CSE 5243 INTRO. TO DATA MINING

Locality Sensitive Hashing (LSH)
Review, Proof, Examples

Huan Sun, CSE@The Ohio State University
MMDS Secs. 3.2-3.4.

FINDING SIMILAR ITEMS

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU
Two Essential Steps for Similar Docs

1. **Shingling**: Convert documents to sets

2. **Min-Hashing**: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
- e.g. Similarity Search
- Data Placement
- Clustering etc.

The Big Picture

Document → Shingling → Min Hashing → Similarity Search, Data Placement, Clustering etc.

The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

The set of strings of length k that appear in the document

SHINGLING

Step 1: Shingling: Convert documents to sets
A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the document.

- Tokens can be characters, words or something else, depending on the application.
- Assume tokens = characters for examples.

Example: $k=2$; document $D_1 = \text{abcab}$

Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
Similarity Metric for Shingles

- **Document** D_1 **is a set of its** k-**shingles** $C_1 = S(D_1)$

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse

- **A natural similarity measure is the Jaccard similarity:**
 \[
 \text{sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]
Motivation for Minhash/LSH

- Suppose we need to find similar documents among \(N = 1 \) million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
 - \(N(N-1)/2 \approx 5 \times 10^{11} \) comparisons
 - At \(10^5 \) secs/day and \(10^6 \) comparisons/sec, it would take \(5 \) days
- For \(N = 10 \) million, it takes more than a year...
Step 2: *Minhashing*: Convert large variable length sets to short fixed-length signatures, while preserving similarity.
From Sets to Boolean Matrices

- **Rows** = elements (shingles)

- **Columns** = sets (documents)
 - 1 in row e and column s if and only if e is a valid shingle of document represented by s

 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)

- Typical matrix is sparse!

Note: Transposed Document Matrix

<table>
<thead>
<tr>
<th>Documents</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
So far:

- A document → a set of shingles
- Represent a set as a boolean vector in a matrix

Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures
Next Goal: Find similar columns based on small signatures

Naïve approach:

1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 ■ Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar
Next Goal: Find similar columns based on small signatures

Naïve approach:
1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar

Warnings:
Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Hashing Columns (Signatures) : LSH principle

- **Key idea:** “hash” each column C to a small signature $h(C)$, such that:
 - (1) $h(C)$ is small enough that the signature fits in RAM
 - (2) $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Goal: Find a hash function $h(\cdot)$ such that:

- If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

- Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called **Min-Hashing**
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_{\pi}(C) =$ the index of the first (in the permuted order π) row in which column C has value 1:

 $$h_{\pi}(C) = \min_{\pi} \pi(C)$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Imagine the rows of the boolean matrix permuted under random permutation π.

Define a “hash” function $h_\pi(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_\pi(C) = \min_\pi \pi(C)$$

Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column.
Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2nd element of the permutation is the first to map to a 1

$\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{array}$

$\begin{array}{c} 2 \\ 3 \\ 7 \\ 6 \\ 1 \\ 5 \\ 4 \end{array}$

$\begin{array}{cccc} 2 & 1 & 2 & 1 \end{array}$

Min-Hashing Example

2nd element of the permutation is the first to map to a 1

4th element of the permutation is the first to map to a 1

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>Signature matrix M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 3 1 5 6 7</td>
<td>2 1 2 1</td>
</tr>
<tr>
<td>3 2 4</td>
<td>2 1 4 1</td>
</tr>
<tr>
<td>7 1 7</td>
<td>1 2 1 2</td>
</tr>
<tr>
<td>6 3 2</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>1 6 6</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>5 7 1</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>4 5 5</td>
<td>1 0 1 0</td>
</tr>
</tbody>
</table>
Min-Hashing Example

Permutation π Input matrix (Shingles x Documents) Signature matrix M

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

- 2nd element of the permutation is the first to map to a 1
- 4th element of the permutation is the first to map to a 1

Min-Hash Signatures

- Pick $K=100$ random permutations of the rows

- Think of $\text{sig}(C)$ as a column vector
 - $\text{sig}(C)[i] = \text{according to the } i\text{-th permutation, the index of the first row that has a 1 in column } C$
 - $\text{sig}(C)[i] = \min (\pi_i(C))$

- **Note:** The sketch (signature) of document C is small ~ 100 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Key Fact

For two sets A, B, and a min-hash function \(mh_i() \):

\[
Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

Unbiased estimator for \(Sim \) using \(K \) hashes (notation policy – this is a different \(K \) from size of shingle)

\[
\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1}^{k} I[mh_i(A) = mh_i(B)]
\]
Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using K hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1}^{k} I[mh_i(A) = mh_i(B)]$$

The similarity of two signatures is the fraction of the hash functions in which they agree.
Min-Hashing Example

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>Input matrix (Shingles x Documents)</th>
<th>Signature matrix M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1 0 1 0 1 0</td>
<td>2 1 2 1</td>
</tr>
<tr>
<td>3</td>
<td>1 0 0 1</td>
<td>2 1 4 1</td>
</tr>
<tr>
<td>7</td>
<td>0 1 0 1</td>
<td>1 2 1 2</td>
</tr>
<tr>
<td>6</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>Sig/Sig</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Why?
The Min-Hash Property

- Choose a random permutation π

- Claim: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$

- Why?
 - Given a set X, the probability that any one element is the min-hash under π is $\frac{1}{|X|}$ $\leftarrow (0)$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Given a set X, the probability that one of any k elements is the min-hash under π is $\frac{k}{|X|}$ $\leftarrow (1)$
The Min-Hash Property

- Choose a random permutation π
- **Claim:** $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$

