Locality Sensitive Hashing (LSH)

Huan Sun, CSE@The Ohio State University
MMDS Secs. 3.2-3.4.
Two Essential Steps for Similar Docs

1. **Shingling**: Convert documents to sets

2. **Min-Hashing**: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
 - e.g. Similarity Search
 - Data Placement
 - Clustering etc.

The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity

Similarity Search
Data Placement
Clustering etc.
Step 1: **Shingling**: Convert documents to sets

The set of strings of length k that appear in the document.
Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc.
 - Tokens can be characters, words or something else, depending on the application.
 - Assume tokens = characters for examples.

Example: $k=2$; document $D_1 = \text{abcab}$

Set of 2-shingles: $S(D_1) = \{\text{ab}, \text{bc}, \text{ca}\}$
Similarity Metric for Shingles

- **Document** D_1 is a set of its k-shingles $C_1=S(D_1)$

- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse

- **A natural similarity measure** is the Jaccard similarity:
 \[
 sim(D_1, D_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}
 \]

Motivation for Minhash/LSH

- Suppose we need to find similar documents among \(N = 1 \) million documents.

- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs.

 - \(N(N - 1)/2 \approx 5 \times 10^{11} \) comparisons.
 - At \(10^5 \) secs/day and \(10^6 \) comparisons/sec, it would take 5 days.

- For \(N = 10 \) million, it takes more than a year...
Step 2: *Minhasing*: Convert large variable length sets to short fixed-length signatures, while preserving similarity

MINHASHING

Docu-
ment → Shingling → Min-Hash-
ing

The set of strings of length k that appear in the document

Signatures: short integer vectors that represent the sets, and reflect their similarity
From Sets to Boolean Matrices

- **Rows** = elements (shingles)

- **Columns** = sets (documents)
 - 1 in row e and column s if and only if e is a valid shingle of document represented by s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

Note: Transposed Document Matrix

```
Documents
1 1 1 0
1 1 0 1
0 1 0 1
0 0 0 1
1 0 0 1
1 1 1 0
1 0 1 0
```

Outline: Finding Similar Columns

- **So far:**
 - A documents \rightarrow a set of shingles
 - Represent a set as a boolean vector in a matrix

- **Next goal:** Find similar columns while computing small signatures

 - Similarity of columns $==$ similarity of signatures
Next Goal: Find similar columns, Small signatures

Naïve approach:
1) Signatures of columns: small summaries of columns
2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
3) Optional: Check that columns with similar signatures are really similar
Outline: Finding Similar Columns

- **Next Goal:** Find similar columns, Small signatures

- **Naïve approach:**
 1) **Signatures of columns:** small summaries of columns
 2) **Examine pairs of signatures** to find similar columns
 - **Essential:** Similarities of signatures and columns are related
 3) **Optional:** Check that columns with similar signatures are really similar

- **Warnings:**
 - Comparing all pairs may take too much time: **Job for LSH**
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
Hashing Columns (Signatures): LSH principle

Key idea: “hash” each column \(C \) to a small signature \(h(C) \), such that:

1. \(h(C) \) is small enough that the signature fits in RAM
2. \(\text{sim}(C_1, C_2) \) is the same as the “similarity” of signatures \(h(C_1) \) and \(h(C_2) \)

Goal: Find a hash function \(h(\cdot) \) such that:

1. If \(\text{sim}(C_1, C_2) \) is high, then with high prob. \(h(C_1) = h(C_2) \)
2. If \(\text{sim}(C_1, C_2) \) is low, then with high prob. \(h(C_1) \neq h(C_2) \)

Hash docs into buckets. Expect that “most” pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- **Goal:** Find a hash function $h(\cdot)$ such that:
 - if $\text{sim}(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $\text{sim}(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

- **Clearly, the hash function depends on the similarity metric:**
 - Not all similarity metrics have a suitable hash function

- **There is a suitable hash function for the Jaccard similarity:** It is called Min-Hashing
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_\pi(C) = \text{the index of the first (in the permuted order } \pi\text{) row in which column } C \text{ has value 1:}$
 \[h_\pi(C) = \min_\pi \pi(C) \]

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π

- Define a “hash” function $h_\pi(C) =$ the index of the first (in the permuted order π) row in which column C has value 1:

$$h_\pi(C) = \min_{\pi} \pi(C)$$

- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column
Min-Hashing Example

2nd element of the permutation is the first to map to a 1

Permutation π Input matrix (Shingles x Documents) Signature matrix M

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

Signature matrix M

2nd element of the permutation is the first to map to a 1

4th element of the permutation is the first to map to a 1
Min-Hashing Example

2nd element of the permutation is the first to map to a 1

4th element of the permutation is the first to map to a 1

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows

- Think of $\text{sig}(C)$ as a column vector
 - $\text{sig}(C)[i] = \text{according to the } i\text{-th permutation, the index of the first row that has a } 1 \text{ in column } C$

 $$\text{sig}(C)[i] = \min (\pi_i(C))$$

- Note: The sketch (signature) of document C is small $\sim 100 \text{ bytes}$!

