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Sequence Mining: Description

 Input

 A database D of sequences called data-sequences, in which:

◼ I={i1, i2,…,in} is the set of items

◼ each sequence is a list of transactions ordered by transaction-time  

◼ each transaction consists of fields: sequence-id, transaction-id, transaction-time and 
a set of items.
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Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent 
subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

❑ An element may contain a set of items (also called 
events)

❑ Items within an element are unordered and we list 
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>
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Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent 
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Formal definition:
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Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent 
subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

❑ An element may contain a set of items (also called 
events)

❑ Items within an element are unordered and we list 
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

❑ Given support threshold min_sup = 2, <(ab)c> is a sequential pattern
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A Basic Property of Sequential Patterns: Apriori

 A basic property: Apriori (Agrawal & Sirkant’94) 

 If a sequence S is not frequent 

 Then none of the super-sequences of S is frequent

 E.g, <hb> is infrequent → so do <hab> and <(ah)b>
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GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)
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GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

 Generate length-2 candidate sequences

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)

How?
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GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

 Generate length-2 candidate sequences

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)

Why?
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GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

 Generate length-2 candidate sequences

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)

Why?



11

GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

 Generate length-2 candidate sequences

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

❑ Without Apriori pruning:

(8 singletons) 8*8+8*7/2 = 92 
length-2 candidates

❑ With pruning, length-2 
candidates: 36 + 15= 51

GSP (Generalized Sequential Patterns): 
Srikant & Agrawal @ EDBT’96)
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

❑ Repeat (for each level (i.e., length-k))

❑ Scan DB to find length-k frequent sequences

❑ Generate length-(k+1) candidate sequences from length-k frequent 
sequences using Apriori

❑ set k = k+1

❑ Until no frequent sequence or no candidate can be found
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GSP: Algorithm

 Phase 1:

 Scan over the database to identify all the frequent items, i.e., 1-element sequences

 Phase 2: 
 Iteratively scan over the database to discover all frequent sequences. Each iteration 

discovers all the sequences with the same length.

 In the iteration to generate all k-sequences

 Generate the set of all candidate k-sequences, Ck, by joining two (k-1)-sequences

◼ Prune the candidate sequence if any of its k-1 subsequences is not frequent

◼ Scan over the database to determine the support of the remaining candidate sequences

 Terminate when no more frequent sequences can be found

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-

gsp.html

Mining Sequential Patterns: Generalizations and Performance 

Improvements, Srikant and Agrawal et al. 

https://pdfs.semanticscholar.org/d420/ea39dc136b9e390

d05e964488a65fcf6ad33.pdf

A detailed example illustration:

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-gsp.html
https://pdfs.semanticscholar.org/d420/ea39dc136b9e390d05e964488a65fcf6ad33.pdf
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Bottlenecks of GSP

 A huge set of candidates could be generated

 1,000 frequent length-1 sequences generate

length-2 candidates!

 Multiple scans of database in mining

 Real challenge: mining long sequential patterns

 An exponential number of short candidates

 A length-100 sequential pattern needs 1030

candidate sequences!
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GSP: Optimization Techniques

 Applied to phase 2: computation-intensive

 Technique 1: the hash-tree data structure

 Used for counting candidates to reduce the number of candidates 

that need to be checked

◼ Leaf: a list of sequences

◼ Interior node: a hash table

 Technique 2: data-representation transformation

 From horizontal format to vertical format
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SPADE

 Problems in the GSP Algorithm

 Multiple database scans

 Complex hash structures with poor locality

 Scale up linearly as the size of dataset increases

 SPADE: Sequential PAttern Discovery using Equivalence classes

 Use a vertical id-list database

 Prefix-based equivalence classes

 Frequent sequences enumerated through simple temporal joins

 Lattice-theoretic approach to decompose search space

 Advantages of SPADE

 3 scans over the database

 Potential for in-memory computation and parallelization

Paper Link: 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6042&rep=rep1&type=pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6042&rep=rep1&type=pdf


FINDING SIMILAR ITEMS

MMDS Secs. 3.2-3.4. 

