FINDING SIMILAR ITEMS

MMDS Secs. 3.2-3.4.

FINDING SIMILAR ITEMS

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU
Task: Finding Similar Documents

- **Goal:** Given a large number \(N \) in the millions or billions of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors → remove duplicates
 - Similar news articles at many news sites → cluster
Task: Finding Similar Documents

- **Goal:** Given a large number \(N \) in the millions or billions of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors \(\rightarrow \) remove duplicates
 - Similar news articles at many news sites \(\rightarrow \) cluster

What are the challenges?
Task: Finding Similar Documents

- **Goal:** Given a large number (N in the millions or billions) of documents, find “near duplicate” pairs

- **Applications:**
 - Mirror websites, or approximate mirrors \rightarrow remove duplicates
 - Similar news articles at many news sites \rightarrow cluster

- **Problems:**
 - Many small pieces of one document can appear out of order in another
 - Too many documents to compare all pairs
 - Documents are so large or so many (scale issues)
Two Essential Steps for Similar Docs

1. **Shingling:** Convert documents to sets

2. **Min-Hashing:** Convert large sets to short signatures, while preserving similarity

Host of follow up applications

- e.g. Similarity Search
- Data Placement
- Clustering etc.

The Big Picture

Document → Shingling → Min Hashing → Similarity Search

Data Placement
Clustering etc.

The set of strings of length k that appear in the document

Signatures:
short integer vectors that represent the sets, and reflect their similarity

SHINGLING

Step 1: *Shingling:* Convert documents to sets

Document → **Shingling**

The set of strings of length k that appear in the document

- **SHINGLING**
Documents as High-Dim Data

- **Step 1:** *Shingling*: Convert documents to sets

- **Simple approaches:**
 - Document = set of words appearing in document
 - Document = set of “important” words
 - Don’t work well for this application. *Why?*

- **Need to account for ordering of words!**

- **A different way:** *Shingles!*

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for examples.
Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples

- **Example**: $k=2$; document $D_1 = abcab$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
Define: Shingles

- A \(k \)-shingle (or \(k \)-gram) for a document is a sequence of \(k \) tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples

- **Example:** \(k = 2 \); document \(D_1 = abcab \)
 - Set of 2-shingles: \(S(D_1) = \{ab, bc, ca\} \)

- **Another option:** Shingles as a bag (multiset), count \(ab \) twice: \(S'(D_1) = \{ab, bc, ca, ab\} \)
Example 3.4: If we use $k = 9$, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences “The plane was ready for touch down”. and “The quarterback scored a touchdown”. However, if we retain the blanks, then the first has shingles touch down and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown. □

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.
How to choose K?

- **Documents** that have lots of shingles in common have similar text, even if the text appears in different order.

- **Caveat:** You must pick k large enough, or most documents will have most shingles.
 - $k = 5$ is OK for short documents.
 - $k = 10$ is better for long documents.
Compressing Shingles

To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- If #shingles manageable → Simple dictionary suffices

 e.g., 9-shingle => bucket number [0, $2^{32} - 1$]
 (using 4 bytes instead of 9)

Compressing Shingles

- To **compress long shingles**, we can **hash** them to (say) 4 bytes
 - Like a Code Book
 - If #shingles manageable → Simple dictionary suffices

- **Doc represented by the set of hash/dict. values of its k-shingles**
 - **Idea:** Two documents could appear to have shingles in common, when the hash-values were shared
Compressing Shingles

- To compress long shingles, we can hash them to (say) 4 bytes
 - Like a Code Book
 - If #shingles manageable \rightarrow Simple dictionary suffices

- Doc represented by the set of hash/dict. values of its k-shingles

- Example: $k=2$; document $D_1 = abcab$
 - Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$
 - Hash the singles: $h(D_1) = \{1, 5, 7\}$
Similarity Metric for Shingles

- Document D_1 is a set of its k-shingles $C_1 = S(D_1)$

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse

- A natural similarity measure is the Jaccard similarity:
 \[\text{sim}(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|} \]
Motivation for Minhash/LSH

- Suppose we need to find similar documents among \(N = 1 \) million documents.

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs.

 \[N(N - 1)/2 \approx 5 \times 10^{11} \text{ comparisons} \]

 At 10^5 secs/day and 10^6 comparisons/sec, it would take 5 days.

- For \(N = 10 \) million, it takes more than a year...
Step 2: **Minhashing**: Convert large variable length sets to short fixed-length signatures, while preserving similarity.
Many similarity problems can be formalized as finding subsets that have significant intersection.
Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets using 0/1 (bit, boolean) vectors:
- One dimension per element in the universal set.
- Interpret set intersection as bitwise AND, and set union as bitwise OR.
Many similarity problems can be formalized as finding subsets that have significant intersection.

