CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining & Locality Sensitive Hashing

Huan Sun, CSE@The Ohio State University

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

Sequence Mining: Description

Input

2

A database D of sequences called data-sequences, in which:

- \blacksquare $I = \{i_1, i_2, \dots, i_n\}$ is the set of items
- each sequence is a list of transactions ordered by transaction-time
- each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Sequence-Id	Transaction	Items					
	Time						
C1	1	Ringworld					
C1	2	Foundation					
C1	15	Ringworld Engineers, Second Foundation					
C2	1	Foundation, Ringworld					
C2	20	Foundation and Empire					
C2	50	Ringworld Engineers					

Database \mathcal{D}

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- A <u>sequence</u>: < (ef) (ab) (df) c b >
- An <u>element</u> may contain a set of *items* (also called *events*)
- Items within an element are unordered and we list them alphabetically

<a(bc)dc> is a <u>subsequence</u> of <<u>a(abc)(ac)d(c</u>f)>

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence	
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	
20	<(ad)c(bc)(ae)>	
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
40	<eg(af)cbc></eg(af)cbc>	
Fo	ormal definition:	$\beta = \langle \\ 1 \leq \\ \alpha = $

<a(bc)dc>is a <u>subsequence</u> of <<u>a(abc)(ac)d(c</u>f)>

A sequence $\alpha = \langle a_1 a_2 \cdots a_n \rangle$ is called a **subsequence** of another sequence $\beta = \langle b_1 b_2 \cdots b_m \rangle$, and β is a **supersequence** of α , denoted as $\alpha \sqsubseteq \beta$, if there exist integers $1 \le j_1 < j_2 < \cdots < j_n \le m$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, \ldots, a_n \subseteq b_{j_n}$. For example, if $\alpha = \langle (ab), d \rangle$ and $\beta = \langle (abc), (de) \rangle$, where a, b, c, d, and e are items, then α is a subsequence of β and β is a supersequence of α .

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>se</u>	equence database_	A <u>sequence:</u> < (ef) (ab) (df) c b >				
SID	Sequence					
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	An <u>element</u> may contain a set of <i>items</i> (also called <i>events</i>)				
20	<(ad)c(bc)(ae)>					
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	Items within an element are unordered and we list them alphabetically				
40	<eg(af)cbc></eg(af)cbc>					
		<a(bc)dc>is a <u>subsequence</u> of <<u>a</u>(a<u>bc</u>)(ac)<u>d(c</u>f)></a(bc)dc>				

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

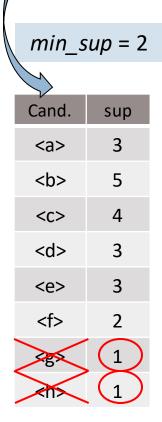
A Basic Property of Sequential Patterns: Apriori

- A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - **E.g.** $hb > is infrequent \rightarrow so do <hab > and <(ah)b >$

- Initial candidates: All 8-singleton sequences
 - a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>



- Initial candidates: All 8-singleton sequences
 - a>, , <c>, <d>, <e>, <f>, <g>, <h>
- □ Scan DB once, count support for each candidate
- □ Generate length-2 candidate sequences

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

How?

- Initial candidates: All 8-singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- □ Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Why?

- Initial candidates: All 8-singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

		<u></u>					<u> </u>	-i	
	<a>	>		•	<c></c>		<d></d>	<e></e>	<f></f>
<a>	<aa< td=""><td><</td><td><ab:< td=""><td>></td><td><ac></ac></td><td>•</td><td><ad></ad></td><td><ae></ae></td><td><af></af></td></ab:<></td></aa<>	<	<ab:< td=""><td>></td><td><ac></ac></td><td>•</td><td><ad></ad></td><td><ae></ae></td><td><af></af></td></ab:<>	>	<ac></ac>	•	<ad></ad>	<ae></ae>	<af></af>
	<ba< td=""><td> ></td><td><bb;< p=""></bb;<></td><td>></td><td><bc></bc></td><td>•</td><td><bd></bd></td><td><be></be></td><td><bf></bf></td></ba<>	>	<bb;< p=""></bb;<>	>	<bc></bc>	•	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca< td=""><td>></td><td><cb></cb></td><td>></td><td><cc></cc></td><td></td><td><cd></cd></td><td><ce></ce></td><td><cf></cf></td></ca<>	>	<cb></cb>	>	<cc></cc>		<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da< td=""><td> ></td><td><db:< td=""><td>></td><td><dc></dc></td><td>,</td><td><dd></dd></td><td><de></de></td><td><df></df></td></db:<></td></da<>	>	<db:< td=""><td>></td><td><dc></dc></td><td>,</td><td><dd></dd></td><td><de></de></td><td><df></df></td></db:<>	>	<dc></dc>	,	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea< td=""><td>></td><td><eb:< td=""><td>></td><td><ec></ec></td><td>•</td><td><ed></ed></td><td><ee></ee></td><td><ef></ef></td></eb:<></td></ea<>	>	<eb:< td=""><td>></td><td><ec></ec></td><td>•</td><td><ed></ed></td><td><ee></ee></td><td><ef></ef></td></eb:<>	>	<ec></ec>	•	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa:< td=""><td>></td><td><fb></fb></td><td>></td><td><fc></fc></td><td></td><td><fd></fd></td><td><fe></fe></td><td><ff></ff></td></fa:<>	>	<fb></fb>	>	<fc></fc>		<fd></fd>	<fe></fe>	<ff></ff>
	<a>				<c></c>		<d></d>	<e></e>	<f></f>
<a>		<	(ab)>	<	<(ac)>		<(ad)>	<(ae)>	<(af)>
				<	<(bc)>		<(bd)>	<(be)>	<(bf)>
<c></c>							<(cd)>	<(ce)>	<(cf)>
<d></d>								<(de)>	<(df)>
<e></e>									<(ef)>
<f></f>									

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Why?

- Initial candidates: All 8-singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- □ Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