Slides adapted from: J. Leskovec, A. Rajaraman, 

J. Ullman: Mining of Massive Datasets, 

http://www.mmds.org

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU

http://www.mmds.org/
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of 

documents, find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster

What are the challenges?
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Task: Finding Similar Documents

 Goal: Given a large number (𝑵 in the millions or billions) of documents, 

find “near duplicate” pairs

 Applications:

 Mirror websites, or approximate mirrors → remove duplicates

 Similar news articles at many news sites  → cluster

 Problems:

 Many small pieces of one document can appear out of order in another

 Too many documents to compare all pairs

 Documents are so large or so many  (scale issues)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

Host of follow up applications

e.g. Similarity Search

Data Placement

Clustering etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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The Big Picture

Document

The set

of strings

of length k

that appear

in the doc-

ument

Signatures:

short integer

vectors that

represent the

sets, and

reflect their

similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Search

Data Placement

Clustering etc.



SHINGLING

Step 1: Shingling: Convert documents to sets

Document

The set

of strings

of length k

that appear

in the document
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Documents as High-Dim Data

 Step 1: Shingling: Convert documents to sets

 Simple approaches:

 Document = set of words appearing in document

 Document = set of “important” words

 Don’t work well for this application. Why?

 Need to account for ordering of words!

 A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens 

that appears in the doc

 Tokens can be characters, words or something else, depending on the 

application

 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

 Another option: Shingles as a bag (multiset), count ab twice: S’(D1) = 

{ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Shingles: How to treat white-space chars?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

It makes sense to replace any sequence of one or more white-space characters (blank, tab, 

newline, etc.) by a single blank. 

This way distinguishes shingles that cover two or more words from those that do not. 
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How to choose K?

 Documents that have lots of shingles in common have similar text, 

even if the text appears in different order

 Caveat: You must pick k large enough, or most documents will have 

most shingles

 k = 5 is OK for short documents

 k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

e.g., 9-shingle => bucket number [0, 2^32 - 1]

(using 4 bytes instead of 9)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles

 Idea: Two documents could appear to have shingles in common, when the 

hash-values were shared

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes

 Like a Code Book

 If #shingles manageable → Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles

 Example: k=2; document D1= abcab

Set of 2-shingles: S(D1) = {ab, bc, ca}

Hash the singles: h(D1) = {1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Similarity Metric for Shingles

 Document D1 is a set of its k-shingles C1=S(D1)

 Equivalently, each document is a 0/1 vector in the space of k-shingles

 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the Jaccard similarity:

sim(D1, D2) = |C1C2|/|C1C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Motivation for Minhash/LSH

 Suppose we need to find similar documents among 𝑵 = 𝟏 million 

documents

 Naïvely, we would have to compute pairwise Jaccard similarities for 

every pair of docs

 𝑵(𝑵− 𝟏)/𝟐 ≈ 5*1011 comparisons

 At 105 secs/day and 106 comparisons/sec, 

it would take 5 days

 For 𝑵 = 𝟏𝟎 million, it takes more than a year…

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



MINHASHING

Step 2: Minhashing: Convert large variable length sets to 

short fixed-length signatures, while preserving similarity

Docu-

ment

The set

of strings

of length k

that appear

in the document

Signatures:

short integer

vectors that 

represent the

sets, and reflect 

their similarity
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 

set union as bitwise OR

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that 

have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors 

 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and 

set union as bitwise OR

 Example: C1 = 10111; C2 = 10011

 Size of intersection = 3; size of union = 4, 

 Jaccard similarity (not distance) = 3/4

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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From Sets to Boolean Matrices

 Rows = elements (shingles)

 Columns = sets (documents)

 1 in row e and column s if and only if e is a valid shingle of 

document represented by s

 Column similarity is the Jaccard similarity of the corresponding 

sets (rows with value 1)

 Typical matrix is sparse!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111 

Documents

S
h

in
g

le
s

Note: Transposed Document Matrix
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Outline: Finding Similar Columns

 So far:

 A documents → a set of shingles

 Represent a set as a boolean vector in a matrix

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111 

Documents

S
h

in
g

le
s
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Outline: Finding Similar Columns

 So far:

 A documents → a set of shingles

 Represent a set as a boolean vector in a matrix

 Next goal: Find similar columns while computing 

small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010

1011

0111 

Documents
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:

 Comparing all pairs may take too much time: Job for LSH

◼ These methods can produce false negatives, and even false positives (if the optional check is 

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate docs 

hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called 

Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

mh1(A) = min (            {mouse, lion } ) = mouse

mh2(A) = min (           { mouse, lion } ) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

4

5

1

6

7

3

2

2nd element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5

2 3 1 3

6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

 So the prob. that both are true is the prob. y  C1  C2

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property (Take 2: simpler proof)

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)

 For C1  C2, the probability that any element is the min-hash 

under  is 1/|C1  C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash 

under  is |C1C2|/|C1  C2|  from (1) and (2)
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Similarity for Signatures

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of  two signatures is the fraction of the hash functions in 

which they agree

 Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

 Permuting rows even once is prohibitive

 Approximate Linear Permutation Hashing

 Pick K independent hash functions (use a, b below)

 Apply the idea on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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Summary: 3 Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

 We used similarity preserving hashing to generate signatures with 

property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 So far:

 Documents → Sets of shingles

 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while computing 

small signatures

 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:

 1) Signatures of columns: small summaries of columns

 2) Examine pairs of signatures to find similar columns

◼ Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:

 Comparing all pairs may take too much time: Job for LSH

◼ These methods can produce false negatives, and even false positives (if the optional check is 

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:

 (1) h(C) is small enough that the signature fits in RAM

 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:

 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate 

docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org



85

Min-Hashing

 Goal: Find a hash function h(·) such that:

 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:

 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called 

Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing

 Imagine the rows of the boolean matrix permuted under random 

permutation 

 Define a “hash” function h(C) = the index of the first (in the 

permuted order ) row in which column C has value 1:

h (C) = min (C)

 Use several (e.g., 100) independent hash functions (that is, 

permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}

[ cat, mouse, lion, dog, tiger]

[ lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

mh1(A) = min (            {mouse, lion } ) = mouse

mh2(A) = min (           { mouse, lion } ) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Key Fact 

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this 

is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation 

is the first to map to a 1

4th element of the permutation 

is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) Permutation 

Note: Another (equivalent) way is to 

store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5

2 3 1 3

6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman: 

Mining of Massive Datasets, http://www.mmds.org
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The Min-Hash Property

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Let X be a doc (set of shingles), y X is a shingle

 Then: Pr[(y) = min((X))] = 1/|X|

◼ It is equally likely that any y X is mapped to the min element

 Let y be s.t. (y) = min((C1C2))

 Then either: (y) = min((C1))  if y  C1 , or

(y) = min((C2))  if y  C2

 So the prob. that both are true is the prob. y  C1  C2

 Pr[min((C1))=min((C2))]=|C1C2|/|C1C2|= sim(C1, C2) 

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00 

One of the two cols had to have 1 at 

position y
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The Min-Hash Property (Take 2: simpler proof)

 Choose a random permutation 

 Claim: Pr[h(C1) = h(C2)] = sim(C1, C2) 

 Why?

 Given a set X, the probability that any one element is the min-

hash under  is 1/|X|  (0)

◼ It is equally likely that any y X is mapped to the min element 

 Given a set X, the probability that one of any k elements is the 

min-hash under  is k/|X|     (1)

 For C1  C2, the probability that any element is the min-hash 

under  is 1/|C1  C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash 

under  is |C1C2|/|C1  C2|  from (1) and (2)



92

Similarity for Signatures

 We know: Pr[h(C1) = h(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of  two signatures is the fraction of the hash functions in 

which they agree

 Note: Because of the Min-Hash property, the similarity of columns is 

the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:

1-3      2-4    1-2     3-4

Col/Col 0.75    0.75    0        0

Sig/Sig 0.67    1.00     0        0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101 

Input matrix (Shingles x Documents) 

3

4

7

2

6

1

5

Permutation 
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Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector

 sig(C)[i] = according to the i-th permutation, the index of the first 

row that has a 1 in column C

sig(C)[i] = min (i(C))

 Note: The sketch (signature) of document C is small  ~𝟏𝟎𝟎 bytes!

