CSE 5525: Foundations of Speech and Language Processing

Lecture 2: Binary Classification

Huan Sun (CSE@OSU)

Many thanks to Prof. Greg Durrett @ UT Austin for sharing his slides.
Recall: Binary Classification

- **Logistic regression:**
 \[P(y = 1|x) = \frac{\exp\left(\sum_{i=1}^{n} w_i x_i\right)}{1 + \exp\left(\sum_{i=1}^{n} w_i x_i\right)} \]

 Decision rule: \(P(y = 1|x) \geq 0.5 \iff w^\top x \geq 0 \)

 Gradient (unregularized): \(x(y - P(y = 1|x)) \)

- **SVM:** quadratic program to minimize weight vector norm w/slack

 Decision rule: \(w^\top x \geq 0 \)

 (Sub)gradient (unregularized): 0 if correct with margin of 1, else \(x(2y - 1) \)
Loss Functions

- Hinge (SVM)
- Logisitic
- 0-1 (ideal)
- Perceptron
- Logistic

$w^T x$
This Lecture

- Multiclass fundamentals
- Feature extraction
- Multiclass logistic regression
- Multiclass SVM
- Generative models revisited
Multiclass Fundamentals
Text Classification

A Cancer Conundrum: Too Many Drug Trials, Too Few Patients
Breakthroughs in immunotherapy and a rush to develop profitable new treatments have brought a crush of clinical trials scrambling for patients.

By GINA KOLATA

Yankees and Mets Are on Opposite Tracks This Subway Series
As they meet for a four-game series, the Yankees are playing for a postseason spot, and the most the Mets can hope for is to play spoiler.

By FILIP BONDY

—→ Health
—→ Sports
~20 classes
Image Classification

- Thousands of classes (ImageNet)
Although he originally won the event, the United States Anti-Doping Agency announced in August 2012 that they had disqualified Armstrong from his seven consecutive Tour de France wins from 1999–2005.

Armstrong County is a county in Pennsylvania...

- 4,500,000 classes (all articles in Wikipedia)
One day, James thought he would go into town and see what kind of trouble he could get into. He went to the grocery store and pulled all the pudding off the shelves and ate two jars. Then he walked to the fast food restaurant and ordered 15 bags of fries. He didn't pay, and instead headed home.

3) Where did James go after he went to the grocery store?
 A) his deck
 B) his freezer
 C) a fast food restaurant
 D) his room

- Multiple choice questions, 4 classes (but classes change per example)
Binary classification: one weight vector defines positive and negative classes
Can we just use binary classifiers here?
Multiclass Classification

- One-vs-all: train k classifiers, one to distinguish each class from all the rest
- How do we reconcile multiple positive predictions? Highest score?
Multiclass Classification

- Not all classes may even be separable using this approach.

Can separate 1 from 2+3 and 2 from 1+3 but not 3 from the others (with these features).
Multiclass Classification

- All-vs-all: train $n(n-1)/2$ classifiers to differentiate each pair of classes
- Again, how to reconcile?
Multiclass Classification

- Binary classification: one weight vector defines both classes
- Multiclass classification: different weights and/or features per class
Multiclass Classification

- Formally: instead of two labels, we have an output space \(\mathcal{Y} \) containing a number of possible classes
- Same machinery that we’ll use later for exponentially large output spaces, including sequences and trees
- Decision rule: \(\arg \max_{y \in \mathcal{Y}} w^\top f(x, y) \)
 - Multiple feature vectors, one weight vector
- Can also have one weight vector per class: \(\arg \max_{y \in \mathcal{Y}} w_y^\top f(x) \)
Different Weights vs. Different Features

- Different features: \(\arg\max_{y \in \mathcal{Y}} w^\top f(x, y) \)

- Suppose \(\mathcal{Y} \) is a structured label space (part-of-speech tags for each word in a sentence). \(f(x, y) \) extracts features over shared parts of these.

- Different weights: \(\arg\max_{y \in \mathcal{Y}} w_y^\top f(x) \)

- Generalizes to neural networks: \(f(x) \) is the first \(n-1 \) layers of the network, then you multiply by a final linear layer at the end.