11

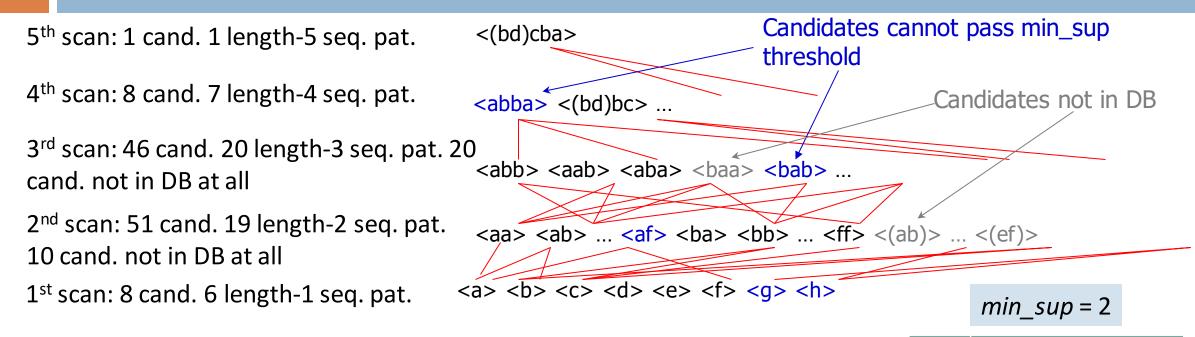
					<c></c>		<d></d>	<e></e>	<f></f>
<a>	<aa< th=""><th>></th><th><ab></ab></th><th>•</th><th><ac></ac></th><th></th><th><ad></ad></th><th><ae></ae></th><th><af></af></th></aa<>	>	<ab></ab>	•	<ac></ac>		<ad></ad>	<ae></ae>	<af></af>
	<ba< td=""><td>></td><td><bb></bb></td><td>•</td><td><bc></bc></td><td>,</td><td><bd></bd></td><td><be></be></td><td><bf></bf></td></ba<>	>	<bb></bb>	•	<bc></bc>	,	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca< td=""><td>></td><td><cb></cb></td><td></td><td><cc></cc></td><td></td><td><cd></cd></td><td><ce></ce></td><td><cf></cf></td></ca<>	>	<cb></cb>		<cc></cc>		<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da< th=""><th>></th><th><db></db></th><th>•</th><th><dc></dc></th><th></th><th><dd></dd></th><th><de></de></th><th><df></df></th></da<>	>	<db></db>	•	<dc></dc>		<dd></dd>	<de></de>	<df></df>
<e></e>	<ea< th=""><th>></th><th><eb></eb></th><th>•</th><th><ec></ec></th><th>•</th><th><ed></ed></th><th><ee></ee></th><th><ef></ef></th></ea<>	>	<eb></eb>	•	<ec></ec>	•	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa:< td=""><td>></td><td><fb></fb></td><td></td><td><fc></fc></td><td></td><td><fd></fd></td><td><fe></fe></td><td><ff></ff></td></fa:<>	>	<fb></fb>		<fc></fc>		<fd></fd>	<fe></fe>	<ff></ff>
	<a>	1			<c></c>		<d></d>	<e></e>	<f></f>
<a>									
				<	<c></c>		<d></d>	<e></e>	<f></f>
<8>				<	< <u><</u> c>:(ac)>		<d></d> <(ad)>	<mark><e></e></mark> <(ae)>	<f><(af)></f>
<a>				<	< <u><</u> c>:(ac)>		<d>< <(ad)> <(bd)></d>	<e> <(ae)> <(be)></e>	<(af)> <(bf)>
<a> <c></c>				<	< <u><</u> c>:(ac)>		<d>< <(ad)> <(bd)></d>	<e> <(ae)> <(be)> <(ce)></e>	<(af)> <(bf)> <(cf)>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

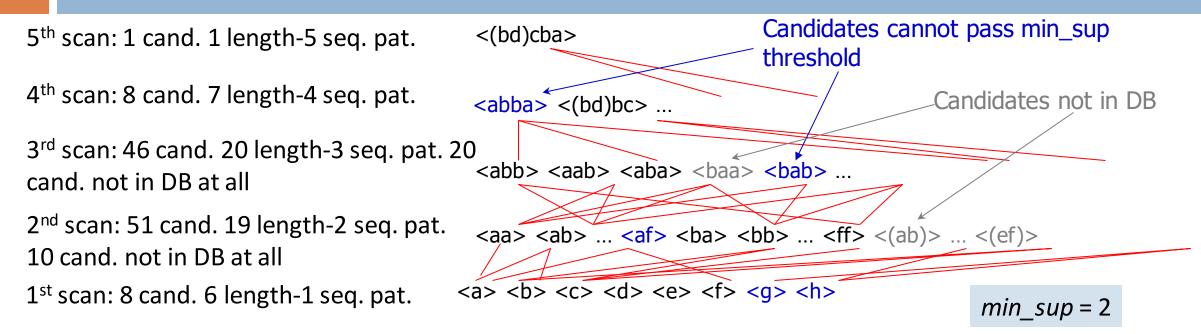
- Without Apriori pruning:
 - (8 singletons) 8*8+8*7/2 = 92 length-2 candidates
- With pruning, length-2 candidates: 36 + 15= 51

GSP Mining and Pruning



SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP Mining and Pruning



- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
 - set k = k+1
- Until no frequent sequence or no candidate can be found

 SID
 Sequence

 10
 <(bd)cb(ac)>

 20
 <(bf)(ce)b(fg)>

 30
 <(ah)(bf)abf>

 40
 <(be)(ce)d>

 50
 <a(bd)bcb(ade)>

GSP: Algorithm

Mining Sequential Patterns: Generalizations and Performance Improvements, Srikant and Agrawal et al. <u>https://pdfs.semanticscholar.org/d420/ea39dc136b9e390</u> <u>d05e964488a65fcf6ad33.pdf</u>

Phase 1:

Scan over the database to identify all the frequent items, i.e., 1-element sequences

Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- \square In the iteration to generate all k-sequences
- Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences
 - Prune the candidate sequence if any of its k-1 subsequences is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found
- A detailed example illustration:

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-patterngsp.html

Bottlenecks of GSP

□ A huge set of candidates could be generated

- 1,000 frequent length-1 sequences generate length-2 candidates! $1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$
- Multiple scans of database in mining
- Real challenge: mining long sequential patterns
 - An exponential number of short candidates
 - A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}$$

GSP: Optimization Techniques

- □ Applied to phase 2: computation-intensive
- □ Technique 1: the hash-tree data structure
 - Used for counting candidates to reduce the number of candidates that need to be checked
 - Leaf: a list of sequences
 - Interior node: a hash table
- Technique 2: data-representation transformation

From horizontal format to vertical format

Transaction-Time	Items	
10	$1, 2 \\ 4, 6$	
25	4,6	
45	3	
50	1, 2	
65	3	
90	2, 4 6	
95	6	

Item	Times
1	ightarrow 10 ightarrow 50 ightarrow m NULL
2	ightarrow 10 $ ightarrow$ 50 $ ightarrow$ 90 $ ightarrow$ NULL
3	$ ightarrow 45 ightarrow 65 ightarrow \mathrm{NULL}$
4	$ ightarrow 25 ightarrow 90 ightarrow \mathrm{NULL}$
5	ightarrow NULL
6	$ ightarrow 25 ightarrow 95 ightarrow \mathrm{NULL}$
7	ightarrow NULL

SPADE

Problems in the GSP Algorithm

- Multiple database scans
- Complex hash structures with poor locality
- Scale up linearly as the size of dataset increases

SPADE: Sequential PAttern Discovery using Equivalence classes

- Use a vertical id-list database
- Prefix-based equivalence classes
- Frequent sequences enumerated through simple temporal joins
- Lattice-theoretic approach to decompose search space

Advantages of SPADE

- 3 scans over the database
- Potential for in-memory computation and parallelization

Paper Link:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6042&rep=rep1&type=pdf

MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

FINDING SIMILAR ITEMS

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs

Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:

 \square Mirror websites, or approximate mirrors \rightarrow remove duplicates

 \blacksquare Similar news articles at many news sites \rightarrow cluster

Problems:

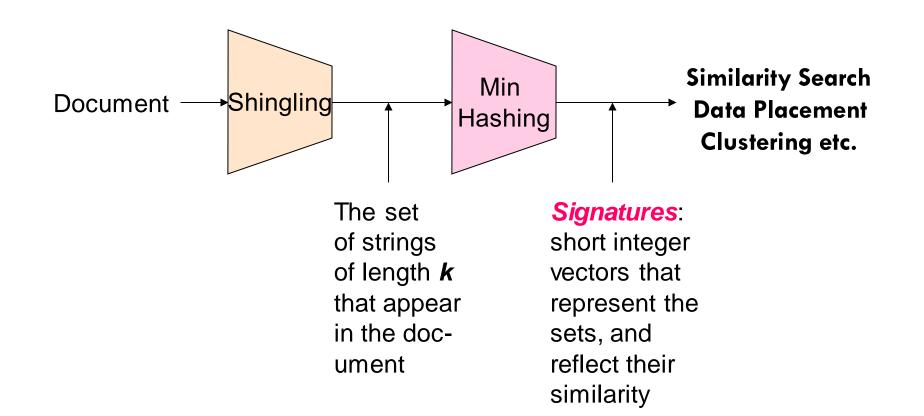
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many (scale issues)

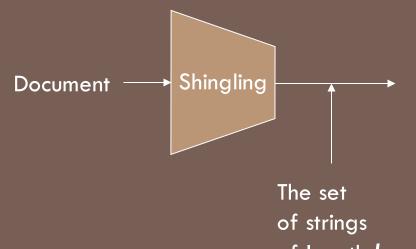
Two Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications e.g. Similarity Search Data Placement Clustering etc.