- We achieved our goal! We “compressed” long bit vectors into short signatures
Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using K hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1}^{k} I[mh_i(A) = mh_i(B)]$$
Key Fact

For two sets A, B, and a min-hash function $mh_i()$:

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

Unbiased estimator for Sim using K hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1}^{k} I[mh_i(A) = mh_i(B)]$$

The similarity of two signatures is the fraction of the hash functions in which they agree.
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Signature Matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Input Matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>Sig/Sig</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Min-Hashing Example

Permutation π Input matrix (Shingles x Documents) Signature matrix M

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig/Sig</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$
- Why?
The Min-Hash Property

- Choose a random permutation π
- **Claim:** $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- **Why?**
 - Let X be a doc (set of shingles), $y \in X$ is a shingle

```plaintext
0 0
0 0
1 1
0 0
0 1
1 0
```
The Min-Hash Property

- Choose a random permutation π
- Claim: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element

One of the two cols had to have 1 at position y
Choose a random permutation π

Claim: $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$

Why?

Let X be a doc (set of shingles), $y \in X$ is a shingle

Then: $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$

- It is equally likely that any $y \in X$ is mapped to the min element

Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$

Then either:

- $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or
- $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position y
The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - So the prob. that both are true is the prob. $y \in C_1 \cap C_2$
 - $Pr[\min(\pi(C_1))=\min(\pi(C_2))] = |C_1 \cap C_2| / |C_1 \cup C_2| = sim(C_1, C_2)$

The Min-Hash Property (Take 2: simpler proof)

- **Choose a random permutation** \(\pi \)
- **Claim:** \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)
- **Why?**
 - Given a set \(X \), the probability that any one element is the min-hash under \(\pi \) is \(1/|X| \) \(\leftarrow (0) \)
 - It is equally likely that any \(y \in X \) is mapped to the min element
 - Given a set \(X \), the probability that one of any \(k \) elements is the min-hash under \(\pi \) is \(k/|X| \) \(\leftarrow (1) \)
The Min-Hash Property (Take 2: simpler proof)

- **Choose a random permutation** π
- **Claim:** $\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2)$
- **Why?**
 - Given a set X, the probability that any one element is the min-hash under π is $1/|X|$ $\leftarrow (0)$
 - It is equally likely that any $y \in X$ is mapped to the min element
 - Given a set X, the probability that one of any k elements is the min-hash under π is $k/|X|$ $\leftarrow (1)$
 - For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) $\leftarrow (2)$
 - For any C_1 and C_2, the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ \leftarrow from (1) and (2)
Similarity for Signatures

- We know: $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$
- Now generalize to multiple hash functions

- The similarity of two signatures is the fraction of the hash functions in which they agree

- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures
Min-Hashing Example

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>1</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Similarities:

<table>
<thead>
<tr>
<th>Col/Col</th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sig/Sig</td>
<td>0.75</td>
<td>0.75</td>
<td>0.67</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows
- Think of $\text{sig}(C)$ as a $K*1$ column vector
- $\text{sig}(C)[i] = \min (\pi_i(C))$ according to the i-th permutation, the index of the first row that has a 1 in column C
Min-Hash Signatures

- Pick $K=100$ random permutations of the rows

- Think of $\text{sig}(C)$ as a $K \times 1$ column vector

- $\text{sig}(C)[i]$ = according to the i-th permutation, the index of the first row that has a 1 in column C

\[
\text{sig}(C)[i] = \min (\pi_i(C))
\]

- Note: The sketch (signature) of document C is small ~ 100 bytes!

- We achieved our goal! We “compressed” long bit vectors into short signatures
Implementation Trick

- Permuting rows even once is prohibitive

- Row hashing!
 - Pick $K = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!

