Locality Sensitive Hashing (LSH) & Graph Data

Huan Sun, CSE@The Ohio State University
Min-Hashing Example

Permutation \(\pi \)

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

\[
\begin{array}{ccc}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 \\
\end{array}
\]

Signature matrix \(M \)

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
2 & 1 & 4 & 1 \\
1 & 2 & 1 & 2 \\
\end{array}
\]

Similarities:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col/Col</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sig/Sig</td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Implementation Trick

- Permuting rows even once is prohibitive
- Row hashing!
 - Pick $K = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!
- One-pass implementation
 - For each column C and hash-func. k_i keep a “slot” for the min-hash value
 - Initialize all $\text{sig}(C)[i] = \infty$
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?

Universal hashing:
$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$
where:
- a, b … random integers
- p … prime number ($p > N$)

More details:
Section 3.3.5 in J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Step 3: **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents.
Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH – General idea: Use a function $f(x,y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair
Candidates from Min-Hash

- **Pick a similarity threshold** $s (0 < s < 1)$

- **Columns** x and y of M are a **candidate pair** if their signatures agree on at least fraction s of their rows:

 $$M(i, x) = M(i, y) \text{ for at least frac. } s \text{ values of } i$$

- We expect documents x and y to have the same (Jaccard) similarity as their signatures.
LSH for Min-Hash

- **Big idea:** Hash columns of signature matrix M several times

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

- **Candidate pairs are those that hash to the same bucket**
Partition M into b Bands

Signature matrix M

b bands

r rows per band

One signature

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible

- **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band

- Tune b and r to catch most similar pairs, but few non-similar pairs
Hashing Bands

Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.
There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

Goal: Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- **Find pairs of** $\geq s = 0.8$ similarity, set $b=20$, $r=5$

- **Assume:** $\text{sim}(C₁, C₂) = 0.8$
 - Since $\text{sim}(C₁, C₂) \geq s$, we want $C₁, C₂$ to be a candidate pair. We want them to hash to at least 1 common bucket (at least one band is identical)
C₁, C₂ are 80% Similar

- **Find pairs of** $\geq s=0.8$ similarity, set $b=20$, $r=5$

- **Assume:** $\text{sim}(C₁, C₂) = 0.8$
 - Since $\text{sim}(C₁, C₂) \geq s$, we want $C₁, C₂$ to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

- **Probability C₁, C₂ identical in one particular band:** $(0.8)^5 = 0.328$

- Probability $C₁, C₂$ are not similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

- We would find 99.965% pairs of truly similar documents
C₁, C₂ are 30% Similar

- **Find pairs of** $\geq s=0.8$ similarity, set $b=20$, $r=5$

- **Assume:** $\text{sim}(C₁, C₂) = 0.3$
 - Since $\text{sim}(C₁, C₂) < s$ we want $C₁$, $C₂$ to hash to **NO common buckets** (all bands should be different)
C₁, C₂ are 30% Similar

- **Find pairs of** $\geq s=0.8$ similarity, set $b=20$, $r=5$

- **Assume:** $\text{sim}(C₁, C₂) = 0.3$
 - Since $\text{sim}(C₁, C₂) < s$ we want $C₁, C₂$ to hash to **NO common buckets** (all bands should be different)

- **Probability C₁, C₂ identical in one particular band:** $(0.3)^5 = 0.00243$

- **Probability C₁, C₂ identical in at least 1 of 20 bands:** $1 - (1 - 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming **candidate pairs**
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

 to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

Probability of sharing a bucket

No chance if $t < s$

Probability = 1 if $t > s$

What 1 Band of 1 Row Gives You

Remember:
Probability of equal hash-values
= similarity

Probability of sharing a bucket

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
b bands, r rows/band

- Columns C_1 and C_2 have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 - t^r$
- Prob. that no band identical = $(1 - t^r)^b$
- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$
What b Bands of r Rows Gives You

At least one band identical

$1 - (1-t^r)^b$

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
Example: $b = 20; r = 5$

- **Similarity threshold** s
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)

Diagram:

- Blue area: False Negative rate
- Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

- Check in main memory that **candidate pairs** really do have similar signatures.