The Big Picture





- of length **k** that appear
- in the document

SHINGLING

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

Step 1: Shingling: Convert documents to sets

Simple approaches:

Document = set of words appearing in document

Document = set of "important" words

Don't work well for this application. Why?

Need to account for ordering of words!

A different way: Shingles!

Define: Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc

- Tokens can be characters, words or something else, depending on the application
- Assume tokens = characters for examples

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Define: Shingles

- A k-shingle (or k-gram) for a document is a sequence of k tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$

Another option: Shingles as a bag (multiset), count ab twice: S'(D₁) = {ab, bc, ca, ab}

Shingles: How to treat white-space chars?

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown. \Box

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

Documents that have lots of shingles in common have similar text, even if the text appears in different order

- Caveat: You must pick k large enough, or most documents will have most shingles
 - **\mathbf{k} = 5** is OK for short documents
 - **\mathbf{k}** = 10 is better for long documents

Compressing Shingles

□ To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

```
e.g., 9-shingle => bucket number [0, 2^32 - 1]
(using 4 bytes instead of 9)
```

Compressing Shingles

□ To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

\Box Doc represented by the set of hash/dict. values of its k-shingles

Idea: Two documents could appear to have shingles in common, when the hash-values were shared

Compressing Shingles

□ To **compress long shingles**, we can **hash** them to (say) 4 bytes

- Like a Code Book
- \square If #shingles manageable \rightarrow Simple dictionary suffices

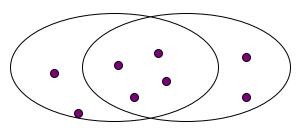
\Box Doc represented by the set of hash/dict. values of its k-shingles

Similarity Metric for Shingles

Document D_1 is a set of its k-shingles $C_1 = S(D_1)$

- \Box Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- □ A natural similarity measure is the Jaccard similarity:

 $sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$



Motivation for Minhash/LSH

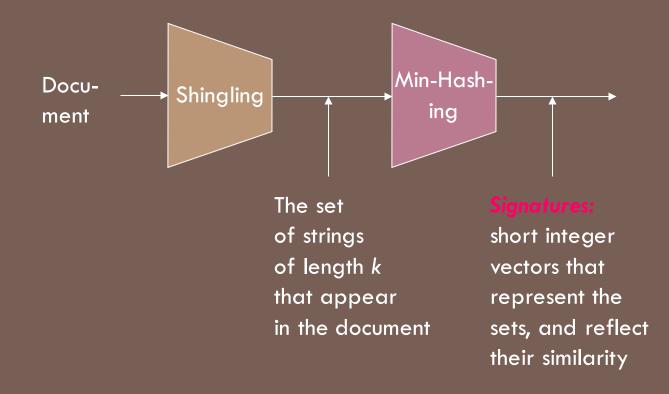
Suppose we need to find similar documents among N = 1 million documents

Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs

 $\square N(N-1)/2 \approx 5*10^{11} \text{ comparisons}$

At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days

 \square For N = 10 million, it takes more than a year...

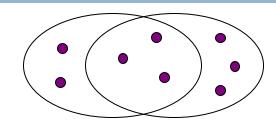


MINHASHING

Step 2: Minhashing: Convert large variable length sets to short <u>fixed-length</u> signatures, while <u>preserving similarity</u>

Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

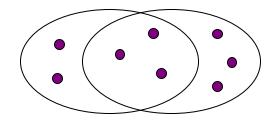


Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

□ Encode sets using 0/1 (bit, boolean) vectors

- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR

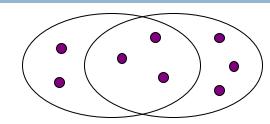


Encoding Sets as Bit Vectors

Many similarity problems can be formalized as finding subsets that have significant intersection

Encode sets using 0/1 (bit, boolean) vectors

- One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 10111$; $C_2 = 10011$
 - **\square** Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$



From Sets to Boolean Matrices

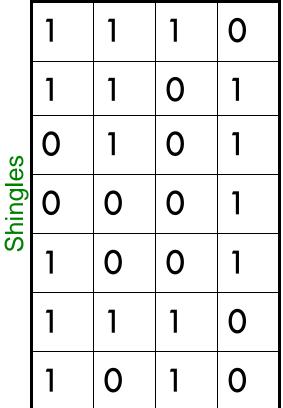
Rows = elements (shingles)

Note: Transposed Document Matrix

Columns = sets (documents)

1 in row e and column s if and only if e is a valid shingle of document represented by s

- Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
- **Typical matrix is sparse!**



So far:

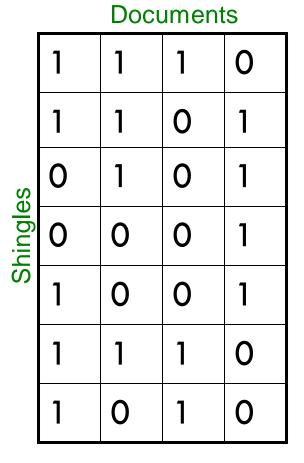
- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix

	Documents			
Shingles	1	1	1	0
	1	1	0	1
	0	1	0	1
	0	0	0	1
	1	0	0	1
	1	1	1	0
	1	0	1	0

So far:

- \square A documents \rightarrow a set of shingles
- Represent a set as a boolean vector in a matrix
- Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures



Next Goal: Find similar columns, Small signatures

- □ Naïve approach:
 - 1) Signatures of columns: small summaries of columns

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- **2) Examine pairs of signatures** to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- **3) Optional:** Check that columns with similar signatures are really similar

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

□ Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if the optional check is not made)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures) : LSH principle

□ Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$

□ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

Imagine the rows of the boolean matrix permuted under random permutation π

□ Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

- Universe \longrightarrow { dog, cat, lion, tiger, mouse}
 - $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
 - $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$
 - A = { mouse, lion }

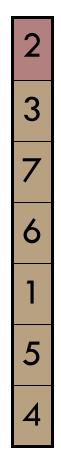
Zoo example (shingle size k=1)

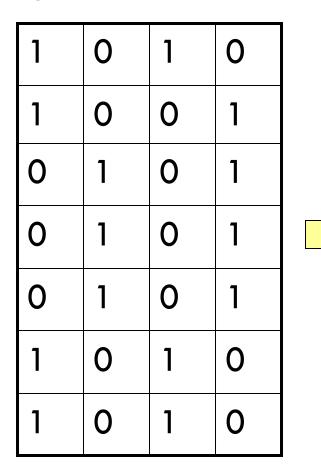
Universe \longrightarrow { dog, cat, lion, tiger, mouse}

- $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
- $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$

 $A = \{ \text{ mouse, lion } \}$ $mh_1(A) = min (\pi_1\{\text{mouse, lion }\}) = mouse$ $mh_2(A) = min (\pi_2\{ \text{ mouse, lion }\}) = lion$

