CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining

\&

Locality Sensitive Hashing

Huan Sun, CSE@The Ohio State University

Sequence Mining: Description

\square Input
\square A database D of sequences called data-sequences, in which:
$\square I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is the set of items
■ each sequence is a list of transactions ordered by transaction-time
■ each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Database \mathcal{D}

Sequence-Id	Transaction Time	Items
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C 2	1	Foundation, Ringworld
C 2	20	Foundation and Empire
C 2	50	Ringworld Engineers

Sequential Pattern and Sequential Pattern Mining

\square Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID	Sequence
10	$<a(\underline{a b c})(a c) d(c f)>$
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(\underline{a b})(d f) c b>$
40	$<e g(a f) c b c>$

A sequence: $<(\mathrm{ef})(\mathrm{ab})(\mathrm{df}) \mathrm{c}|\mathrm{b}\rangle$

- An element may contain a set of items (also called events)
Items within an element are unordered and we list them alphabetically
$<a(b c) d c>$ is a subsequence of <a $(a b c)(a c) \underline{d}(\underline{c} f)>$

Sequential Pattern and Sequential Pattern Mining

\square Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID	Sequence
10	$<a(a b c)(a c) d(c f)>$
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) \underline{c} b>$
40	$<e g(a f) c b c>$

<a(bc)dc> is a subsequence of <ag(abc)(ac)d(cf)>

Formal definition: $1 \leq j_{1}<j_{2}<\cdots<j_{n} \leq m$ such that $a_{1} \subseteq b_{j_{1}}, a_{2} \subseteq b_{j_{2}}, \ldots, a_{n} \subseteq b_{j_{n}}$. For example, if $\alpha=\langle(a b), d\rangle$ and $\beta=\langle(a b c),(d e)\rangle$, where a, b, c, d, and e are items, then α is a subsequence of β and β is a supersequence of α.

Sequential Pattern and Sequential Pattern Mining

\square Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database

SID Sequence

10	$<a(\underline{a b c})(a \underline{c}) d(c f)>$
20	$<(a d) c(b c)(a e)>$
30	$<(e f)(a b)(d f) \underline{c} b>$
40	$<e g(a f) c b c>$

A sequence: < (ef) (ab) (df) c b >

- An element may contain a set of items (also called events)
Items within an element are unordered and we list them alphabetically
$<a(b c) d c>$ is a subsequence of <a(abc)(ac)d(cf)>
- Given support threshold min_sup $=2,<(a b) c>$ is a sequential pattern

A Basic Property of Sequential Patterns: Apriori

\square A basic property: Apriori (Agrawal \& Sirkant'94)

- If a sequence S is not frequent
- Then none of the super-sequences of S is frequent
\square E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

GSP (Generalized Sequential Patterns): Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant \& Agrawal @ EDBT'96)

SID	Sequence
10	$<(b d) c b(a c)>$
20	$<(b f)(c e) b(f g)>$
30	$<(a h)(b f) a b f>$
40	$<(b e)(c e) d>$
50	$<a(b d) b c b(a d e)>$

GSP (Generalized Sequential Patterns): Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant \& Agrawal @ EDBT'96)

SID	Sequence
10	$<(b d) c b(a c)>$
20	<(bf)(ce)b(fg)>
30	$<(a h)(b f) a b f>$
40	$<(b e)(c e) d>$
50	<a(bd)bcb(ade)>

How?

GSP (Generalized Sequential Patterns): Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant \& Agrawal @ EDBT'96)
\square Initial candidates: All 8-singleton sequences
$\square\langle a\rangle,\langle b\rangle,<c\rangle,<d>,<e\rangle,<f\rangle,<g>,<h>$
\square Scan DB once, count support for each candidate
\square Generate length-2 candidate sequences

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant \& Agrawal @ EDBT’96)
\square Initial candidates: All 8-singleton sequences
$\square\langle a\rangle,\langle b\rangle,<c>,<d>,<e>,<f\rangle,<g>,<h>$
\square Scan DB once, count support for each candidate
\square Generate length-2 candidate sequences

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	<a>		<c>	<d>	<e>	<f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c>				<(cd)>	<(ce)>	<(cf)>
<d>					<(de)>	<(df)>
<e>						<(ef)>
<f>						

GSP (Generalized Sequential Patterns): Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns): Srikant \& Agrawal @ EDBT'96)
\square Initial candidates: All 8-singleton sequences
$\square\langle a\rangle,<b\rangle,<c\rangle,<d>,<e>,<f\rangle,<g>,<h>$
\square Scan DB once, count support for each candidate
\square Generate length-2 candidate sequences

	<a>		<c>	<d>	<e>	<f>
<a>	<aa>	<ab>	<ac>	<ad>	<ae>	<af>
	<ba>	<bb>	<bc>	<bd>	<be>	<bf>
<c>	<ca>	<cb>	<cc>	<cd>	<ce>	<cf>
<d>	<da>	<db>	<dc>	<dd>	<de>	<df>
<e>	<ea>	<eb>	<ec>	<ed>	<ee>	<ef>
<f>	<fa>	<fb>	<fc>	<fd>	<fe>	<ff>

	<a>		<c>	<d>	<e>	<f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c>				<(cd)>	<(ce)>	<(cf)>
<d>					<(de)>	<(df)>
<e>						<(ef)>
<f>						

- Without Apriori pruning: (8 singletons) $8 * 8+8 * 7 / 2=92$ length-2 candidates
- With pruning, length-2 candidates: $36+15=51$

GSP Mining and Pruning

$5^{\text {th }}$ scan: 1 cand. 1 length- 5 seq. pat.
$4^{\text {th }}$ scan: 8 cand. 7 length -4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 20 length- 3 seq. pat. 20 cand. not in DB at all
$2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat. 10 cand. not in DB at all
$1^{\text {st }}$ scan: 8 cand. 6 length- 1 seq. pat.