- **Why?**
 - Given a set X, the probability that any one element is the min-hash under π is $1/|X|$ \(\leftarrow (0)\)
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Given a set X, the probability that one of any k elements is the min-hash under π is $k/|X|$ \(\leftarrow (1)\)
 - For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ \(\text{from (0)} \leftarrow (2)\)
 - For any C_1 and C_2, the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ \(\leftarrow \text{from (1) and (2)}\)
Similarity for Signatures

- We know: \(\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2) \)
- Now generalize to multiple hash functions

- The similarity of two signatures is the fraction of the hash functions in which they agree

- **Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix M

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig/Sig</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a $K \times 1$ column vector
- $\text{sig}(C)[i] =$ according to the i-th permutation, the index of the first row that has a 1 in column C
 \[
 \text{sig}(C)[i] = \min (\pi_i(C))
 \]
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a $K*1$ column vector
- $\text{sig}(C)[i] =$ according to the i-th permutation, the index of the first row that has a 1 in column C
 \[\text{sig}(C)[i] = \min (\pi_i(C)) \]
- **Note:** The sketch (signature) of document C is small ~ 100 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Implementation Trick

- **Permuting rows even once is prohibitive**
- **Row hashing!**
 - Pick $K = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!
- **One-pass implementation**
 - For each column C and hash-func. k_i, keep a “slot” for the min-hash value
 - Initialize all $\text{sig}(C)[i] = \infty$
 - Scan rows looking for 1s
 - Suppose row J has 1 in column C
 - Then for each k_i:
 - If $k_i(J) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(J)$

How to pick a random hash function $h(x)$?

Universal hashing:

$h_{a,b}(x)=((a \cdot x + b) \mod p) \mod N$

where:
- a,b … random integers
- p … prime number ($p > N$)

Summary: Two Key Steps

- **Shingling**: Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations
Step 3: **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents

Locality Sensitive Hashing

- **Document**
 - **Shingling:** The set of strings of length k that appear in the document
 - **Min-Hashing:** Signatures: short integer vectors that represent the sets, and reflect their similarity
 - **Locality-Sensitive Hashing:** Candidate pairs: those pairs of signatures that we need to test for similarity
Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH – General idea: Use a function $f(x,y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
Candidates from Min-Hash

- Pick a similarity threshold s ($0 < s < 1$)

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 \[M(i, x) = M(i, y) \]
 for at least $\frac{s}{I}$ values of I

 - We expect documents x and y to have the same (Jaccard) similarity as their signatures
LSH for Min-Hash

- **Big idea:** Hash columns of signature matrix M several times

- Arrange that (only) **similar columns** are likely to **hash to the same bucket**, with high probability

- **Candidate pairs** are those that hash to the same bucket
Partition M into b Bands

Signature matrix M

b bands

r rows per band

One signature

\[\begin{array}{cccc}
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1 \\
\end{array} \]
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible

- Candidate column pairs are those that hash to the same bucket for ≥ 1 band

- Tune b and r to catch most similar pairs, but few non-similar pairs
Hashing Bands

Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.
Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

- Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

- Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

Goal: Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- **Find pairs of** \(\geq s = 0.8 \) **similarity**, set \(b = 20 \), \(r = 5 \)

- **Assume**: \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a **candidate pair**: We want them to hash to at least 1 **common bucket** (at least one band is identical)
C₁, C₂ are 80% Similar

- **Find pairs of** \(\geq s = 0.8 \) similarity, set \(b = 20, r = 5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

- **Probability** \(C₁, C₂ \) identical in one particular band: \((0.8)^5 = 0.328 \)

- Probability \(C₁, C₂ \) are not similar in any of the 20 bands: \((1 - 0.328)^{20} = 0.00035 \)
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

- We would find 99.965% pairs of truly similar documents
C₁, C₂ are 30% Similar

- Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20, r = 5 \)

- Assume: \(\text{sim}(C₁, C₂) = 0.3 \)
 - Since \(\text{sim}(C₁, C₂) < s \) we want \(C₁, C₂ \) to hash to NO common buckets (all bands should be different)
C₁, C₂ are 30% Similar

- Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20, r = 5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.3 \)
 - Since \(\text{sim}(C₁, C₂) < s \) we want \(C₁, C₂ \) to hash to **NO common buckets** (all bands should be different)

- **Probability \(C₁, C₂ \) identical in one particular band:** \((0.3)^5 = 0.00243 \)

- Probability \(C₁, C₂ \) identical in at least 1 of 20 bands: \(1 - (1 - 0.00243)^{20} = 0.0474 \)
 - In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming **candidate pairs**
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold \(s \)
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

 to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

Probability of sharing a bucket

No chance if $t < s$

Probability threshold s

Probability = 1 if $t > s$
What 1 Band of 1 Row Gives You

Probability of sharing a bucket

Remember:
Probability of equal hash-values = similarity

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
b bands, r rows/band

- Columns C_1 and C_2 have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal $= t^r$
 - Prob. that some row in band unequal $= 1 - t^r$
- Prob. that no band identical $= (1 - t^r)^b$
- Prob. that at least 1 band identical $= 1 - (1 - t^r)^b$
What b Bands of r Rows Gives You

At least one band identical

$1 - (1 - t^r)^b$

Probability of sharing a bucket

$\frac{1}{b}$

$t = \sim (1/b)^{1/r}$

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
Example: $b = 20; r = 5$

- **Similarity threshold s**

- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

Picking r and b: The S-curve

- **Picking r and b to get the best S-curve**
 - 50 hash-functions ($r=5$, $b=10$)

![Graph showing the S-curve with blue and green areas]

Blue area: False Negative rate
Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures

- Check in main memory that candidate pairs really do have similar signatures

- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents
Summary: 3 Steps

- **Shingling**: Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property \(\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2) \)
 - We used hashing to get around generating random permutations

- **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity \(\geq s \)

Backup slides