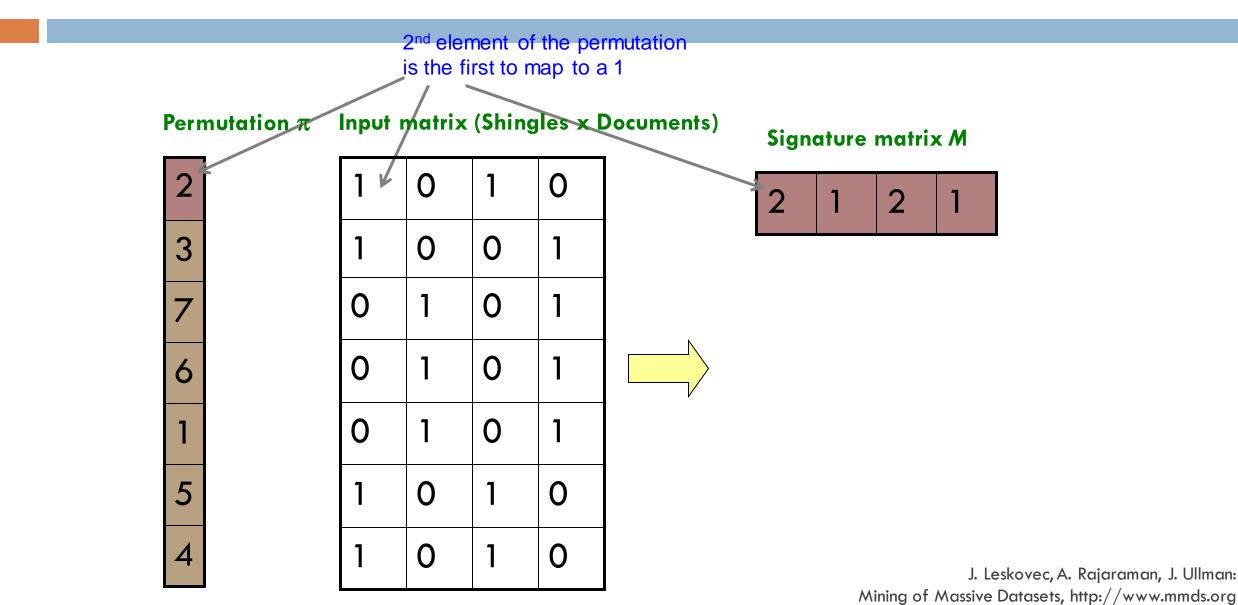
Input matrix (Shingles x Documents)





Signature matrix M

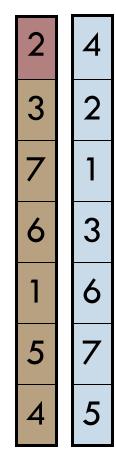


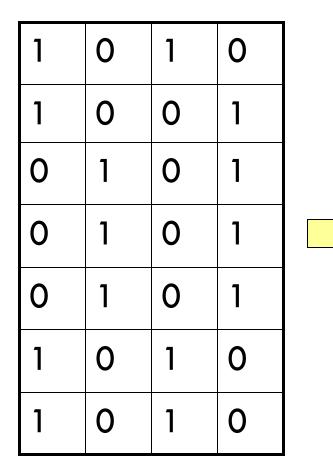


61

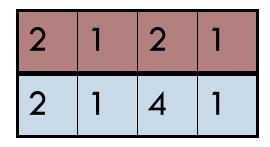
Permutation π

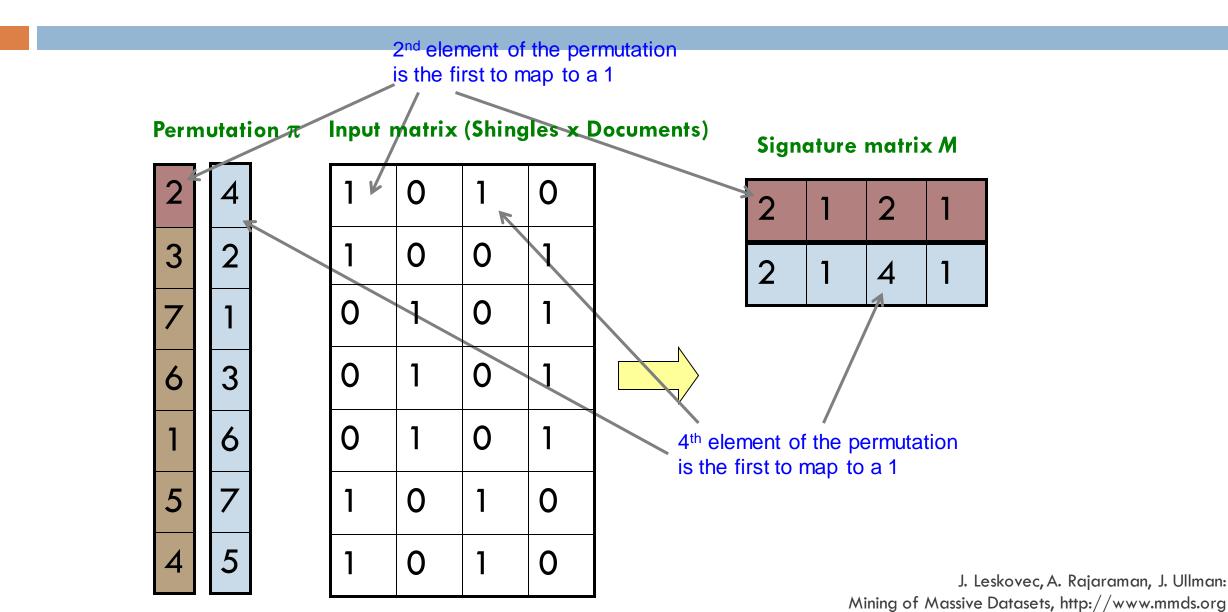
Input matrix (Shingles x Documents)





Signature matrix M



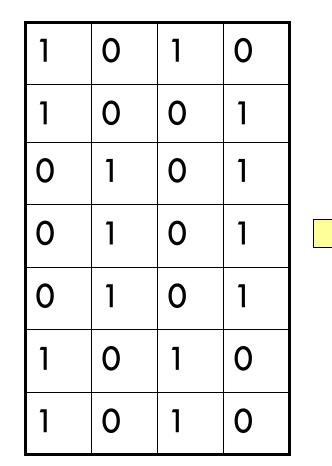


63

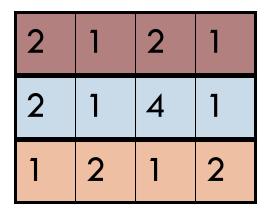
Permutation π

Input matrix (Shingles x Documents)

2	4	
3	2	4
7	1	-
6	3	
1	6	4
5	7	-
4	5	

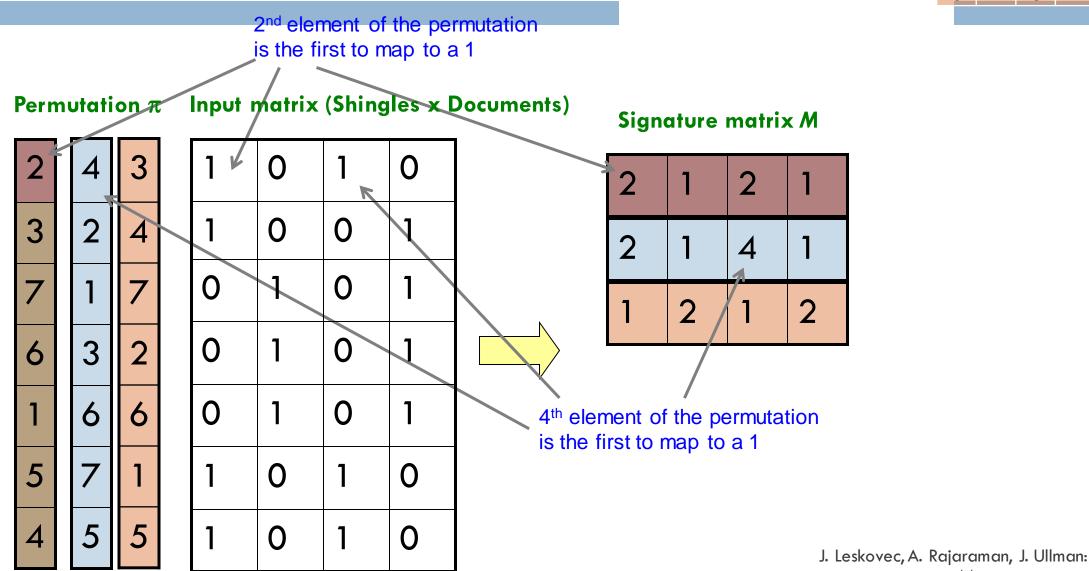


Signature matrix M



Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

1	5	1	5
2	3	1	3
6	4	6	4



Mining of Massive Datasets, http://www.mmds.org

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of **sig(C)** as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