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)>

GSP Mining and Pruning

$5^{\text {th }}$ scan: 1 cand. 1 length-5 seq. pat.
$4^{\text {th }}$ scan: 8 cand. 7 length- 4 seq. pat.
$3^{\text {rd }}$ scan: 46 cand. 20 length- 3 seq. pat. 20 cand. not in DB at all
$2^{\text {nd }}$ scan: 51 cand. 19 length-2 seq. pat.
10 cand. not in DB at all
$1^{\text {st }}$ scan: 8 cand. 6 length -1 seq. pat.

- Repeat (for each level (i.e., length-k))
- \quad Scan DB to find length- k frequent sequences
- Generate length-($k+1$) candidate sequences from length-k frequent sequences using Apriori
- set $k=k+1$
- Until no frequent sequence or no candidate can be found

	min_sup $=2$
SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)>

Mining Sequential Patterns: Generalizations and Performance Improvements, Srikant and Agrawal et al.

GSP: Algorithm

\square Phase 1:

- Scan over the database to identify all the frequent items, i.e., 1 -element sequences

Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- In the iteration to generate all k-sequences
- Generate the set of all candidate k-sequences, C_{k}, by joining two (k - 1)-sequences
- Prune the candidate sequence if any of its $k-1$ subsequences is not frequent
- Scan over the database to determine the support of the remaining candidate sequences
\square Terminate when no more frequent sequences can be found

Bottlenecks of GSP

\square A huge set of candidates could be generated

- 1,000 frequent length-1 sequences generate length-2 candidates!

$$
1000 \times 1000+\frac{1000 \times 999}{2}=1,499,500
$$

\square Multiple scans of database in mining
\square Real challenge: mining long sequential patterns
\square An exponential number of short candidates
\square A length- 100 sequential pattern needs 10^{30} candidate sequences!

$$
\sum_{i=1}^{100}\binom{100}{i}=2^{100}-1 \approx 10^{30}
$$

GSP: Optimization Techniques

\square Applied to phase 2: computation-intensive
\square Technique 1: the hash-tree data structure
\square Used for counting candidates to reduce the number of candidates that need to be checked

- Leaf: a list of sequences
- Interior node: a hash table
\square Technique 2: data-representation transformation
- From horizontal format to vertical format

Transaction-Time	Items			
10	1,2			
25	4,6			
45	3			
50	1,2			
65	3			
90	2,4			
95	6	\quad	Item	Times
:---:	:---			
1	$\rightarrow 10 \rightarrow 50 \rightarrow$ NULL			
2	$\rightarrow 10 \rightarrow 50 \rightarrow 90 \rightarrow$ NULL			
3	$\rightarrow 45 \rightarrow 65 \rightarrow$ NULL			
4	$\rightarrow 25 \rightarrow 90 \rightarrow$ NULL			
5	\rightarrow NULL			
6	$\rightarrow 25 \rightarrow 95 \rightarrow$ NULL			
7	\rightarrow NULL			

SPADE

- Problems in the GSP Algorithm
- Multiple database scans
- Complex hash structures with poor locality
- Scale up linearly as the size of dataset increases
\square SPADE: Sequential PAttern Discovery using Equivalence classes
- Use a vertical id-list database
- Prefix-based equivalence classes
- Frequent sequences enumerated through simple temporal joins
- Lattice-theoretic approach to decompose search space
\square Advantages of SPADE
- 3 scans over the database
- Potential for in-memory computation and parallelization

Paper Link:

MMDS Secs. 3.2-3.4.
Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

FINDING SIMILAR ITEMS

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:
\square Mirror websites, or approximate mirrors \rightarrow remove duplicates
\square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:
\square Mirror websites, or approximate mirrors \rightarrow remove duplicates
\square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

\square Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
\square Applications:

- Mirror websites, or approximate mirrors \rightarrow remove duplicates
- Similar news articles at many news sites \rightarrow cluster
\square Problems:
\square Many small pieces of one document can appear out of order in another
\square Too many documents to compare all pairs
\square Documents are so large or so many (scale issues)

Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets
2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
e.g. Similarity Search

Data Placement
Clustering etc.

The Big Picture

The set
of strings
of length \boldsymbol{k}
that appear
in the document

SHINGLING

Step 1: Shingling. Convert documents to sets

Documents as High-Dim Data

\square Step 1: Shingling: Convert documents to sets
\square Simple approaches:
\square Document $=$ set of words appearing in document

- Document = set of "important" words
- Don't work well for this application. Why?
\square Need to account for ordering of words!
\square A different way: Shingles!

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
\square Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc

- Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples
\square Example: $\mathbf{k = 2 ;}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab
Set of 2-shingles: $\mathbf{S}\left(\mathbf{D}_{1}\right)=\{a b, b c, c a\}$

Define: Shingles

\square A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
\square Tokens can be characters, words or something else, depending on the application
\square Assume tokens $=$ characters for examples
\square Example: $\mathbf{k = 2 ;}$; document $\mathbf{D}_{\mathbf{1}}=$ abcab
Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{a b, b c, c a\}$
\square Another option: Shingles as a bag (multiset), count ab twice: $\mathbf{S}^{\prime}\left(\mathbf{D}_{1}\right)=$ $\{a b, b c, c a, a b\}$

Shingles: How to treat white-space chars?

Example 3.4: If we use $k=9$, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown.