 We achieved our goal! We “compressed” long bit vectors into 

short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Implementation Trick

 Permuting rows even once is prohibitive

 Approximate Linear Permutation Hashing

 Pick K independent hash functions (use a, b below)

 Apply the idea on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random

hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N

where:

a,b … random integers

p … prime number (p > N)
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Summary: 3 Steps

 Shingling: Convert documents to sets

 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while 

preserving similarity

 We used similarity preserving hashing to generate signatures with 

property Pr[h(C1) = h(C2)] = sim(C1, C2)

 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
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Sequential Pattern Mining in Vertical Data Format: 

The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential 

PAttern Discovery using 

Equivalent Class) [M. Zaki

2001]

min_sup = 2

❑ A sequence database is mapped to: <SID, EID>
❑ Grow the subsequences (patterns) one item at a time by Apriori candidate generation
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PrefixSpan: A Pattern-Growth Approach

 PrefixSpan Mining: Prefix Projections

 Step 1: Find length-1 sequential patterns

◼ <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: Divide search space and mine each projected DB

◼ <a>-projected DB,

◼ <b>-projected DB,

◼ …

◼ <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

❑ Prefix and suffix

❑ Given <a(abc)(ac)d(cf)>

❑ Prefixes: <a>, <aa>, 
<a(ab)>, <a(abc)>, …

❑ Suffix: Prefixes-based 
projection

PrefixSpan (Prefix-projected 
Sequential pattern mining) 
Pei, et al. @TKDE’04

min_sup = 2
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prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

prefix <aa>

…

prefix <af>

…

prefix <b> prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<b>-projected DB

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

◼ No candidate subseqs. to be generated

◼ Projected DBs keep shrinking

min_sup = 2
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Consideration: 

Pseudo-Projection vs. Physical PrImplementation ojection

 Major cost of PrefixSpan: Constructing projected DBs

 Suffixes largely repeating in recursive projected DBs 

 When DB can be held in main memory, use pseudo projection 

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 5)

❑ No physically copying suffixes

❑ Pointer to the sequence

❑ Offset of the suffix

❑ But if it does not fit in memory

❑ Physical projection

❑ Suggested approach:

❑ Integration of physical and pseudo-projection

❑ Swapping to pseudo-projection when the data fits in memory
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CloSpan: Mining Closed Sequential Patterns

 A closed sequential pattern s:  There exists no superpattern s’ such that s’ כ s, and s’ and 

s have the same support 

 Which ones are closed?  <abc>: 20, <abcd>:20, <abcde>: 15 

❑ Why directly mine closed sequential patterns?

❑ Reduce # of (redundant) patterns

❑ Attain the same expressive power

❑ Property P1: If s כ s1, s is closed iff two project DBs have the same 
size

❑ Explore Backward Subpattern and Backward Superpattern
pruning to prune redundant search space

❑ Greatly enhances efficiency (Yan, et al., SDM’03)
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<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

<b>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<b>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

❑ If s כ s1, s is closed iff two project DBs have the same size

❑ When two projected sequence DBs have the same size?

❑ Here is one example: 

Only need to keep 
size = 12 (including 
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Sequential Pattern Mining

 Constraint-Based Frequent Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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Constraint-Based Pattern Mining

 Why Constraint-Based Mining? 

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Constrained Mining with Convertible Constraints

 Handling Multiple Constraints

 Constraint-Based Sequential-Pattern Mining
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Why Constraint-Based Mining?

 Finding all the patterns in a dataset autonomously?—unrealistic!

 Too many patterns but not necessarily user-interested!

 Pattern mining in practice: Often a user-guided, interactive process 

 User directs what to be mined using a data mining query language (or a graphical user 

interface), specifying various kinds of constraints

 What is constraint-based mining?