For two sets A, B, and a min-hash function mh_i():

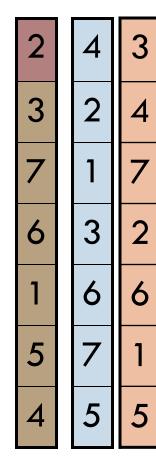
$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

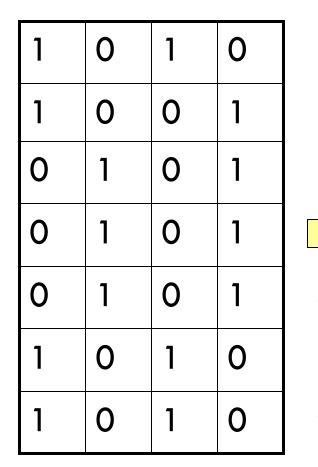
Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

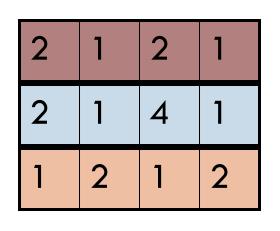
Permutation π

n π Input matrix (Shingles x Documents)

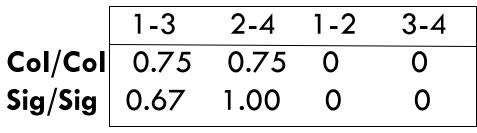




Signature matrix M

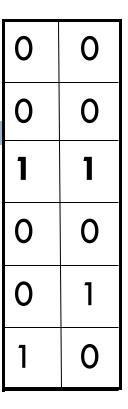


Similarities:



Choose a random permutation π

- $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- □ Why?



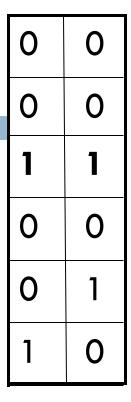
One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

Let X be a doc (set of shingles), $y \in X$ is a shingle



One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position **y**

0	0
0	0
1	1
0	0
0	1
1	0
	·

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- **Let X** be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$

One of the two cols had to have 1 at position **y**

- \blacksquare So the prob. that **both** are true is the prob. $\textbf{y} \in \textbf{C}_1 \cap \textbf{C}_2$
- **Pr**[min($\pi(C_1)$)=min($\pi(C_2)$)]=|C₁ \cap C₂|/|C₁ \cup C₂|=sim(C₁, C₂)

73

0	0
0	0
1	1
0	0
0	1
1	0

The Min-Hash Property (Take 2: simpler proof)

\Box Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

- □ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)
- For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
- For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2| / |C_1 \cup C_2|$ ← from (1) and (2)

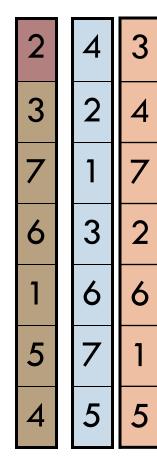
Similarity for Signatures

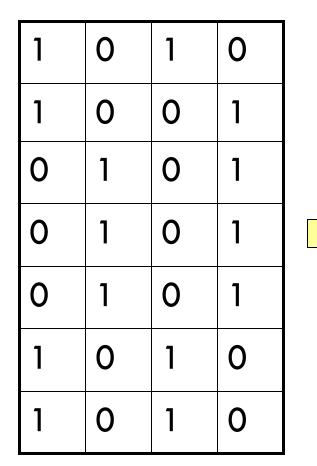
- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

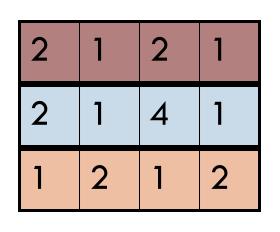
Permutation π

n π Input matrix (Shingles x Documents)

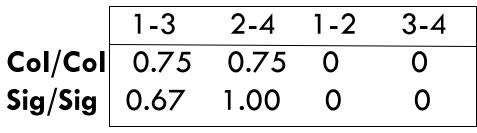




Signature matrix M



Similarities:



J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of **sig(C)** as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on **each column (document)** for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where: a,b... random integers p... prime number (p > N)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while preserving similarity

We used similarity preserving hashing to generate signatures with property Pr[h_π(C₁) = h_π(C₂)] = sim(C₁, C₂)

We used hashing to get around generating random permutations

Outline: Finding Similar Columns

□ So far:

- \blacksquare Documents \rightarrow Sets of shingles
- Represent sets as boolean vectors in a matrix

Next goal: Find similar columns while computing small signatures

Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

Next Goal: Find similar columns, Small signatures

□ Naïve approach:

1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

□ Warnings:

Comparing all pairs may take too much time: Job for LSH

These methods can produce false negatives, and even false positives (if the optional check is not made)
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures) : LSH principle

□ Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures) : LSH principle

Key idea: "hash" each column C to a small signature h(C), such that:

- **(1)** h(C) is small enough that the signature fits in RAM
- **(2)** $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Goal: Find a hash function $h(\cdot)$ such that:

- If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
- □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

Goal: Find a hash function $h(\cdot)$ such that:

■ if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$ ■ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

Imagine the rows of the boolean matrix permuted under random permutation π

- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1: $h_{\pi}(C) = min_{\pi} \pi(C)$
- Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

Universe \longrightarrow { dog, cat, lion, tiger, mouse}

- $\pi_1 \longrightarrow [\text{cat, mouse, lion, dog, tiger}]$
- $\pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]$

 $A = \{ \text{ mouse, lion } \}$ $mh_1(A) = min (\pi_1\{\text{mouse, lion }\}) = mouse$ $mh_2(A) = min (\pi_2\{ \text{ mouse, lion }\}) = lion$

For two sets A, B, and a min-hash function mh_i():

$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

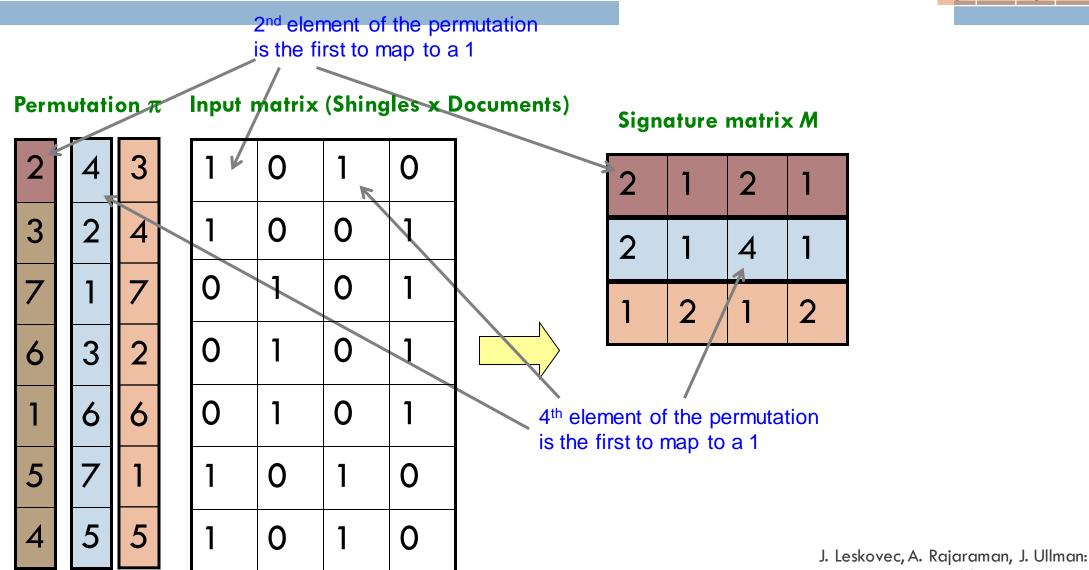
Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A,B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Min-Hashing Example