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

\square Documents that have lots of shingles in common have similar text, even if the text appears in different order
\square Caveat: You must pick \boldsymbol{k} large enough, or most documents will have most shingles
$\square \boldsymbol{k}=5$ is OK for short documents
$\square \boldsymbol{k}=10$ is better for long documents

Compressing Shingles

\square To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
\square If \#shingles manageable \rightarrow Simple dictionary suffices
e.g., 9-shingle $=>$ bucket number $\left[0,2^{\wedge} 32-1\right]$
(using 4 bytes instead of 9)

Compressing Shingles

\square To compress long shingles, we can hash them to (say) 4 bytes
\square Like a Code Book

- If \#shingles manageable \rightarrow Simple dictionary suffices
\square Doc represented by the set of hash/dict. values of its \boldsymbol{k}-shingles
\square Idea: Two documents could appear to have shingles in common, when the hash-values were shared

Compressing Shingles

\square To compress long shingles, we can hash them to (say) 4 bytes

- Like a Code Book
- If \#shingles manageable \rightarrow Simple dictionary suffices
\square Doc represented by the set of hash/dict. values of its \boldsymbol{k}-shingles
\square Example: $\mathbf{k}=\mathbf{2}$; document $\mathbf{D}_{1}=$ abcab Set of 2-shingles: $\mathbf{S}\left(\mathrm{D}_{1}\right)=\{\mathrm{ab}, \mathrm{bc}, \mathrm{ca}\}$ Hash the singles: $\mathbf{h}\left(\mathrm{D}_{1}\right)=\{1,5,7\}$

Similarity Metric for Shingles

\square Document D_{1} is a set of its k-shingles $C_{1}=S\left(D_{1}\right)$
\square Equivalently, each document is a $0 / 1$ vector in the space of k-shingles

- Each unique shingle is a dimension
\square Vectors are very sparse
\square A natural similarity measure is the Jaccard similarity:

$$
\operatorname{sim}\left(D_{1}, D_{2}\right)=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|
$$

Motivation for Minhash/LSH

\square Suppose we need to find similar documents among $N=1$ million documents
\square Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs
$\square N(N-1) / 2 \approx 5 * 10^{11}$ comparisons
\square At 10^{5} secs $/$ day and 10^{6} comparisons $/ \mathrm{sec}$, it would take 5 days
\square For $\boldsymbol{N}=\mathbf{1 0}$ million, it takes more than a year...

MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors

\square Many similarity problems can be formalized as finding subsets that have significant intersection

Encoding Sets as Bit Vectors

\square Many similarity problems can be formalized as finding subsets that have significant intersection

\square Encode sets using 0/1 (bit, boolean) vectors
\square One dimension per element in the universal set
\square Interpret set intersection as bitwise AND, and set union as bitwise OR

Encoding Sets as Bit Vectors

\square Many similarity problems can be formalized as finding subsets that have significant intersection

\square Encode sets using 0/1 (bit, boolean) vectors
\square One dimension per element in the universal set
\square Interpret set intersection as bitwise AND, and set union as bitwise OR
\square Example: $\mathbf{C}_{1}=10111$; $\mathbf{C}_{\mathbf{2}}=10011$
\square Size of intersection $=3$; size of union $=4$,
\square Jaccard similarity (not distance) $=3 / 4$
\square Distance: $d\left(C_{1}, C_{2}\right)=1-($ Jaccard similarity $)=1 / 4$

From Sets to Boolean Matrices

\square Rows = elements (shingles)

Note: Transposed Document Matrix

\square Columns = sets (documents)

- 1 in row \mathbf{e} and column s if and only if \mathbf{e} is a valid shingle of document represented by s
\square Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- Typical matrix is sparse!

Outline: Finding Similar Columns

\square So far:
\square A documents \rightarrow a set of shingles
\square Represent a set as a boolean vector in a matrix

Documents			
1 1 1 0			
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	1	1	0
1	0	1	0

Outline: Finding Similar Columns

\square So far:
\square A documents \rightarrow a set of shingles
\square Represent a set as a boolean vector in a matrix
\square Next goal: Find similar columns while computing small signatures
\square Similarity of columns $==$ similarity of signatures

Documents			
1	1	1	0
1	1	0	1
0	1	0	1
0	0	0	1
1	0	0	1
1	0	0	
1	1	1	0
1	0	1	0

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures
\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures
\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns
\square 2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures and columns are related
\square 3) Optional: Check that columns with similar signatures are really similar

Outline: Finding Similar Columns

\square Next Goal: Find similar columns, Small signatures
\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns
\square 2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures and columns are related
\square 3) Optional: Check that columns with similar signatures are really similar
\square Warnings:
\square Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures) : LSH principle

\square Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Goal: Find a hash function $h(\cdot)$ such that:

\square If $\operatorname{sim}\left(C_{1} \boldsymbol{C}_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right) \neq \boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Goal: Find a hash function $h(\cdot)$ such that:

\square If $\operatorname{sim}\left(C_{1} \boldsymbol{C}_{2}\right)$ is high, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right)=\boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$

- If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $\boldsymbol{h}\left(\boldsymbol{C}_{1}\right) \neq \boldsymbol{h}\left(\boldsymbol{C}_{2}\right)$
\square Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

\square Goal: Find a hash function $h(\cdot)$ such that:
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Clearly, the hash function depends on the similarity metric:
\square Not all similarity metrics have a suitable hash function

Min-Hashing

\square Goal: Find a hash function $h(\cdot)$ such that:
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Clearly, the hash function depends on the similarity metric:
\square Not all similarity metrics have a suitable hash function
\square There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column \mathbf{C} has value $\mathbf{1}$:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

\square Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

\square Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size $\mathrm{k}=1$)