- One-pass implementation
 - For each column C and hash-func. k_i, keep a “slot” for the min-hash value
 - Initialize all $\text{sig}(C)[i] = \infty$
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?
Universal hashing:

$$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$$

where:
- a, b ... random integers
- p ... prime number ($p > N$)

Step 3: **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents

- **Document**
 - **Shingling**: The set of strings of length k that appear in the document
 - **Min-Hashing**: Signatures: short integer vectors that represent the sets, and reflect their similarity
 - **Locality-Sensitive Hashing**: Candidate pairs: those pairs of signatures that we need to test for similarity
Goal: Find documents with Jaccard similarity at least s (for some similarity threshold, e.g., $s=0.8$)

LSH – General idea: Use a function $f(x,y)$ that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:
- Hash columns of signature matrix M to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

- Pick a similarity threshold s ($0 < s < 1$)

- Columns x and y of M are a candidate pair if their signatures agree on at least fraction s of their rows:
 $$M(i, x) = M(i, y)$$ for at least frac. s values of I

 - We expect documents x and y to have the same (Jaccard) similarity as their signatures
LSH for Min-Hash

- Big idea: Hash columns of signature matrix \(M \) several times

- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability

- Candidate pairs are those that hash to the same bucket
Partition M into b Bands

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

r rows per band

One signature

b bands
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible

- Candidate column pairs are those that hash to the same bucket for ≥ 1 band

- Tune b and r to catch most similar pairs, but few non-similar pairs
Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.
There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

Goal: Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- **Find pairs of** \(\geq s=0.8 \) similarity, set \(b=20, r=5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20, \ r = 5 \)

Assume: \(\text{sim}(C_1, C_2) = 0.8 \)
- Since \(\text{sim}(C_1, C_2) \geq s \), we want \(C_1, C_2 \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)

Probability \(C_1, C_2 \) identical in one particular band: \((0.8)^5 = 0.328 \)

Probability \(C_1, C_2 \) are not similar in all of the 20 bands: \((1 - 0.328)^{20} = 0.00035 \)
- i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)

We would find 99.965% pairs of truly similar documents
C_1, C_2 are 30% Similar

- **Find pairs of** $\geq s=0.8$ similarity, set $b=20$, $r=5$

- **Assume:** $\text{sim}(C_1, C_2) = 0.3$
 - Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to **NO common buckets** (all bands should be different)
Find pairs of $\geq s=0.8$ similarity, set $b=20$, $r=5$

Assume: $\text{sim}(C_1, C_2) = 0.3$

- Since $\text{sim}(C_1, C_2) < s$ we want C_1, C_2 to hash to NO common buckets (all bands should be different)

Probability C_1, C_2 identical in one particular band: $(0.3)^5 = 0.00243$

Probability C_1, C_2 identical in at least 1 of 20 bands: $1 - (1 - 0.00243)^{20} = 0.0474$

In other words, approximately 4.74% pairs of docs with similarity 30% end up becoming candidate pairs

- They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

 to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up
Analysis of LSH – What We Want

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

Probability of sharing a bucket

Similarity threshold s

No chance if $t < s$

Probability $= 1$ if $t > s$
What 1 Band of 1 Row Gives You

Remember:
Probability of equal hash-values
= similarity

Similarity $t = sim(C_1, C_2)$ of two sets
\(b \) bands, \(r \) rows/band

- Columns \(C_1 \) and \(C_2 \) have similarity \(t \)
- Pick any band (\(r \) rows)
 - Prob. that all rows in band equal = \(t^r \)
 - Prob. that some row in band unequal = \(1 - t^r \)

- Prob. that no band identical = \((1 - t^r)^b \)
- Prob. that at least 1 band identical = \(1 - (1 - t^r)^b \)
What \(b \) Bands of \(r \) Rows Gives You

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets

\[
t \sim \left(\frac{1}{b}\right)^{1/r}
\]

At least one band identical

\[
1 - (1 - t^r)^b
\]

Probability of sharing a bucket

Example: $b = 20; r = 5$

- **Similarity threshold s**
- **Prob. that at least 1 band is identical:**

<table>
<thead>
<tr>
<th>s</th>
<th>$1-(1-s^r)^b$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)

Blue area: False Negative rate
Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

- Check in main memory that candidate pairs really do have similar signatures.

- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Summary: 3 Steps

- **Shingling:** Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = \text{sim}(C_1, C_2)$
 - We used hashing to get around generating random permutations

- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity $\geq s$
Backup slides