- For linear multiclass classification with discrete classes, these are identical.
Block Feature Vectors

- Decision rule: \(\text{argmax}_{y \in Y} w^T f(x, y) \)

 "too many drug trials, too few patients"

- Base feature function:

 \[
 f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] = [1, 1, 0]
 \]

 feature vector blocks for each label

 \[
 f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0]
 \]

 \[
 f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
 \]

- Equivalent to having three weight vectors in this case

- We are NOT looking at the gold label! Instead looking at the candidate label
Making Decisions

too many drug trials, too few patients

\[f(x) = I[\text{contains drug}], I[\text{contains patients}], I[\text{contains baseball}] \]

\[f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0] \]

\[f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0] \]

\[w = [+2.1, +2.3, -5, -2.1, -3.8, +5.2, +1.1, -1.7, -1.3] \]

\[w^T f(x, y) = \text{Health: +4.4} \quad \text{Sports: -5.9} \quad \text{Science: -0.6} \]

argmax
Feature Representation Revisited

this movie was great! would watch again Positive

- Bag-of-words features are position-insensitive
- What about for tasks like classifying a word as a given part-of-speech?

 this movie was great! would watch again

- Want features extracted with respect to this particular position
 - curr word = was, prev word = movie, next word = great.
 - How many features?
Multiclass POS tagging

- Classify *blocks* as one of 36 POS tags
- Example x: sentence with a word (in this case, *blocks*) highlighted
- Extract features with respect to this word:
 \[f(x, y=\text{VBZ}) = I[\text{curr_word}=\text{blocks} \& \text{tag} = \text{VBZ}], \]
 \[I[\text{prev_word}=\text{router} \& \text{tag} = \text{VBZ}] \]
 \[I[\text{next_word}=\text{the} \& \text{tag} = \text{VBZ}] \]
 \[I[\text{curr_suffix}=s \& \text{tag} = \text{VBZ}] \]
- Next two lectures: sequence labeling!

‣ Classify *blocks* as one of 36 POS tags

‣ Example x: sentence with a word (in this case, *blocks*) highlighted

‣ Extract features with respect to this word:

\[f(x, y=\text{VBZ}) = I[\text{curr_word}=\text{blocks} \& \text{tag} = \text{VBZ}], \]
\[I[\text{prev_word}=\text{router} \& \text{tag} = \text{VBZ}] \]
\[I[\text{next_word}=\text{the} \& \text{tag} = \text{VBZ}] \]
\[I[\text{curr_suffix}=s \& \text{tag} = \text{VBZ}] \]

‣ Next two lectures: sequence labeling!
Multiclass Logistic Regression
Multiclass Logistic Regression

\[P_w(y|x) = \frac{\exp \left(w^\top f(x, y) \right)}{\sum_{y' \in Y} \exp \left(w^\top f(x, y') \right)} \]

sum over output space to normalize

- \(\exp / \sum(\exp) \): also called \textit{softmax}

- Training: maximize \(\mathcal{L}(x, y) = \sum_{j=1}^{n} \log P(y_j^*|x_j) \)

 \[= \sum_{j=1}^{n} \left(w^\top f(x_j, y_j^*) - \log \sum_{y} \exp(w^\top f(x_j, y)) \right) \]

- Compare to binary:

\[P(y = 1|x) = \frac{\exp(w^\top f(x))}{1 + \exp(w^\top f(x))} \]

negative class implicitly had \(w^\top f(x, y=0) = \) the zero vector
Training

- Multiclass logistic regression \(P_w(y|x) = \frac{\exp\left(w^\top f(x, y) \right)}{\sum_{y' \in Y} \exp\left(w^\top f(x, y') \right)} \)

- Likelihood \(\mathcal{L}(x_j, y^*_j) = w^\top f(x_j, y^*_j) - \log \sum_y \exp(w^\top f(x_j, y)) \)

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \frac{\sum_y f_i(x_j, y) \exp(w^\top f(x_j, y))}{\sum_y \exp(w^\top f(x_j, y))}
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \sum_y f_i(x_j, y) P_w(y|x_j)
\]

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y^*_j) = f_i(x_j, y^*_j) - \mathbb{E}_y[f_i(x_j, y)] \quad \text{model’s expectation of feature value}
\]

gold feature value
Training

\[
\frac{\partial}{\partial w_i} \mathcal{L}(x_j, y_j^*) = f_i(x_j, y_j^*) - \sum_y f_i(x_j, y) P_w(y|x_j)
\]

too many drug trials, too few patients

\[
f(x, y = \text{Health}) = [1, 1, 0, 0, 0, 0, 0, 0, 0]
\]
\[
f(x, y = \text{Sports}) = [0, 0, 0, 1, 1, 0, 0, 0, 0]
\]

gradient:

\[
[1, 1, 0, 0, 0, 0, 0, 0, 0] - 0.2 [1, 1, 0, 0, 0, 0, 0, 0, 0] - 0.5 [0, 0, 0, 1, 1, 0, 0, 0, 0]
- 0.3 [0, 0, 0, 0, 0, 1, 1, 0] = [0.8, 0.8, 0, -0.5, -0.5, 0, -0.3, -0.3, 0]
\]

\[y^* = \text{Health}\]

\[P_w(y|x) = [0.2, 0.5, 0.3]\]