Encode sets using 0/1 (bit, boolean) vectors:
- One dimension per element in the universal set.

Interpret set intersection as bitwise AND, and set union as bitwise OR.

Example: \(C_1 = 10111; C_2 = 10011 \)
- Size of intersection = 3; size of union = 4,
- Jaccard similarity (not distance) = 3/4
- Distance: \(d(C_1, C_2) = 1 - \text{(Jaccard similarity)} = 1/4 \)
From Sets to Boolean Matrices

- **Rows** = elements (shingles)
 - Note: Transposed Document Matrix

- **Columns** = sets (documents)
 - 1 in row e and column s if and only if e is a valid shingle of document represented by s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

<table>
<thead>
<tr>
<th>Documents</th>
<th>Shingles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 0</td>
<td>1 0 1</td>
</tr>
<tr>
<td>1 1 0 1</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>0 1 0 1</td>
<td>0 0 0 1</td>
</tr>
<tr>
<td>1 0 0 1</td>
<td>1 0 0 1</td>
</tr>
<tr>
<td>1 1 1 1</td>
<td>1 1 1 1</td>
</tr>
<tr>
<td>1 0 1 0</td>
<td>1 0 1 0</td>
</tr>
</tbody>
</table>
Outline: Finding Similar Columns

So far:
- A document \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix
Outline: Finding Similar Columns

- So far:
 - A document → a set of shingles
 - Represent a set as a boolean vector in a matrix

- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures
Next Goal: Find similar columns, Small signatures

Naïve approach:

1) Signatures of columns: small summaries of columns
Next Goal: Find similar columns, Small signatures

Naïve approach:

1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar
Next Goal: Find similar columns, Small signatures

Naïve approach:
- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
- 3) Optional: Check that columns with similar signatures are really similar

Warnings:
- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Hashing Columns (Signatures) : LSH principle

- **Key idea:** “hash” each column \(C \) to a small *signature* \(h(C) \), such that:
 1. \(h(C) \) is small enough that the signature fits in RAM
 2. \(\text{sim}(C_1, C_2) \) is the same as the “similarity” of signatures \(h(C_1) \) and \(h(C_2) \)
Hashing Columns (Signatures) : LSH principle

- **Key idea:** “hash” each column C to a small *signature* $h(C)$, such that:
 1. $h(C)$ is small enough that the signature fits in RAM
 2. $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

- **Goal:** Find a hash function $h(\cdot)$ such that:
 1. If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 2. If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
Hashing Columns (Signatures) : LSH principle

- **Key idea:** “hash” each column \(C \) to a small **signature** \(h(C) \), such that:
 - (1) \(h(C) \) is small enough that the signature fits in RAM
 - (2) \(\text{sim}(C_1, C_2) \) is the same as the “similarity” of signatures \(h(C_1) \) and \(h(C_2) \)

- **Goal:** Find a hash function \(h(\cdot) \) such that:
 - If \(\text{sim}(C_1, C_2) \) is high, then with high prob. \(h(C_1) = h(C_2) \)
 - If \(\text{sim}(C_1, C_2) \) is low, then with high prob. \(h(C_1) \neq h(C_2) \)

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Min-Hashing

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- **Clearly, the hash function depends on the similarity metric:**
 - Not all similarity metrics have a suitable hash function
Goal: Find a hash function $h(\cdot)$ such that:
- if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
Imagine the rows of the boolean matrix permuted under random permutation π
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_\pi(C) =$ the index of the first (in the permuted order π) row in which column C has value 1:

$$h_\pi(C) = \min_\pi \pi(C)$$
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_{\pi}(C) = \text{the index of the first (in the permuted order } \pi\text{) row in which column } C \text{ has value 1}:

 $$h_{\pi}(C) = \min_{\pi} \pi(C)$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_\pi(C) = \text{the index of the first (in the permuted order } \pi) \text{ row in which column } C \text{ has value 1:}$

$$h_\pi(C) = \min_\pi \pi(C)$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Zoo example (shingle size k=1)

Universe \rightarrow \{ dog, cat, lion, tiger, mouse \}

π_1 \rightarrow [cat, mouse, lion, dog, tiger]

π_2 \rightarrow [lion, cat, mouse, dog, tiger]

$A = \{ \text{mouse, lion} \}$
Zoo example (shingle size $k=1$)