- **Optional**: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Summary: 3 Steps

- **Shingling**: Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing**: Convert large sets to short signatures, while preserving similarity
 - We used *similarity preserving hashing* to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations

- **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find *candidate pairs* of similarity $\geq s$
Chapter 4 Graph Data:

GRAPH BASICS AND A GENTLE INTRODUCTION TO PAGERANK

Slides adapted from Prof. Srinivasan Parthasarathy @OSU
Graphs from the Real World

The Web: hyperlinked docs

Social networks

http://www.touchgraph.com/news
Primitives and Notations

- $G = (V, E)$
 - $E \subseteq V \times V$, and can also be represented as an adjacency matrix.
- Undirected vs. directed graph

A directed edge (v_i, v_j) is also called an arc, and is said to be from v_i to v_j. We also say that v_i is the tail and v_j the head of the arc.
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree

The degree of a node $v_i \in V$ is the number of edges incident with it
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree

For directed graphs, the **indegree** of node v_i, denoted as $id(v_i)$, is the number of edges with v_i as head, that is, the number of incoming edges at v_i. The **outdegree** of v_i, denoted $od(v_i)$, is the number of edges with v_i as the tail, that is, the number of outgoing edges from v_i.
Primitives and Notations

- \(G = (V, E) \)
 - \(E \) can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The *eccentricity* of a node \(v_i \) is the maximum distance from \(v_i \) to any other node in the graph:

\[
\text{Eccentricity}(v) = \max_{u \neq v} \text{dist}(u, v)
\]
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The eccentricity of a node v_i is the maximum distance from v_i to any other node in the graph:

$$\text{Eccentricity}(v) = \max_{u \neq v} \text{dist}(u, v)$$
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The *radius* of a connected graph, denoted $r(G)$, is the minimum eccentricity of any node in the graph:

$\text{Radius}(G) = \min_{v \in V} \text{Eccentricity}(v)$
Primitives and Notations

- \(G = (V, E) \)
 - \(E \) can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The diameter, denoted \(d(G) \), is the maximum eccentricity of any vertex in the graph:

\[
\text{Diameter}(G) = \max_{v \in V} \text{Eccentricity}(v)
\]
Properties of Nodes

- Centrality: how “central” or important a node is in the graph
 - How close the node is to all other nodes?

\[
\text{Closeness Centrality}(v) = \frac{1}{\sum_{u \neq v} \text{dist}(u, v)}
\]

A node \(v_i \) with the smallest total distance, \(\sum_j d(v_i, v_j) \), is called the median node.
Properties of Nodes

- Centrality: how “central” or important a node is in the graph
 - How close the node is to all other nodes?
 - How much is a node a “choke point”?

Betweenness centrality: How many shortest paths between all pairs of vertices include \(v_i \).

\[
\gamma_{jk}(v_i) = \frac{\eta_{jk}(v_i)}{\eta_{jk}} : \text{the fraction of shortest paths between vertices } v_j \text{ and } v_k \text{ through } v_i
\]

The betweenness centrality for a node \(v_i \) is defined as

\[
c(v_i) = \sum_{j \neq i} \sum_{k \neq i} \gamma_{jk}(v_i) = \sum_{j \neq i} \sum_{k \neq i} \frac{\eta_{jk}(v_i)}{\eta_{jk}}
\]
Properties of Nodes

- Clustering coefficient: how much does a node cluster with neighbors
 - Local clustering coefficient
 The local clustering coefficient of a vertex (node) in a graph quantifies how close its neighbors are to being a clique (complete graph).

 The proportion of links between the vertices within its neighbourhood divided by the number of links that could possibly exist between them.
Properties of Nodes

- **Clustering coefficient**: how much does a node cluster with neighbors
 - **Local clustering coefficient**

 The **local clustering coefficient** of a vertex (node) in a graph quantifies how close its neighbors are to being a clique (complete graph).

 The proportion of links between the vertices within its neighbourhood divided by the number of links that could possibly exist between them.

 Undirected graph:
 \[
 C_i = \frac{2|\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}.
 \]

 Directed graph:
 \[
 C_i = \frac{\#\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}}{k_i(k_i - 1)}.
 \]
Properties of Nodes

- Clustering coefficient: how much does a node cluster with neighbors
 - Local clustering coefficient
 \[C_i = \frac{2|\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}. \]
 - Global clustering coefficient
 \[C = \frac{3 \times \text{number of triangles}}{\text{number of connected triplets of vertices}} = \frac{\text{number of closed triplets}}{\text{number of connected triplets of vertices}}. \]

A triplet consists of three connected nodes. A triangle therefore includes three closed triplets.
A connected triplet is defined to be a connected subgraph consisting of three vertices and two edges. Each triangle forms three connected triplets.
Background

- Besides the keywords, what other evidence can one use to rate the importance of a webpage?
Besides the keywords, what other evidence can one use to rate the importance of a webpage?