 Mine together with user-provided constraints

 Why constraint-based mining?

 User flexibility: User provides constraints on what to be mined

 Optimization: System explores such constraints for mining efficiency

◼ E.g., Push constraints deeply into the mining process
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Various Kinds of User-Specified Constraints in Data Mining

❑ Knowledge type constraint—Specifying what kinds of knowledge to mine

❑ Ex.: Classification, association, clustering, outlier finding, …

❑ Data constraint—using SQL-like queries

❑ Ex.: Find products sold together in NY stores this year

❑ Dimension/level constraint—similar to projection in relational database 

❑ Ex.: In relevance to region, price, brand, customer category

❑ Interestingness constraint—various kinds of thresholds

❑ Ex.: Strong rules: min_sup  0.02, min_conf  0.6, min_correlation  0.7

❑ Rule (or pattern) constraint

❑ Ex.: Small sales (price < $10) triggers big sales (sum > $200) 

The focus of this study
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Pattern Space Pruning with Pattern Anti-Monotonicity 

◼ A constraint c is anti-monotone

◼ If an itemset S violates constraint c, so does any of its superset 

◼ That is, mining on itemset S can be terminated

◼ Ex. 1:  c1: sum(S.price)  v is anti-monotone

◼ Ex. 2: c2: range(S.profit)  15 is anti-monotone

◼ Itemset ab violates c2 (range(ab) = 40)

◼ So does every superset of ab

◼ Ex. 3. c3: sum(S.Price)  v is not anti-monotone

◼ Ex. 4. Is c4: support(S)  σ anti-monotone?

◼ Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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Pattern Monotonicity and Its Roles
◼ A constraint c is monotone: If an itemset S satisfies the 

constraint c, so does any of its superset

◼ That is, we do not need to check c in subsequent mining

◼ Ex. 1: c1: sum(S.Price)  v is monotone

◼ Ex. 2: c2: min(S.Price)  v  is monotone

◼ Ex. 3: c3: range(S.profit)  15 is monotone

◼ Itemset ab satisfies c3

◼ So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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Data Space Pruning with Data Anti-Monotonicity

 A constraint c is data anti-monotone: In the mining process, if a data entry t

cannot satisfy a pattern p under c, t cannot satisfy p’s superset either

 Data space pruning: Data entry t can be pruned 

 Ex. 1: c1: sum(S.Profit)  v is data anti-monotone

 Let constraint c1 be: sum(S.Profit) ≥ 25

◼ T30: {b, c, d, f, g} can be removed since none of their combinations can 

make an S whose sum of the profit is ≥ 25

 Ex. 2: c2: min(S.Price)  v  is data anti-monotone

◼ Consider v = 5 but every item in a transaction, say T50 , has a price higher 

than 10

 Ex. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
Note: item.price > 0
Profit can be negative
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Expressing Patterns in Compressed Form: Closed Patterns

 How to handle such a challenge?

 Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is frequent, and 

there exists no super-pattern Y כ X, with the same support as X 

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many closed patterns does TDB1 contain? 

◼ Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

 Closed pattern is a lossless compression of frequent patterns

 Reduces the # of patterns but does not lose the support information!

 You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”
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Expressing Patterns in Compressed Form: Max-Patterns

 Solution 2: Max-patterns:  A pattern X is a maximal frequent pattern or max-pattern 

if X is frequent and there exists no frequent super-pattern Y כ X 

 Difference from close-patterns?

 Do not care the real support of the sub-patterns of a max-pattern

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many max-patterns does TDB1 contain? 

◼ One:  P: “{a1, …, a100}: 1” 

 Max-pattern is a lossy compression! 

 We only know {a1, …, a40} is frequent

 But we do not know the real support of {a1, …, a40}, …, any more!