Universe $\longrightarrow\{$ dog, cat, lion, tiger, mouse $\}$
$\pi_{1} \quad \longrightarrow$ [cat, mouse, lion, dog, tiger]
$\pi_{2} \longrightarrow$ [lion, cat, mouse, dog, tiger]

$$
A=\{\text { mouse, lion }\}
$$

Zoo example (shingle size $\mathrm{k}=1$)

$$
\begin{aligned}
\text { Universe } & \longrightarrow\{\text { dog, cat, lion, tiger, mouse }\} \\
\pi_{1} & \longrightarrow \text { [cat, mouse, lion, dog, tiger }] \\
\pi_{2} & \longrightarrow \text { [lion, cat, mouse, dog, tiger }]
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{A}=\{\text { mouse, lion }\} \\
\left.\operatorname{mh}_{1}(\mathrm{~A})=\min \left(\quad \pi_{1} \text { \{mouse, lion }\right\}\right)=\text { mouse } \\
\operatorname{mh}_{2}(\mathrm{~A})=\min \left(\quad \pi_{2}\{\text { mouse, lion }\}\right)=\text { lion }
\end{gathered}
$$

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Min-Hashing Example

Min-Hashing Example

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

| 2 | 4 |
| :--- | :--- | :--- |
| 3 | 2 |
| 7 | 1 |
| 6 | 3 |
| 1 | 6 |
| 5 | 7 |
| 4 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

Min-Hashing Example

Min-Hashing Example

Permutation $\pi \quad$ Input matrix (Shingles x Documents)

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Min-Hashing Example

Min-Hash Signatures

\square Pick $\mathrm{K}=100$ random permutations of the rows
\square Think of $\boldsymbol{\operatorname { s i g }}(\mathbf{C})$ as a column vector
$\square \operatorname{sig}(\mathbf{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathbf{C})[\mathbf{i}]=\min \left(\pi_{i}(\mathbf{C})\right)
$$

\square Note: The sketch (signature) of document C is small ~ 100 bytes!
\square We achieved our goal! We "compressed" long bit vectors into short signatures

Key Fact

For two sets A, B, and a min-hash function mhi():

$$
\operatorname{Pr}\left[m h_{i}(A)=m h_{i}(B)\right]=\operatorname{Sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Unbiased estimator for Sim using K hashes (notation policy - this is a different K from size of shingle)

$$
\operatorname{Sim}(A, B)=\frac{1}{k} \sum_{i=1: k} I\left[m h_{i}(A)=m h_{i}(B)\right]
$$

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
$\mathbf{C o l} / \mathrm{Col}$	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position \boldsymbol{y}

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let X be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position \boldsymbol{y}

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let X be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=\mathbf{1} /|X|$

- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position \boldsymbol{y}

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?

- Let \boldsymbol{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

\square Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
\square Then either:

$$
\begin{aligned}
& \pi(y)=\min \left(\pi\left(C_{1}\right)\right) \text { if } y \in C_{1}, \text { or } \\
& \pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
\end{aligned}
$$

One of the two cols had to have 1 at position \boldsymbol{y}

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?
\square Let X be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$

- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

\square Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
\square Then either:

$$
\begin{aligned}
& \pi(y)=\min \left(\pi\left(C_{1}\right)\right) \text { if } y \in C_{1}, \text { or } \\
& \pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
\end{aligned}
$$

One of the two cols had to have 1 at position \boldsymbol{y}
\square So the prob. that both are true is the prob. $y \in C_{1} \cap C_{2}$
$\square \operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|=\operatorname{sim}\left(C_{1}, C_{2}\right)$

The Min-Hash Property (Take 2: simpler proof)

Choose a random permutation π

\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Why?
\square Given a set X, the probability that any one element is the minhash under π is $1 /|X|$
$\leftarrow(0)$

- It is equally likely that any $\boldsymbol{y} \in X$ is mapped to the min element
\square Given a set X, the probability that one of any \mathbf{k} elements is the min-hash under π is $k /|X|$
\square For $C_{1} \cup C_{2}$, the probability that any element is the min-hash under π is $1 /\left|C_{1} \cup C_{2}\right| \quad($ from 0$) \leftarrow(2)$
\square For any C_{1} and C_{2}, the probability of choosing the same min-hash under π is $\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right| \leftarrow$ from (1) and (2)

Similarity for Signatures

\square We know: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Now generalize to multiple hash functions
\square The similarity of two signatures is the fraction of the hash functions in which they agree
\square Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
$\mathbf{C o l} / \mathrm{Col}$	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Min-Hash Signatures

\square Pick $\mathrm{K}=100$ random permutations of the rows
\square Think of $\boldsymbol{\operatorname { s i g }}(\mathbf{C})$ as a column vector
$\square \operatorname{sig}(\mathbf{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathbf{C})[\mathbf{i}]=\min \left(\pi_{i}(\mathbf{C})\right)
$$

\square Note: The sketch (signature) of document C is small ~ 100 bytes!
\square We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

\square Permuting rows even once is prohibitive
\square Approximate Linear Permutation Hashing
\square Pick K independent hash functions (use a, b below)

- Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random hash function $\mathrm{h}(\mathrm{x})$?

Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
$\mathrm{p} \ldots$ prime number $(\mathrm{p}>\mathrm{N})$

Summary: 3 Steps

\square Shingling: Convert documents to sets
\square We used hashing to assign each shingle an ID
\square Min-Hashing: Convert large sets to short signatures, while preserving similarity
\square We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square We used hashing to get around generating random permutations

Backup slides

Outline: Finding Similar Columns

\square So far:
\square Documents \rightarrow Sets of shingles
\square Represent sets as boolean vectors in a matrix
\square Next goal: Find similar columns while computing small signatures
\square Similarity of columns $==$ similarity of signatures

Outline: Finding Similar Columns

\square Next Goal: Find similar columns, Small signatures
\square Naïve approach:
\square 1) Signatures of columns: small summaries of columns
\square 2) Examine pairs of signatures to find similar columns

- Essential: Similarities of signatures and columns are related
\square 3) Optional: Check that columns with similar signatures are really similar
\square Warnings:
\square Comparing all pairs may take too much time: Job for LSH
- These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures) : LSH principle

