y_1, \ldots, y_n} P(y|x)$$

and also review the forward algorithm in HMM.

Can compute marginals with dynamic programming as well using forward-backward.
Forward-Backward Algorithm

\[P(y_3 = 2 | x) = \]

score of all paths through state 2 at time 3

score of all paths
Forward-Backward Algorithm

\[P(y_3 = 2| x) = \]

\[
\text{score} \text{ of all paths through state 2 at time 3} \]

\[= \]

\[
\text{score} \text{ of all paths} \]

\[\]

\checkmark Easiest and most flexible to do one pass to compute and one to compute

slide credit: Dan Klein
Forward-Backward Algorithm

- **Initial:**
 \[\alpha_1(s) = \exp(\phi_e(s, 1, x)) \]

- **Recurrence:**
 \[\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, x)) \exp(\phi_t(s_{t-1}, s_t)) \]

- Same as Viterbi but summing instead of maxing!
- These quantities get very small! Store everything in **logarithm**
Forward-Backward Algorithm

- **Initial:**
 \[\beta_n(s) = 1 \]
 (last time step \(n \))

- **Recurrence:**
 \[\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t + 1, \mathbf{x})) \exp(\phi_t(s_t, s_{t+1})) \]

- Big differences with forward vectors in the previous page: Consider emission for the \textit{next} time step (*not* current one; because the current one has been considered in forward pass)
Forward-Backward Algorithm

\[\alpha_1(s) = \exp(\phi_e(s, 1, x)) \]

\[\alpha_t(s_t) = \sum_{s_{t-1}} \alpha_{t-1}(s_{t-1}) \exp(\phi_e(s_t, t, x)) \exp(\phi_t(s_{t-1}, s_t)) \]

\[\beta_n(s) = 1 \]

\[\beta_t(s_t) = \sum_{s_{t+1}} \beta_{t+1}(s_{t+1}) \exp(\phi_e(s_{t+1}, t + 1, x)) \exp(\phi_t(s_t, s_{t+1})) \]

\[P(s_3 = 2 | x) = \frac{\alpha_3(2)\beta_3(2)}{\sum_i \alpha_3(i)\beta_3(i)} \]

- Does this explain why beta is what it is?
- What is the denominator here?
Computing Marginals

\[P(y|x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \]

- Normalizing constant \(Z = \sum_{y} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \)
- Analogous to \(P(x) \) for HMMs

For both HMMs and CRFs:

\[P(y_i = s|x) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')} \]

\(Z \) for CRFs, \(P(x) \) for HMMs
Posteriors vs. Probabilities

\[P(y_i = s | x) = \frac{\text{forward}_i(s) \text{backward}_i(s)}{\sum_{s'} \text{forward}_i(s') \text{backward}_i(s')} \]

- Posterior is *derived* from the parameters and the data (conditioned on \(x \))

<table>
<thead>
<tr>
<th>Model</th>
<th>Parameter Details</th>
<th>Inference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>Model parameter (usually multinomial distribution)</td>
<td>Inferred quantity from forward-backward</td>
</tr>
<tr>
<td>CRF</td>
<td>Undefined (model is by definition conditioned on (x))</td>
<td>Inferred quantity from forward-backward</td>
</tr>
</tbody>
</table>
Training CRFs

For emission features:

\[
\frac{\partial}{\partial w} \mathcal{L}(y^*, x) = \sum_{i=1}^{n} f_e(y_i^*, i, x) - \sum_{i=1}^{n} \sum_{s} P(y_i = s | x) f_e(s, i, x)
\]

gold features — expected features under model
(similar to logistic regression)

Transition features: need to compute \(P(y_i = s_1, y_{i+1} = s_2 | x) \) using forward-backward as well

...but you can build a pretty good system without learned transition features (use heuristic weights, or just enforce constraints such as B-PER -> I-ORG is illegal)
CRFs Outline

- Model: \(P(y \mid x) = \frac{1}{Z} \prod_{i=2}^{n} \exp(\phi_t(y_{i-1}, y_i)) \prod_{i=1}^{n} \exp(\phi_e(y_i, i, x)) \)

\[
P(y \mid x) \propto \exp w^\top \left[\sum_{i=2}^{n} f_t(y_{i-1}, y_i) + \sum_{i=1}^{n} f_e(y_i, i, x) \right]
\]

- Inference: \(\text{argmax } P(y \mid x) \) from Viterbi

- Learning: run forward-backward to compute posterior probabilities; then

\[
\frac{\partial}{\partial w} \mathcal{L}(y^*, x) = \sum_{i=1}^{n} f_e(y_i^*, i, x) - \sum_{i=1}^{n} \sum_{s} P(y_i = s \mid x) f_e(s, i, x)
\]
for each epoch
 for each example
 extract features on each emission and transition (look up in cache)
 compute potentials phi (page 18) based on features + weights
 compute marginal probabilities with forward-backward
 accumulate gradient over all emissions and transitions

- In your HW2, you don’t need transition phi, but can just enforce constraints such as B-PER -> I-ORG being illegal (see more in HW2 instructions)
Implementation Tips for CRFs

- Caching is your friend! Cache feature vectors especially.
- Try to reduce redundant computation, e.g. if you compute both the gradient and the objective value, don’t rerun the dynamic program.
- Exploit sparsity in feature vectors where possible, especially in feature vectors and gradients.
- Do all dynamic program computation in log space to avoid underflow.
- If things are too slow, run a profiler and see where time is being spent. Forward-backward should take most of the time.
Debugging Tips for CRFs

- Hard to know whether inference, learning, or the model is broken!

- Compute the objective — is optimization working?
 - **Inference**: check gradient computation (most likely place for bugs)
 - Is $\sum_{i} \text{forward}_i(s) \text{backward}_i(s)$ the same for all i?
 - Do probabilities normalize correctly + look “reasonable”? (Nearly uniform when untrained, then slowly converging to the right thing)

- **Learning**: is the objective going down? Try to fit 1 example / 10 examples. Are you applying the gradient correctly?

- If objective is going down but model performance is bad:
 - **Inference**: check performance if you decode the training set