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):

1	5	1	5
2	3	1	3
6	4	6	4



Mining of Massive Datasets, http://www.mmds.org

The Min-Hash Property

Choose a random permutation π

 $\Box \quad \underline{\text{Claim:}} \ \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

- Let X be a doc (set of shingles), $y \in X$ is a shingle
- **Then:** $\Pr[\pi(y) = \min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
- Let **y** be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
- **Then either:** $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or
 - $\pi(y) = \min(\pi(C_2)) \text{ if } y \in C_2$
- \blacksquare So the prob. that both are true is the prob. $\textbf{y} \in \textbf{C}_1 \cap \textbf{C}_2$
- **Pr**[min($\pi(C_1)$)=min($\pi(C_2)$)]=|C₁ \cap C₂|/|C₁ \cup C₂|=sim(C₁, C₂)

One of the two cols had to have 1 at position **y**

90

0	0
0	0
1	1
0	0
0	1
1	0

The Min-Hash Property (Take 2: simpler proof)

\Box Choose a random permutation π

 $\Box \underline{\text{Claim:}} \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

□ Why?

□ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)

It is equally likely that any $y \in X$ is mapped to the *min* element

- □ Given a set X, the probability that one of any **k** elements is the min-hash under π is $\mathbf{k}/|X|$ ← (1)
- For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
- For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2| / |C_1 \cup C_2|$ ← from (1) and (2)

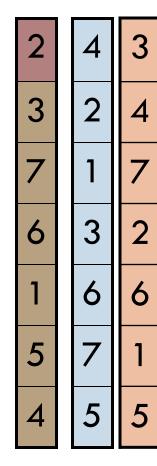
Similarity for Signatures

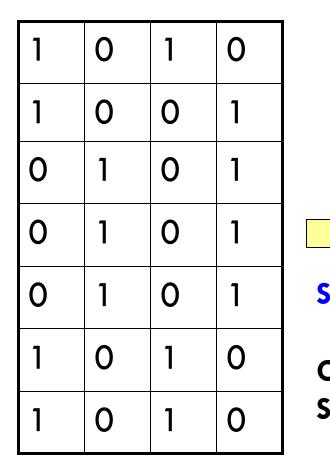
- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- Note: Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

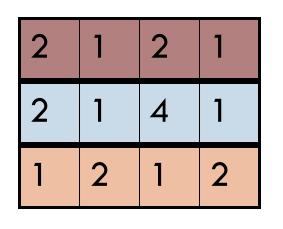
Permutation π

n π Input matrix (Shingles x Documents)





Signature matrix M



Similarities:

	1-3	2-4	1-2	3-4
Col/Col				0
Sig/Sig	0.67	1.00	0	0

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Min-Hash Signatures

Pick K=100 random permutations of the rows

- □ Think of **sig(C)** as a column vector
- sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

 $sig(C)[i] = min(\pi_i(C))$

 \square Note: The sketch (signature) of document C is small ~ 100 bytes!

We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on **each column (document)** for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

 $h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N$ where: a,b... random integers p... prime number (p > N)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while preserving similarity

■ We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$

We used hashing to get around generating random permutations

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

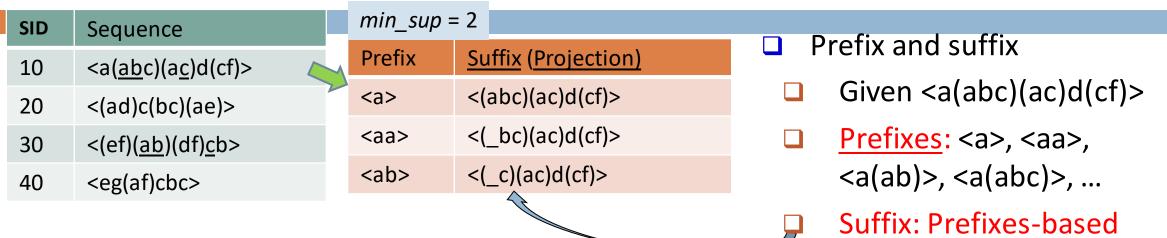
SID	Sequence	
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	
2	<(ad)c(bc)(ae)>	
3	<(ef)(<u>ab)</u> (df) <u>c</u> b>	
4	<eg(af)cbc></eg(af)cbc>	
min_sup = 2		

Ref: SPADE (<u>S</u>equential <u>PA</u>ttern <u>D</u>iscovery using <u>E</u>quivalent Class) [M. Zaki 2001]

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
$ \begin{array}{c} 1\\ 2\\ 2\\ 2\\ 2\\ 2 \end{array} $	5	\mathbf{cf}
2	1	ad
2	2	\mathbf{c}
2	3	\mathbf{bc}
2	4	ae
3	1	$\mathbf{e}\mathbf{f}$
3	2	$^{\rm ab}$
3	3	$\mathbf{d}\mathbf{f}$
3	4	\mathbf{c}
3	5	р
4	1	e
4	2	g
4	3	\mathbf{af}
4	4	с
4	5	b
4	6	с

			a	b	C.			
	_	SID	EID	SID	EID			
	_	1	1	1	2		_	
		1	2	2	3			
		1	3	3	2			
		2	1	3	5			
		2	4	4	5			
		3	2				_	
		4	3					
	=						=	
		$^{\mathrm{ab}}$			k	oa		
SID	EID	(a)	EID(b)	SID	EID	(b)	EID(a)	
1	1	-	2	1	2		3	
2	1	2	3	2	3		4	
3	2	2	5					
4	3	3	5					
			aba					
SID	E	\mathbf{EID}	(a) E	ID(b)	EID)(a)		
1		1		2	9	3		
2		1		3	4	1		

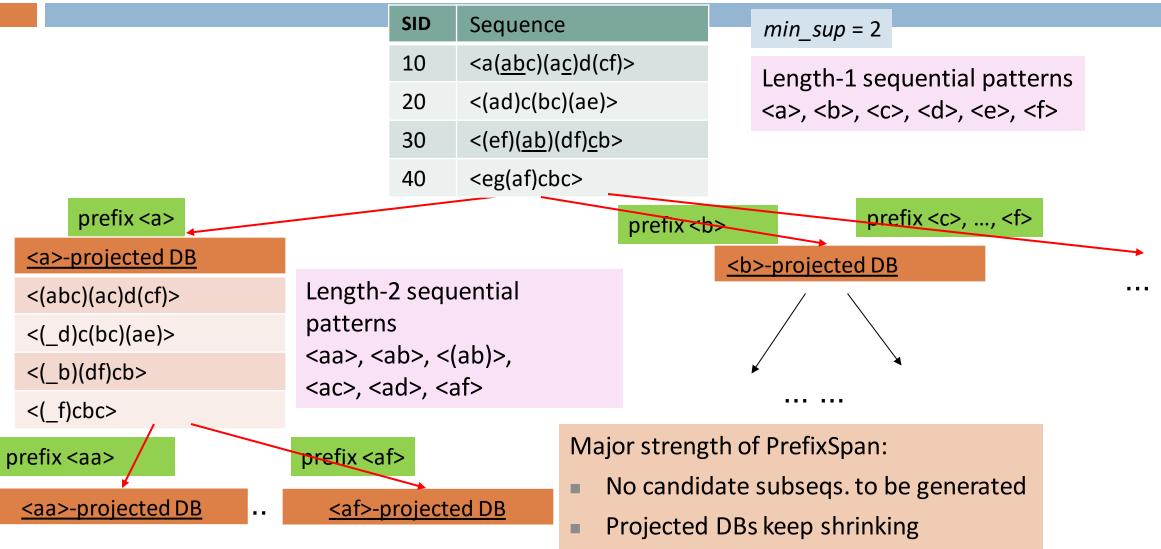
PrefixSpan: A Pattern-Growth Approach



- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - ••••
 - <f>-projected DB, ...