Universe $\rightarrow \{ \text{dog, cat, lion, tiger, mouse} \}$

$\pi_1 \rightarrow [\text{cat, mouse, lion, dog, tiger}]$

$\pi_2 \rightarrow [\text{lion, cat, mouse, dog, tiger}]$

$A = \{ \text{mouse, lion} \}$

$mh_1(A) = \min (\pi_1\{\text{mouse, lion}\}) = \text{mouse}$

$mh_2(A) = \min (\pi_2\{\text{mouse, lion}\}) = \text{lion}$
Min-Hashing Example

Permutation π

| 2 | 3 | 7 | 6 | 1 | 5 | 4 |

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signature matrix M

| 2 | 1 | 2 | 1 |

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents) Signature matrix M

2nd element of the permutation is the first to map to a 1

Min-Hashing Example

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>Signature matrix M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4</td>
<td>2 1 2 1</td>
</tr>
<tr>
<td>3 2</td>
<td>2 1 4 1</td>
</tr>
<tr>
<td>7 1</td>
<td></td>
</tr>
<tr>
<td>6 3</td>
<td></td>
</tr>
<tr>
<td>1 6</td>
<td></td>
</tr>
<tr>
<td>5 7</td>
<td></td>
</tr>
<tr>
<td>4 5</td>
<td></td>
</tr>
</tbody>
</table>

Min-Hashing Example

Input matrix (Shingles x Documents)

Permutation π

Signature matrix M

2nd element of the permutation is the first to map to a 1

4th element of the permutation is the first to map to a 1

Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

\[
\begin{array}{ccc}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{array}
\]

Signature matrix M

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
\end{array}
\]

Min-Hashing Example

Permutation \(\pi \)

2	4	3
3 | 2 | 4
7 | 1 | 7
6 | 3 | 2
1 | 6 | 6
5 | 7 | 1
4 | 5 | 5

Input matrix (Shingles x Documents)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Signature matrix \(M \)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

\[
\begin{array}{cccc}
1 & 5 & 1 & 5 \\
2 & 3 & 1 & 3 \\
6 & 4 & 6 & 4 \\
\end{array}
\]

Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] =$ according to the i-th permutation, the index of the first row that has a 1 in column C
 \[
 \text{sig}(C)[i] = \min (\pi_i(C))
 \]
- **Note:** The sketch (signature) of document C is small ~ 100 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures

Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using K hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Min-Hashing Example

Permutation π

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>Sig/Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-3</td>
<td>2-4</td>
</tr>
<tr>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>
The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Why?

One of the two cols had to have 1 at position y
The Min-Hash Property

- Choose a random permutation \(\pi \)
- **Claim:** \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)
- **Why?**
 - Let \(X \) be a doc (set of shingles), \(y \in X \) is a shingle

One of the two cols had to have 1 at position \(y \)
The Min-Hash Property

- **Choose a random permutation** \(\pi\)
- **Claim:** \(\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)\)
- **Why?**
 - Let \(X\) be a doc (set of shingles), \(y \in X\) is a shingle
 - **Then:** \(\Pr[\pi(y) = \min(\pi(X))] = 1/|X|\)
 - It is equally likely that any \(y \in X\) is mapped to the \(\min\) element

One of the two cols had to have 1 at position \(y\)
The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position y
The Min-Hash Property

- Choose a random permutation \(\pi \)
- **Claim:** \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)
- **Why?**
 - Let \(X \) be a doc (set of shingles), \(y \in X \) is a shingle
 - **Then:** \(\Pr[\pi(y) = \min(\pi(X))] = 1/|X| \)
 - It is equally likely that any \(y \in X \) is mapped to the \(\min \) element
 - Let \(y \) be s.t. \(\pi(y) = \min(\pi(C_1 \cup C_2)) \)
 - **Then either:**
 - \(\pi(y) = \min(\pi(C_1)) \) if \(y \in C_1 \), or
 - \(\pi(y) = \min(\pi(C_2)) \) if \(y \in C_2 \)
 - So the prob. that both are true is the prob. \(y \in C_1 \cap C_2 \)
 - \(\Pr[\min(\pi(C_1))=\min(\pi(C_2))] = |C_1 \cap C_2|/|C_1 \cup C_2| = \text{sim}(C_1, C_2) \)

The Min-Hash Property (Take 2: simpler proof)

- Choose a random permutation π

- Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$

- Why?
 - Given a set X, the probability that any one element is the min-hash under π is $1/|X|$ \leftarrow (0)
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Given a set X, the probability that one of any k elements is the min-hash under π is $k/|X|$ \leftarrow (1)
 - For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
 - For any C_1 and C_2, the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ \leftarrow from (1) and (2)
Similarity for Signatures

- We know: \(\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2) \)
- Now generalize to multiple hash functions

- The similarity of two signatures is the fraction of the hash functions in which they agree

- **Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

```
1 0 1 0
1 0 0 1
0 1 0 1
0 1 0 1
1 0 1 0
1 0 1 0
```

Signature matrix M

```
2 1 2 1
2 1 4 1
1 2 1 2
```

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig/Sig</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] = \text{according to the } i\text{-th permutation, the index of the first row that has a 1 in column } C$
 \[
 \text{sig}(C)[i] = \min (\pi_i(C))
 \]
- **Note:** The sketch (signature) of document C is small ~ 100 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random hash function $h(x)$?