\square Key idea: "hash" each column C to a small signature $h(C)$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column \mathbf{C} to a small signature $\boldsymbol{h}(\mathbf{C})$, such that:
$\square(1) h(C)$ is small enough that the signature fits in RAM
$\square(2) \operatorname{sim}\left(C_{1}, C_{2}\right)$ is the same as the "similarity" of signatures $h\left(C_{1}\right)$ and $h\left(C_{2}\right)$
Goal: Find a hash function $h(\cdot)$ such that:
\square If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
If $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

\square Goal: Find a hash function $h(\cdot)$ such that:
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is high, then with high prob. $h\left(C_{1}\right)=h\left(C_{2}\right)$
\square if $\operatorname{sim}\left(C_{1}, C_{2}\right)$ is low, then with high prob. $h\left(C_{1}\right) \neq h\left(C_{2}\right)$
\square Clearly, the hash function depends on the similarity metric:
\square Not all similarity metrics have a suitable hash function
\square There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

\square Imagine the rows of the boolean matrix permuted under random permutation π
\square Define a "hash" function $h_{\pi}(C)=$ the index of the first (in the permuted order π) row in which column C has value 1:

$$
h_{\pi}(C)=\min _{\pi} \pi(C)
$$

\square Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size $\mathrm{k}=1$)

Universe $\longrightarrow\{$ dog, cat, lion, tiger, mouse $\}$
$\pi_{1} \quad \longrightarrow$ [cat, mouse, lion, dog, tiger]
$\pi_{2} \longrightarrow$ [lion, cat, mouse, dog, tiger]

$$
\begin{gathered}
\mathrm{A}=\{\text { mouse, lion }\} \\
\left.\operatorname{mh}_{1}(\mathrm{~A})=\min \left(\quad \pi_{1} \text { \{mouse, lion }\right\}\right)=\text { mouse } \\
\operatorname{mh}_{2}(\mathrm{~A})=\min \left(\quad \pi_{2}\{\text { mouse, lion }\}\right)=\text { lion }
\end{gathered}
$$

Key Fact

For two sets A, B, and a min-hash function mhi():

$$
\operatorname{Pr}\left[m h_{i}(A)=m h_{i}(B)\right]=\operatorname{Sim}(A, B)=\frac{|A \cap B|}{|A \cup B|}
$$

Unbiased estimator for Sim using K hashes (notation policy - this is a different K from size of shingle)

$$
\operatorname{Sim}(A, B)=\frac{1}{k} \sum_{i=1: k} I\left[m h_{i}(A)=m h_{i}(B)\right]
$$

Min-Hashing Example

The Min-Hash Property

\square Choose a random permutation π
\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square Why?

- Let \boldsymbol{X} be a doc (set of shingles), $\boldsymbol{y} \in \boldsymbol{X}$ is a shingle
\square Then: $\operatorname{Pr}[\pi(y)=\min (\pi(X))]=1 /|X|$
- It is equally likely that any $\boldsymbol{y} \in \boldsymbol{X}$ is mapped to the min element

0	0
0	0
1	1
0	0
0	1
1	0

- Let y be s.t. $\pi(y)=\min \left(\pi\left(C_{1} \cup C_{2}\right)\right)$
\square Then either:

$$
\begin{aligned}
& \pi(y)=\min \left(\pi\left(C_{1}\right)\right) \text { if } y \in C_{1}, \text { or } \\
& \pi(y)=\min \left(\pi\left(C_{2}\right)\right) \text { if } y \in C_{2}
\end{aligned}
$$

\square So the prob. that both are true is the prob. $y \in C_{1} \cap C_{2}$

One of the two cols had to have 1 at position \boldsymbol{y}
$\square \operatorname{Pr}\left[\min \left(\pi\left(C_{1}\right)\right)=\min \left(\pi\left(C_{2}\right)\right)\right]=\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right|=\operatorname{sim}\left(C_{1}, C_{2}\right)$

The Min-Hash Property (Take 2: simpler proof)

Choose a random permutation π

\square Claim: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Why?
\square Given a set X, the probability that any one element is the minhash under π is $1 /|X|$
$\leftarrow(0)$

- It is equally likely that any $\boldsymbol{y} \in X$ is mapped to the min element
\square Given a set X, the probability that one of any \mathbf{k} elements is the min-hash under π is $k /|X|$
\square For $C_{1} \cup C_{2}$, the probability that any element is the min-hash under π is $1 /\left|C_{1} \cup C_{2}\right| \quad($ from 0$) \leftarrow(2)$
\square For any C_{1} and C_{2}, the probability of choosing the same min-hash under π is $\left|C_{1} \cap C_{2}\right| /\left|C_{1} \cup C_{2}\right| \leftarrow$ from (1) and (2)

Similarity for Signatures

\square We know: $\operatorname{Pr}\left[h_{\pi}\left(C_{1}\right)=h_{\pi}\left(C_{2}\right)\right]=\operatorname{sim}\left(C_{1}, C_{2}\right)$
\square Now generalize to multiple hash functions
\square The similarity of two signatures is the fraction of the hash functions in which they agree
\square Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π Input matrix (Shingles x Documents)
Signature matrix M

| 2 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 2 | 4 |
| 7 | 1 | 7 |
| 6 | 3 | 2 |
| 1 | 6 | 6 |
| 5 | 7 | 1 |
| 4 | 5 | 5 |

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	$1-3$	$2-4$	$1-2$	$3-4$
$\mathbf{C o l} / \mathrm{Col}$	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Min-Hash Signatures

\square Pick $\mathrm{K}=100$ random permutations of the rows
\square Think of $\boldsymbol{\operatorname { s i g }}(\mathbf{C})$ as a column vector
$\square \operatorname{sig}(\mathbf{C})[i]=$ according to the i-th permutation, the index of the first row that has a 1 in column C

$$
\operatorname{sig}(\mathbf{C})[\mathbf{i}]=\min \left(\pi_{i}(\mathbf{C})\right)
$$

\square Note: The sketch (signature) of document C is small ~ 100 bytes!
\square We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

\square Permuting rows even once is prohibitive
\square Approximate Linear Permutation Hashing
\square Pick \mathbf{K} independent hash functions (use \mathbf{a}, \mathbf{b} below)

- Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random hash function $\mathrm{h}(\mathrm{x})$?