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04 projection

PrefixSpan: Mining Prefix-Projected DBs



Consideration:

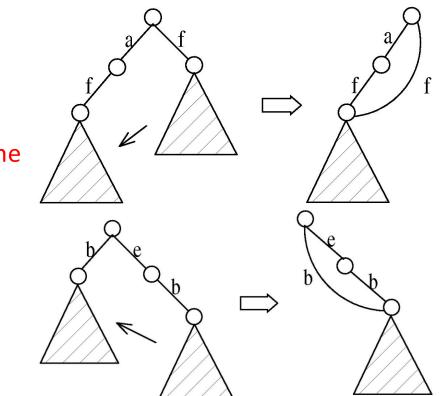
Pseudo-Projection vs. Physical PrImplementation ojection

- Major cost of PrefixSpan: Constructing projected DBs
 - Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
- But if it does not fit in memory
 - Physical projection
- Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory

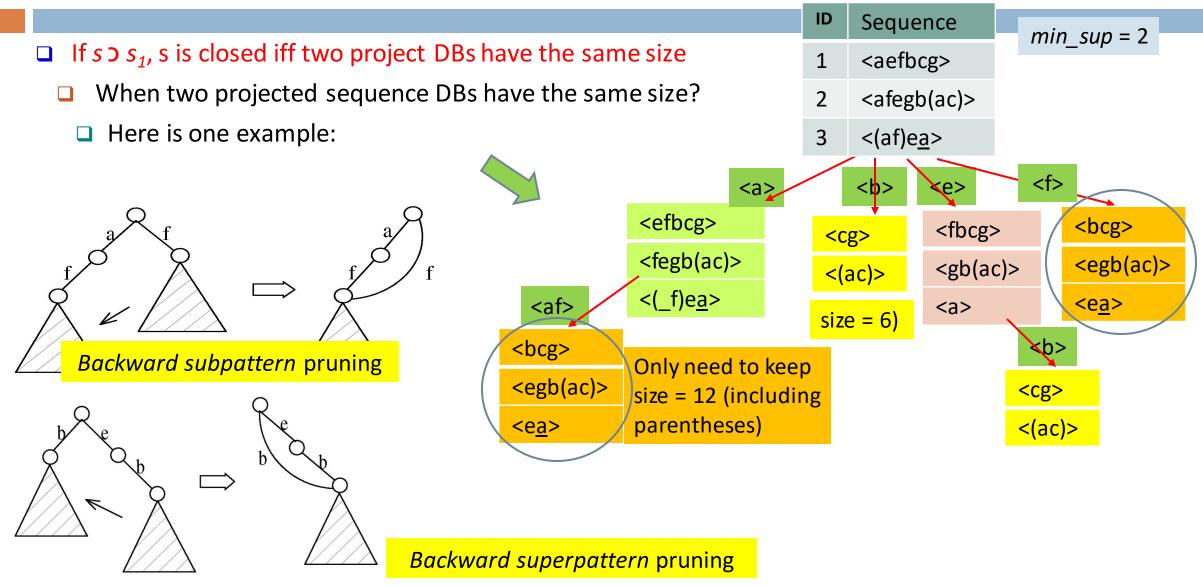
do projection s = <a(abc)(ac)d(cf)> <a> (a> <(abc)(ac)d(cf)> <ab> <ab> <(_c)(ac)d(cf)>

CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: There exists no superpattern s' such that s') s, and s' and s have the same support
- □ Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15
- □ Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power
- Property P₁: If s > s₁, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM'03)



CloSpan: When Two Projected DBs Have the Same Size



Chapter 7 : Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining

- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- 🗌 Summary

Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously?—unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides constraints on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- **Knowledge type constraint**—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
 - **Ex.:** Find products sold together in NY stores this year
- Dimension/level constraint—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint—various kinds of thresholds
 - Ex.: Strong rules: min_sup \geq 0.02, min_conf \geq 0.6, min_correlation \geq 0.7
- Rule (or pattern) constraint

The focus of this study

□ Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

-			
10	a, b, c, d, f, h		
20	b, c, d, f, g, h		
30	b, c, d, f, g		
40	a, c, e, f, g		
min_	sup = 2		
Item	Price	Profit	
а	100	40	
b	40	0	
С	150	-20	
d	35	-15	
е	55	-30	
f	45	-10	
g	80	20	
h	10	5	

Transaction

TID

- A constraint *c* is *anti-monotone*
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : sum(S.price) $\leq v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
 - Itemset *ab* violates c₂ (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c_3 : sum(S.Price) $\ge v$ is not anti-monotone
- Ex. 4. Is c_4 : *support*(*S*) $\geq \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price > 0 Profit can be negative

Pattern Monotonicity and Its Roles

TID	Transaction			
10	a, b, c, c	l, f, h		
20	b, c, d, f	, g, h		
30	b, c, d, f	, g		
40	a, c, e, f	, g		
min_	min_sup = 2			
ltem	Price	Profit		
а	100	40		
b	40	0		
N	40	0		
c	40 150	-20		
-		-		
С	150	-20		
c d	150 35	-20 -15		
c d e	150 35 55	-20 -15 -30		

10

5

- A constraint c is monotone: If an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : sum(S.Price) $\geq v$ is monotone
- Ex. 2: c_2 : min(S.Price) $\leq v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
- Itemset ab satisfies c₃
- So does every superset of *ab*

Note: item.price > 0 Profit can be negative

h

Data Space Pruning with Data Anti-Monotonicity

		- / - / - /	, 0,	
	30	b, c, d, f, g		
	40	a, c, e, f, g		
	min_	sup = 2		
	Item	Price	Profit	
	а	100	40	
	b	40	0	
	С	150	-20	
	d	35	-15	
	е	55	-30	
	f	45	-10	
	g	80	20	
10	h	10	5	
10				

Transaction

a, b, c, d, f, h

b, c, d, f, g, h

TID

10

20

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- \Box Ex. 1: c₁: sum(S.Profit) \geq v is data anti-monotone
 - Let constraint c_1 be: $sum(S.Profit) \ge 25$
 - T₃₀: {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- □ Ex. 2: c_2 : min(S.Price) $\leq v$ is data anti-monotone
 - Consider v = 5 but every item in a transaction, say T₅₀, has a price higher than 10
 - Ex. 3: c₃: range(S.Profit) > 25 is data anti-monotone

Note: item.price > 0 Profit can be negative

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y Color X, with the same support as X
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?