 Thus in many applications, close-patterns are more desirable than max-patterns
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Assume only f’s are 
frequent & the 
frequent item 
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection

 What if FP-tree cannot fit in memory?—Do not construct FP-tree

 “Project” the database based on frequent single items

 Construct & mine FP-tree for each projected DB

 Parallel projection vs. partition projection 

 Parallel projection: Project the DB on each frequent item

◼ Space costly, all partitions can be processed in parallel

 Partition projection: Partition the DB in order

◼ Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h

f3 f4 i j 

f2 f4 k 

f1 f3 h

…

Trans. DB Parallel projection

f2 f3

f3

f2

…

f4-proj. DB f3-proj. DB f4-proj. DB

f2

f1

…

Partition projection

f2 f3

f3

f2

…

f1

…

f3-proj. DB

f2 will be projected to f3-proj. 
DB only when processing f4-
proj. DB 
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Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

❑ DBLP: Computer science research publication bibliographic database

❑ > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

❑ DBLP: Computer science research publication bibliographic database

❑ > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets 

 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the 
papers; ……

 Null-invariance is an important property

 Lift, χ2 and cosine are good measures if null transactions are not predominant

 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern 

 Exercise: Mining research collaborations from research bibliographic data 

 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)

 Can you find the likely advisor-advisee relationship and during which years such a relationship 
happened?

 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee 

Relationships from Research Publication Networks",  KDD'10
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Mining Compressed Patterns

 Why mining compressed patterns?

 Too many scattered patterns but not so meaningful

 Pattern distance measure

 δ-clustering: For each pattern P, find all patterns which can be 

expressed by P and whose distance to P is within δ (δ-cover)

 All patterns in the cluster can be represented by P

 Method for efficient, direct mining of compressed frequent 

patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On 

Compressing Frequent Patterns", Knowledge and Data 

Engineering, 60:5-29, 2007)

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

❑ Closed patterns 
❑ P1, P2, P3, P4, P5
❑ Emphasizes too much on 

support
❑ There is no compression

❑ Max-patterns
❑ P3: information loss

❑ Desired output (a good balance):
❑ P2, P3, P4
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Redundancy-Aware Top-k Patterns

 Desired patterns: high significance & low redundancy

❑ Method:  Use MMS (Maximal Marginal Significance) for measuring the combined significance of a 
pattern set 

❑ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Redundancy Filtering at Mining Multi-Level Associations 

 Multi-level association mining may generate many redundant rules

 Redundancy filtering:  Some rules may be redundant due to “ancestor” 
relationships between items

 milk  wheat bread  [support = 8%, confidence = 70%]   (1)

 2% milk  wheat bread [support = 2%, confidence = 72%] (2)

◼ Suppose the “2% milk” sold is about “¼” of milk sold 

◼ Does (2) provide any novel information? 

 A rule is redundant if its support is close to the “expected” value, according to 
its “ancestor” rule, and it has a similar confidence as its “ancestor”

 Rule (1) is an ancestor of rule (2), which one to prune?
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Succinctness

 Succinctness:

 Given A1, the set of items satisfying a succinctness constraint C, then any set S 

satisfying C is based on A1 , i.e., S contains a subset belonging to A1

 Idea: Without looking at the transaction database, whether an itemset S 

satisfies constraint C can be determined based on the selection of items

 min(S.Price)  v is succinct

 sum(S.Price)  v is not succinct

 Optimization: If C is succinct, C is pre-counting pushable
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Which Constraints Are Succinct?

Constraint Succinct

v  S yes

S  V yes

S  V yes

min(S)  v yes

min(S)  v yes

max(S)  v yes

max(S)  v yes

sum(S)  v ( a   S, a  0 ) no

sum(S)  v ( a   S, a  0 ) no

range(S)  v no

range(S)  v no

avg(S)  v,   { =,  ,   } no

support(S)   no

support(S)   no
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Push a Succinct Constraint Deep

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1
L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint: 

min{S.price <= 1 }
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Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining 

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data Format

 PrefixSpan: Sequential Pattern Mining by Pattern-Growth

 CloSpan: Mining Closed Sequential Patterns
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GSP: Candidate Generation

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence 

< (1) (3) (5) > is not frequent.
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GSP Algorithm: Apriori Candidate Generation

Mining Sequential Patterns, Agrawal et al., ICDE’95 