Universal hashing:
$h_{a, b}(x)=((a \cdot x+b) \bmod p) \bmod N$ where:
a,b ... random integers
$\mathrm{p} \ldots$ prime number $(\mathrm{p}>\mathrm{N})$

Summary: 3 Steps

\square Shingling: Convert documents to sets
\square We used hashing to assign each shingle an ID
\square Min-Hashing: Convert large sets to short signatures, while preserving similarity
\square We used similarity preserving hashing to generate signatures with property $\operatorname{Pr}\left[h_{\pi}\left(\mathrm{C}_{1}\right)=h_{\pi}\left(\mathrm{C}_{2}\right)\right]=\operatorname{sim}\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$
\square We used hashing to get around generating random permutations

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence
1	$<a(a b c)(a \underline{c}) d(c f)>$
2	$<(a d) c(b c)(a e)>$
3	$<(e f)(\underline{a b})(d f) \underline{c} b>$
4	$<e g(a f) c b c>$
	min_sup $=2$

Ref: SPADE (Sequential PAttern Discovery using Equivalent Class) [M. Zaki 2001]

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2	2	c
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	c
3	5	b
4	1	e
4	2	g
4	3	af
4	4	c
4	5	b
4	6	c

a		b		\cdots
SID	EID	SID	EID	\cdots
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

ab				ba				\cdots
SID	EID (a)	EID(b)	SID	EID (b)	EID (a)			
\cdots								
1	1	2	1	2	3			
2	1	3	2	3	4			
3	2	5						
4	3	5		\cdots				
aba								
SID	EID (a)	EID (b)	EID (a)	\cdots				
1	1	2	3					
2		1	3	4				

PrefixSpan: A Pattern-Growth Approach

SID	Sequence	min_sup $=2$	
10	<a(abc)(ab)d(cf)>	Prefix	Suffix (Projection)
20	<(ad)c(bc)(ae)>	<a>	<(abc)(ac)d(cf)>
30	<(ef)(ab)(df) ${ }_{\text {d }}$ >	<aa>	< (_bc)(ac)d(cf)>
40	<eg(af)cbc>	<ab>	< _ c) (ac)d(cf)>

\square PrefixSpan Mining: Prefix Projections

- Prefix and suffix

- Given <a(abc)(ac)d(cf)>
\square Prefixes: <a>, <aa>, $<a(a b)>,<a(a b c)>, \ldots$ Suffix: Prefixes-based projection
- Step 1: Find length-1 sequential patterns
$\square\langle a\rangle,\langle b\rangle,\langle c\rangle,\langle d\rangle,\langle e\rangle,<f\rangle$
- Step 2: Divide search space and mine each projected DB
- <a>-projected DB,
- -projected DB,
- ...
- <f>-projected DB, ...
PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

PrefixSpan: Mining Prefix-Projected DBs

Consideration:

Pseudo-Projection vs. Physical Prlmplementation ojection

- Major cost of PrefixSpan: Constructing projected DBs
- Suffixes largely repeating in recursive projected DBs
\square When DB can be held in main memory, use pseudo projection
- No physically copying suffixes

- Suggested approach:
- Integration of physical and pseudo-projection
- Swapping to pseudo-projection when the data fits in memory

CloSpan: Mining Closed Sequential Patterns

\square A closed sequential pattern s: There exists no superpattern s' such that s'J s, and s' and s have the same support
\square Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

- Why directly mine closed sequential patterns?
- Reduce \# of (redundant) patterns
- Attain the same expressive power
- Property P_{1} : If $s \supset s_{1}$, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM’03)

CloSpan: When Two Projected DBs Have the Same Size

- If $s \supset s_{1}, s$ is closed iff two project DBs have the same size
\square When two projected sequence DBs have the same size?
\square Here is one example:

Chapter 7 : Advanced Frequent Pattern Mining

\square Mining Diverse PatternsSequential Pattern MiningConstraint-Based Frequent Pattern Mining
\square Graph Pattern Mining
\square Pattern Mining Application: Mining Software Copy-and-Paste Bugs
\square Summary

Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
\square Constrained Mining with Pattern Anti-Monotonicity
\square Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
\square Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
\square Handling Multiple Constraints
\square Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

\square Finding all the patterns in a dataset autonomously?-unrealistic!

- Too many patterns but not necessarily user-interested!
\square Pattern mining in practice: Often a user-guided, interactive process
- User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
\square What is constraint-based mining?
- Mine together with user-provided constraints
\square Why constraint-based mining?
- User flexibility: User provides constraints on what to be mined
- Optimization: System explores such constraints for mining efficiency
- E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- Knowledge type constraint—Specifying what kinds of knowledge to mine
- Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
- Ex.: Find products sold together in NY stores this year
- Dimension/level constraint—similar to projection in relational database
- Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint-various kinds of thresholds
- Ex.: Strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7
\square Rule (or pattern) constraint \square The focus of this study
Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