• Two:
$$P_1$$
: "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

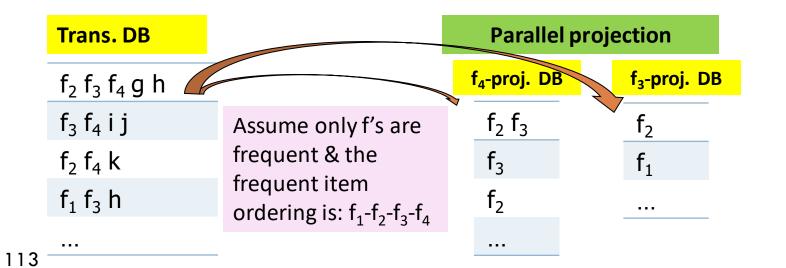
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

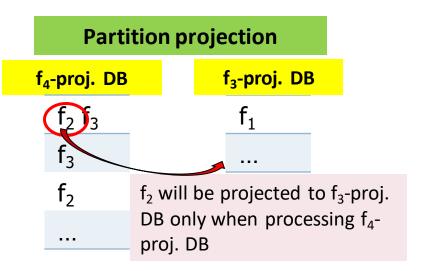
Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern Y Cop X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - **D** But we do not know the real support of $\{a_1, \ldots, a_{40}\}, \ldots, any more \}$
 - Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions





Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123~(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	$\bigcirc 6$	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	<12	120	12	0.100(10)	0.316(6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

		· · ·	1 1	• /	•			
ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18 <	0.123~(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	1 6	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	12	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- □ *Null-invariance* is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, *Kulczynski* + *Imbalance Ratio* should be used to judge the interestingness of a pattern
- □ Exercise: Mining research collaborations from research bibliographic data
 - □ Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
P3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
Р5	{39,16,18,12}	161576

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - □ There is no compression
- Max-patterns

P2, P3, P4

- P3: information loss
- Desired output (a good balance):

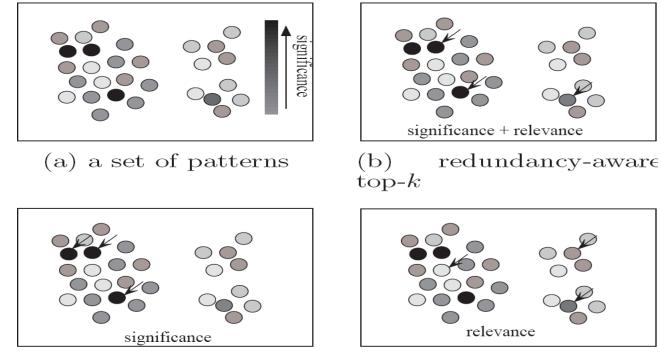
- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy



(c) traditional top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- □ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
 - \square milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
 - 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
 - Suppose the "2% milk" sold is about "1/4" of milk sold

Does (2) provide any novel information?

A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"

Rule (1) is an ancestor of rule (2), which one to prune?

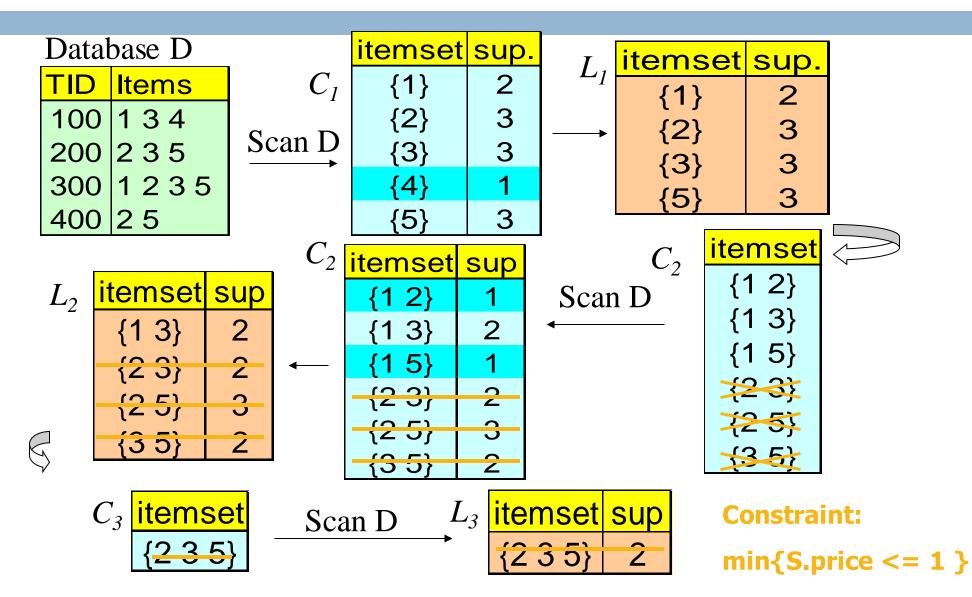
Succinctness

- Succinctness:
 - Given A₁, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A₁, i.e., S contains a subset belonging to A₁
 - Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - **min(S.Price)** \leq **v** is succinct
 - **u** sum(S.Price) $\geq v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
V ∈ S	yes
S ⊇ V	yes
S⊆V	yes
min(S) ≤ v	yes
min(S) ≥ v	yes
max(S)≤ v	yes
max(S)≥ v	yes
sum(S)≤v(a ∈ S,a≥0)	no
sum(S)≥v(a ∈ S,a≥0)	no
range(S)≤ v	no
range(S)≥ v	no
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	no
support(S)≥ ξ	no
support(S)≤ξ	no

Push a Succinct Constraint Deep



Sequential Pattern Mining

Sequential Pattern and Sequential Pattern Mining

□ GSP: Apriori-Based Sequential Pattern Mining

SPADE: Sequential Pattern Mining in Vertical Data Format

PrefixSpan: Sequential Pattern Mining by Pattern-Growth

CloSpan: Mining Closed Sequential Patterns

GSP: Candidate Generation

Frequent	Candidate 4-Sequences			
3-Sequences	after join	after pruning		
$\langle (1,2) (3) \rangle$	$\langle (1,2) (3,4) \rangle$	$\langle (1,2) (3,4) \rangle$		
$\langle (1,2) (4) \rangle$	$\langle (1,2) (3) (5) \rangle$			
$\langle (1) (3, 4) \rangle$				
$\langle (1,3) (5) \rangle$				
$\langle (2) (3, 4) \rangle$				
\langle (2) (3) (5) \rangle				

Figure 3: Candidate Generation: Example

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence < (1) (3) (5) > is not frequent.

GSP Algorithm: Apriori Candidate Generation

```
The apriori-generate function takes as argument L_{k-1}, the set of all large (k-1)-sequences. The function works as follows. First, join L_{k-1} with L_{k-1}:
```

```
insert into C_k
select p.litemset_1, ..., p.litemset_{k-1}, q.litemset_{k-1}
from L_{k-1} p, L_{k-1} q
where p.litemset_1 = q.litemset_1, ...,
p.litemset_{k-2} = q.litemset_{k-2};
```

Large	Candidate	Candidate
3-Sequences	4-Sequences	4-Sequences
	(after join)	(after pruning)
$\langle 1 \ 2 \ 3 \rangle$	$\langle 1 \ 2 \ 3 \ 4 \rangle$	$\langle 1 \ 2 \ 3 \ 4 \rangle$
$\langle 1 \ 2 \ 4 \rangle$	$\langle 1 \ 2 \ 4 \ 3 \rangle$	
$\langle 1 \ 3 \ 4 \rangle$	$\langle 1 \ 3 \ 4 \ 5 \rangle$	
$\langle 1 \ 3 \ 5 \rangle$	$(1\ 3\ 5\ 4)$	
$\langle 2 \ 3 \ 4 \rangle$		

Figure 7: Candidate Generation

Next, delete all sequences $c \in C_k$ such that some (k-1)-subsequence of c is not in L_{k-1} .

Mining Sequential Patterns, Agrawal et al., ICDE'95