Solution: Use the hyperlink structure

E.g. a webpage linked by many webpages is probably important. but this method is not global (comprehensive).

PageRank is developed by Larry Page in 1998.
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink

- A user randomly clicks the hyperlink to surf WWW.
 - The probability a user stop in a particular webpage is the PageRank value.
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink

- A user randomly clicks the hyperlink to surf WWW.
 - The probability a user stop in a particular webpage is the PageRank value.

- A node that is linked by many nodes with high PageRank value receives a high rank itself;
 - If there are no links to a node, then there is no support for that page.
A simple version

\[R(u) = \sum_{v \in B_u} \frac{R(v)}{N_v} \]

- \(u \): a webpage
- \(B_u \): the set of \(u \)'s backlinks
- \(N_v \): the number of forward links of page \(v \)

- Initially, \(R(u) \) is 1 \(/ \) N for every webpage
- Iteratively update each webpage’s PR value until convergence.
Let $G = (V, E)$ be a directed graph, with $|V| = n$. The adjacency matrix of G is an $n \times n$ asymmetric matrix A given as

$$A(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 0 & \text{if } (u, v) \notin E \end{cases}$$

Let $p(u)$ be a positive real number, called the *prestige* score for node u.

$$p(v) = \sum_{u} A(u, v) \cdot p(u)$$

$$= \sum_{u} A^T(v, u) \cdot p(u)$$

the prestige of a node depends on the prestige of other nodes pointing to it.
Let $p(u)$ be a positive real number, called the *prestige* score for node u.

\[
p(v) = \sum_u A(u, v) \cdot p(u)
\]
\[
= \sum_u A^T(v, u) \cdot p(u)
\]

the prestige of a node depends on the prestige of other nodes pointing to it.

Across all the nodes, we can recursively express the prestige scores as

\[
p' = A^T p
\]

where p is an n-dimensional column vector corresponding to the prestige scores for each vertex.
Iterative Computation

\[p_k = A^T p_{k-1} \]

\[= A^T (A^T p_{k-2}) = (A^T)^2 p_{k-2} \]

\[= (A^T)^2 (A^T p_{k-3}) = (A^T)^3 p_{k-3} \]

\[= \ldots \]

\[= (A^T)^k p_0 \]

where \(p_0 \) is the initial prestige vector. It is well known that the vector \(p_k \) converges to the dominant eigenvector of \(A^T \) with increasing \(k \).
Example 1

PageRank Calculation: first iteration

\[M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \]

\(= \) the transpose of \(A \) (adjacency matrix)

\[
\begin{bmatrix}
\text{yahoo} \\
\text{Amazon} \\
\text{Microsoft}
\end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}
\]

\[
\begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{6} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}
\]
Example 1

PageRank Calculation: second iteration

\[
\begin{bmatrix}
 5/12 \\
 1/3 \\
 1/4 \\
\end{bmatrix} = \begin{bmatrix}
 1/2 & 1/2 & 0 \\
 1/2 & 0 & 1 \\
 0 & 1/2 & 0 \\
\end{bmatrix} \begin{bmatrix}
 1/3 \\
 1/3 \\
 1/3 \\
\end{bmatrix}
\]
Example 1

Convergence after some iterations
A simple version

\[R(u) = \sum_{v \in B_u} \frac{R(v)}{N_v} \]

- \(u \): a webpage
- \(B_u \): the set of \(u \)'s backlinks
- \(N_v \): the number of forward links of page \(v \)
- Initially, \(R(u) \) is \(1/N \) for every webpage
- Iteratively update each webpage’s PR value until convergence.
A little more advanced version

- Adding a damping factor d
- Imagine that a surfer would stop clicking a hyperlink with probability $1-d$

$$R(u) = \frac{(1-d)}{N-1} + d \sum_{v \in B_u} \frac{R(v)}{N_v}$$

- $R(u)$ is at least $(1-d)/(N-1)$
 - N is the total number of nodes.
Other applications

- Social network (Facebook, Twitter, etc)
 - Node: Person; Edge: Follower / Followee / Friend
 - Higher PR value: Celebrity

- Citation network
 - Node: Paper; Edge: Citation
 - Higher PR values: Important Papers.

- Protein-protein interaction network
 - Node: Protein; Edge: Two proteins bind together
 - Higher PR values: Essential proteins.
Backup slides