TID Transaction

10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

min_sup $=2$		
Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

- Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}($ S.price $) \leq v$ is anti-monotone
- Ex. 2: c_{2} : range(S.profit) ≤ 15 is anti-monotone
- Itemset $a b$ violates c_{2} (range $\left.(a b)=40\right)$
- So does every superset of $a b$
- Ex. 3. c_{3} : sum(S.Price) $\geq v$ is not anti-monotone
- Ex. 4 . Is C_{4} : $\operatorname{support}(S) \geq \sigma$ anti-monotone?
- Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

```
Note: item.price > 0
Profit can be negative
```


Pattern Monotonicity and Its Roles

- A constraint c is monotone: If an itemset S satisfies the

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

$$
\text { min_sup }=2
$$

Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

- That is, we do not need to check c in subsequent mining
- Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}(S$. Price $) \geq v$ is monotone
- Ex. 2: c_{2} : $\min ($ S.Price $) \leq v$ is monotone
- Ex. 3: c_{3} : range(S.profit) ≥ 15 is monotone
- Itemset $a b$ satisfies c_{3}
- So does every superset of $a b$

Profit can be negative

Data Space Pruning with Data Anti-Monotonicity

10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

min_sup $=2$		
Item	Price	Profit
a	100	40
b	40	0
c	150	-20
d	35	-15
e	55	-30
f	45	-10
g	80	20
h	10	5

\square A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p 's superset either
\square Data space pruning: Data entry t can be pruned
\square Ex. 1: $\mathrm{c}_{1}: \operatorname{sum}(S . P r o f i t) \geq v$ is data anti-monotone

- Let constraint c_{1} be: $\operatorname{sum}($ S.Profit $) \geq 25$
$-T_{30}:\{b, c, d, f, g\}$ can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
\square Ex. 2: $c_{2}: \min (S$. Price $) \leq v$ is data anti-monotone
- Consider $v=5$ but every item in a transaction, say T_{50}, has a price higher than 10
\square Ex. 3: c_{3} : range(S.Profit) >25 is data anti-monotone

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern $\mathrm{Y} \supset \mathrm{X}$, with the same support as X
\square Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many closed patterns does TDB 1 contain?

- Two: P_{1} : "\{ $\left.a_{1}, \ldots, a_{50}\right\}: 2 " ; P_{2}$: "\{ $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Closed pattern is a lossless compression of frequent patterns
\square Reduces the \# of patterns but does not lose the support information!
- You will still be able to say: " $\left\{a_{2}, \ldots, a_{40}\right\}$: $2 ", "\left\{a_{5}, a_{51}\right\}: 1$ "

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern $\mathrm{Y} \supset \mathrm{X}$
\square Difference from close-patterns?
\square Do not care the real support of the sub-patterns of a max-pattern

- Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many max-patterns does TDB ${ }_{1}$ contain?
- One: P: "\{a $\left.a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Max-pattern is a lossy compression!
\square We only know $\left\{a_{1}, \ldots, a_{40}\right\}$ is frequent
\square But we do not know the real support of $\left\{a_{1}, \ldots, a_{40}\right\}, \ldots$, any more!
\square Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

\square What if FP-tree cannot fit in memory?—Do not construct FP-tree

- "Project" the database based on frequent single items
- Construct \& mine FP-tree for each projected DB
\square Parallel projection vs. partition projection
\square Parallel projection: Project the DB on each frequent item
- Space costly, all partitions can be processed in parallel
\square Partition projection: Partition the DB in order
- Passing the unprocessed parts to subsequent partitions

Trans. DB		Parallel projection		Partition projection	
$\mathrm{f}_{2} \mathrm{f}_{3} \mathrm{f}_{4} \mathrm{gh}$		f_{4}-proj	f_{3}-proj. DB	f_{4}-proj. DB	f_{3}-proj. DB
$\mathrm{f}_{3} \mathrm{f}_{4} \mathrm{ij}$	Assume only f's are frequent \& the frequent item ordering is: $f_{1}-f_{2}-f_{3}-f_{4}$	$\mathrm{f}_{2} \mathrm{f}_{3}$	f_{2}	f_{2}	f_{1}
$\mathrm{f}_{2} \mathrm{f}_{4} \mathrm{k}$		f_{3}	f_{1}	...	
$\mathrm{f}_{1} \mathrm{f}_{3} \mathrm{~h}$		f_{2}	...		f_{2} will be projected to f_{3}-proj. DB only when processing f_{4} proj. DB
\ldots		...			

Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
- >3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	$0.163(2)$	$0.315(7)$	$0.355(9)$
2	Michael Carey	Miron Livny	26	104	58	$0.191(1)$	$0.335(4)$	$0.349(10)$
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	$0.152(3)$	$0.331(5)$	$0.416(8)$
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	$0.119(7)$	$0.308(10)$	$0.446(7)$
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	$0.123(6)$	$0.351(2)$	$0.562(2)$
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	$0.110(9)$	$0.314(8)$	$0.500(4)$
7	Divyakant Agrawal	Wang Hsiung	16	120	16	$0.133(5)$	$0.365(1)$	$0.567(1)$
8	Elke Rundensteiner	Murali Mani	16	104	20	$0.148(4)$	$0.351(3)$	$0.477(6)$
9	Divyakant Agrawal	Oliver Po	12	120	12	$0.100(10)$	$0.316(6)$	$0.550(3)$
10	Gerhard Weikum	Martin Theobald	12	106	14	$0.111(8)$	$0.312(9)$	$0.485(5)$

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle
\square Which pairs of authors are strongly related?

- Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

\square DBLP: Computer science research publication bibliographic database
$\square \quad>3.8$ million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163 (2)	0.315 (7)	0.355 (9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335 (4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152 (3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119 (7)	0.308 (10)	0.446 (7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123 (6)	0.351 (2)	0.562 (2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500 (4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133 (5)	0.365 (1)	0.567 (1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148 (4)	0.351 (3)	0.477 (6)
9	Divyakant Agrawal	Oliver Po	<12	120	12	$0.100(10)$	0.316 (6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485 (5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle
\square Which pairs of authors are strongly related?

- Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

\square Null value cases are predominant in many large datasets
\square Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
\square Null-invariance is an important property
\square Lift, $\boldsymbol{\chi}^{\mathbf{2}}$ and cosine are good measures if null transactions are not predominant

- Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
\square Exercise: Mining research collaborations from research bibliographic data
- Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
\square Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
\square Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD' 10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	$\{38,16,18,12\}$	205227
P2	$\{38,16,18,12,17\}$	205211
P3	$\{39,38,16,18,12,17\}$	101758
P4	$\{39,16,18,12,17\}$	161563
P5	$\{39,16,18,12\}$	161576

- Closed patterns
- P1, P2, P3, P4, P5
- Emphasizes too much on support
- There is no compression
- Max-patterns
- P3: information loss
- Desired output (a good balance):

117

- P2, P3, P4
\square Why mining compressed patterns?
- Too many scattered patterns but not so meaningful
\square Pattern distance measure

$$
\operatorname{Dist}\left(P_{1}, P_{2}\right)=1-\frac{\left|T\left(P_{1}\right) \cap T\left(P_{2}\right)\right|}{\left|T\left(P_{1}\right) \cup T\left(P_{2}\right)\right|}
$$

$\square \delta$-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
\square All patterns in the cluster can be represented by P
\square Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

\square Desired patterns: high significance \& low redundancy

(a) a set of patterns

(c) traditional top- k

(b) redundancy-aware top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

Redundancy Filtering at Mining Multi-Level Associations

\square Multi-level association mining may generate many redundant rules
\square Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
\square milk \Rightarrow wheat bread [support $=8 \%$, confidence $=70 \%$] (1)
$\square 2 \%$ milk \Rightarrow wheat bread [support $=2 \%$, confidence $=72 \%$] (2)

- Suppose the " 2% milk" sold is about " $1 / 4$ " of milk sold
\square Does (2) provide any novel information?
\square A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
\square Rule (1) is an ancestor of rule (2), which one to prune?

Succinctness

\square Succinctness:
\square Given A_{1}, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{1}, i.e., S contains a subset belonging to A_{1}
\square Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
$\square \min (S$. Price $) \leq v$ is succinct
\square sum(S.Price) $\geq v$ is not succinct
\square Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
$\mathbf{v} \in \mathbf{S}$	yes
$\mathbf{S} \supseteq \mathbf{V}$	yes
$\mathbf{S} \subseteq \mathbf{V}$	yes
$\min (\mathbf{S}) \leq \mathbf{v}$	yes
$\min (\mathbf{S}) \geq \mathbf{v}$	yes
$\max (\mathbf{S}) \leq \mathbf{v}$	yes
$\max (\mathbf{S}) \geq \mathbf{v}$	yes
$\operatorname{sum}(\mathbf{S}) \leq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \geq \mathbf{0})$	no
$\operatorname{sum}(\mathbf{S}) \geq \mathbf{v}(\mathbf{a} \in \mathbf{S}, \mathbf{a} \geq \mathbf{0})$	no
$\operatorname{range(S)} \leq \mathbf{v}$	no
$\operatorname{range(S)} \geq \mathbf{v}$	no
$\mathbf{a v g (S)} \theta \mathbf{v}, \theta \in\{=, \leq, \geq\}$	no
$\operatorname{support}(\mathbf{S}) \geq \xi$	no
$\operatorname{support}(\mathbf{S}) \leq \xi$	no

Push a Succinct Constraint Deep

Database D	
TID	Items
100	134
200	235
300	1235
400	25

Constraint:
$\min \{S$. price $<=1\}$

Sequential Pattern Mining

\square Sequential Pattern and Sequential Pattern Mining
\square GSP: Apriori-Based Sequential Pattern Mining
\square SPADE: Sequential Pattern Mining in Vertical Data Format
\square PrefixSpan: Sequential Pattern Mining by Pattern-Growth
\square CloSpan: Mining Closed Sequential Patterns

GSP: Candidate Generation

Frequent	Candidate 4-Sequences	
3-Sequences	after join	after pruning
$\langle(1,2)(3)\rangle$	$\langle(1,2)(3,4)\rangle$	$\langle(1,2)(3,4)\rangle$
$\langle(1,2)(4)\rangle$	$\langle(1,2)(3)(5)\rangle$	
$\langle(1)(3,4)\rangle$		
$\langle(1,3)(5)\rangle$		
$\langle(2)(3,4)\rangle$		
$\langle(2)(3)(5)\rangle$		

Figure 3: Candidate Generation: Example

The sequence $<(1,2)(3)(5)>$ is dropped in the pruning phase, since its contiguous subsequence $<$ (1) (3) (5) $>$ is not frequent.

GSP Algorithm: Apriori Candidate Generation

The apriori-generate function takes as argument L_{k-1}, the set of all large ($k-1$)-sequences. The function works as follows. First, join L_{k-1} with L_{k-1} :
insert into C_{k}
select p.litemset $_{1}, \ldots, p$.litemset $_{k-1}, q$. litemset $_{k-1}$
from $L_{k-1} p, L_{k-1} q$
where p. litemset $_{1}=q$.litemset ${ }_{1}, \ldots$,

$$
p \text {.litemset }_{k-2}=q \cdot \text { litemset }_{k-2} ;
$$

Large 3 -Sequences	Candidate 4-Sequences (after join)	Candidate 4-Sequences (after pruning)
(123)	(1234)	$\langle 1234\rangle$
<124)	<1243)	
<134)	(1345)	
<135 ${ }^{\text {¢ }}$	(1354)	
<2 34,		

Figure 7: Candidate Generation

Next, delete all sequences $c \in C_{k}$ such that some ($k-1$)-subsequence of c is not in L_{k-1}.