Universal hashing:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$$

where:
- a, b ... random integers
- p ... prime number ($p > N$)

Summary: 3 Steps

- **Shingling**: Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
 - We used *similarity preserving hashing* to generate signatures with property $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations
Backup slides
Find Similar Columns

So far:
- Documents → Sets of shingles
- Represent sets as boolean vectors in a matrix

Next goal: Find similar columns while computing small signatures
- Similarity of columns == similarity of signatures
Next Goal: Find similar columns, Small signatures

Naïve approach:
- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
- 3) Optional: Check that columns with similar signatures are really similar

Warnings:
- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Key idea: “hash” each column C to a small signature $h(C)$, such that:

1. $h(C)$ is small enough that the signature fits in RAM
2. $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$
Hashing Columns (Signatures) : LSH principle

- **Key idea:** “hash” each column C to a small signature $h(C)$, such that:
 1. $h(C)$ is small enough that the signature fits in RAM
 2. $\text{sim}(C_1, C_2)$ is the same as the “similarity” of signatures $h(C_1)$ and $h(C_2)$

- **Goal:** Find a hash function $h(\cdot)$ such that:
 1. If $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 2. If $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!
Goal: Find a hash function $h(\cdot)$ such that:
- if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:
- Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_\pi(C) =$ the index of the first (in the permuted order π) row in which column C has value 1:

$$h_\pi(C) = \min_\pi \pi(C)$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Zoo example (shingle size $k=1$)

Universe $\rightarrow \{ \text{dog, cat, lion, tiger, mouse} \}$

$\pi_1 \rightarrow [\text{cat, mouse, lion, dog, tiger}]$

$\pi_2 \rightarrow [\text{lion, cat, mouse, dog, tiger}]$

$A = \{ \text{mouse, lion} \}$

$mh_1(A) = \min (\pi_1 \{ \text{mouse, lion} \}) = \text{mouse}$

$mh_2(A) = \min (\pi_2 \{ \text{mouse, lion} \}) = \text{lion}$
Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using K hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$
Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2nd element of the permutation is the first to map to a 1

4th element of the permutation is the first to map to a 1

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the \min element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
 - $\Pr[\min(\pi(C_1)) = \min(\pi(C_2))] = |C_1 \cap C_2| / |C_1 \cup C_2| = \text{sim}(C_1, C_2)$

One of the two cols had to have 1 at position y
The Min-Hash Property (Take 2: simpler proof)

- **Choose a random permutation** π
- **Claim:** $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- **Why?**
 - Given a set X, the probability that any one element is the min-hash under π is $1/|X|$ \leftarrow (0)
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Given a set X, the probability that one of any k elements is the min-hash under π is $k/|X|$ \leftarrow (1)
 - For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
 - For any C_1 and C_2, the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ \leftarrow from (1) and (2)
Similarity for Signatures

- We know: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- Now generalize to multiple hash functions

- The *similarity of two signatures* is the fraction of the hash functions in which they agree

- **Note**: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

<table>
<thead>
<tr>
<th>Permutation π</th>
<th>Input matrix (Shingles x Documents)</th>
<th>Signature matrix M</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 4 3</td>
<td>1 0 1 0</td>
<td>2 1 2 1</td>
</tr>
<tr>
<td>3 2 4</td>
<td>1 0 0 1</td>
<td>2 1 4 1</td>
</tr>
<tr>
<td>7 1 7</td>
<td>0 1 0 1</td>
<td>1 2 1 2</td>
</tr>
<tr>
<td>6 3 2</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>1 6 6</td>
<td>0 1 0 1</td>
<td></td>
</tr>
<tr>
<td>5 7 1</td>
<td>1 0 1 0</td>
<td></td>
</tr>
<tr>
<td>4 5 5</td>
<td>1 0 1 0</td>
<td></td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col/Col</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sig/Sig</td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a column vector
- $\text{sig}(C)[i] =$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$\text{sig}(C)[i] = \min (\pi_i(C))$$

- **Note:** The sketch (signature) of document C is small ~ 100 bytes!

- **We achieved our goal!** We “compressed” long bit vectors into short signatures
Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

\[h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N \]

where:
- a, b … random integers
- p … prime number (p > N)
Summary: 3 Steps

- **Shingling**: Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
 - We used *similarity preserving hashing* to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations

Backup slides