(made up values)
Logistic Regression: Summary

- **Model:**
 \[P_w(y|x) = \frac{\exp (w^\top f(x, y))}{\sum_{y' \in Y} \exp (w^\top f(x, y'))} \]

- **Inference:**
 \[\arg \max_y P_w(y|x) \]

- **Learning:** gradient ascent on the discriminative log-likelihood
 \[f(x, y^*) - \mathbb{E}_y [f(x, y)] = f(x, y^*) - \sum_y [P_w(y|x) f(x, y)] \]
 "towards gold feature value, away from expectation of feature value"
Multiclass SVM
Loss Functions

- Are all decisions equally costly?
 - *too many drug trials, too few patients*
 - Predicted **Sports**: bad error
 - Predicted **Science**: not so bad

- We can define a loss function $\ell(y, y^*)$
 - $\ell(\text{Sports}, \text{Health}) = 3$
 - $\ell(\text{Science}, \text{Health}) = 1$
Multiclass SVM

Minimize $\lambda \|w\|^2_2 + \sum_{j=1}^{m} \xi_j$

s.t. $\forall j \xi_j \geq 0$

$\forall j (2y_j - 1)(w^\top x_j) \geq 1 - \xi_j$

$\forall j \forall y \in Y \ w^\top f(x_j, y_j^*) \geq w^\top f(x_j, y) + \ell(y, y_j^*) - \xi_j$

slack variables > 0 iff example is support vector

Correct prediction now has to beat every other class

Score comparison is more explicit now

The 1 that was here is replaced by a loss function
Does gold beat every label + loss? No!

Most violated constraint is **Sports**; what is ξ_j?

$\xi_j = 4.3 - 2.4 = 1.9$

Perceptron would make no update here
Revisiting Generative vs. Discriminative Models
Learning in Probabilistic Models

- So far we have talked about discriminative classifiers (e.g., logistic regression which models $P(y|x)$)

- Cannot analytically compute optimal weights for such models, need to use gradient descent

- What about generative models?
Data point $x = (x_1, ..., x_n)$, label $y \in \{0, 1\}$

Formulate a probabilistic model that places a distribution $P(x, y)$

Compute $P(y|x)$, predict $\arg\max_y P(y|x)$ to classify

$$P(y|x) = \frac{P(y)P(x|y)}{P(x)}$$

Bayes’ Rule

constant: irrelevant for finding the max

"Naive" assumption:

$$= P(y) \prod_{i=1}^{n} P(x_i|y)$$
Data points \((x_j, y_j)\) provided (\(j\) indexes over examples)

Find values of \(P(y), P(x_i | y)\) that maximize data likelihood (generative):

\[
\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \prod_{i=1}^{n} P(x_{ji} | y_j)
\]

- data points \((j)\)
- features \((i)\)
- \(i\)th feature of \(j\)th example
Maximum Likelihood Estimation

- Imagine a coin flip which is heads with probability p

- Observe (H, H, H, T) and maximize likelihood:

 $$\prod_{j=1}^{m} P(y_j) = p^3(1 - p)$$

- Easier: maximize log likelihood

 $$\sum_{j=1}^{m} \log P(y_j) = 3 \log p + \log(1 - p)$$

- Maximum likelihood parameters for binomial/multinomial = read counts off of the data + normalize
Maximum Likelihood Estimation

- Data points \((x_j, y_j)\) provided (\(j\) indexes over examples)

- Find values of \(P(y), P(x_i | y)\) that maximize data likelihood (generative):

\[
\prod_{j=1}^{m} P(y_j, x_j) = \prod_{j=1}^{m} P(y_j) \prod_{i=1}^{n} P(x_{ji} | y_j)
\]

 - data points \((j)\)
 - features \((i)\)
 - \(i\)th feature of \(j\)th example

- Equivalent to maximizing logarithm of data likelihood:

\[
\sum_{j=1}^{m} \log P(y_j, x_j) = \sum_{j=1}^{m} \left[\log P(y_j) + \sum_{i=1}^{n} \log P(x_{ji} | y_j) \right]
\]

- Can do this by counting and normalizing distributions!
Summary

- You’ve now seen everything you need to implement multi-class classification models

- Homework (on Binary Classification): 09/09/2020 DUE

- Next: HMMs / POS tagging + CRFs (NER)