Min-Hashing Example

Similarities:

<table>
<thead>
<tr>
<th></th>
<th>1-3</th>
<th>2-4</th>
<th>1-2</th>
<th>3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col/Col</td>
<td>0.75</td>
<td>0.75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sig/Sig</td>
<td>0.67</td>
<td>1.00</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Permutation π

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Input matrix (Shingles x Documents)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Signature matrix M

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Implementation Trick

- **Permuting rows even once is prohibitive**
- **Row hashing!**
 - Pick $K = 100$ hash functions k_i
 - Ordering under k_i gives a random row permutation!
- **One-pass implementation**
 - For each column C and hash-func. k_i, keep a “slot” for the min-hash value
 - Initialize all $\text{sig}(C)[i] = \infty$
 - Scan rows looking for 1s
 - Suppose row j has 1 in column C
 - Then for each k_i:
 - If $k_i(j) < \text{sig}(C)[i]$, then $\text{sig}(C)[i] \leftarrow k_i(j)$

How to pick a random hash function $h(x)$?

Universal hashing:

$h_{a,b}(x) = ((a \cdot x + b) \mod p) \mod N$

where:

- a,b... random integers
- p... prime number ($p > N$)

More details:
Section 3.3.5 in J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org
Step 3: **Locality-Sensitive Hashing**: Focus on pairs of signatures likely to be from similar documents.
Goal: Find documents with Jaccard similarity at least \(s \) (for some similarity threshold, e.g., \(s = 0.8 \))

LSH – General idea: Use a function \(f(x,y) \) that tells whether \(x \) and \(y \) is a candidate pair: a pair of elements whose similarity must be evaluated

For Min-Hash matrices:
- Hash columns of signature matrix \(M \) to many buckets
- Each pair of documents that hashes into the same bucket is a candidate pair

Candidates from Min-Hash

- **Pick a similarity threshold** s ($0 < s < 1$)

- **Columns** x and y of M are a **candidate pair** if their signatures agree on at least fraction s of their rows:

 $M(i, x) = M(i, y)$ for at least frac. s values of i

 - We expect documents x and y to have the same (Jaccard) similarity as their signatures
LSH for Min-Hash

- **Big idea:** Hash columns of signature matrix M several times

- Arrange that (only) similar columns are likely to **hash to the same bucket**, with high probability

- **Candidate pairs** are those that hash to the same bucket
Partition M into b Bands

Signature matrix M

b bands

r rows per band

One signature
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible
Partition M into Bands

- Divide matrix M into b bands of r rows

- For each band, hash its portion of each column to a hash table with k buckets
 - Make k as large as possible

- **Candidate** column pairs are those that hash to the same bucket for ≥ 1 band

- Tune b and r to catch most similar pairs, but few non-similar pairs
Columns 2 and 6 are probably identical (candidate pair)

Columns 6 and 7 are surely different.
Simplifying Assumption

- There are **enough buckets** that columns are unlikely to hash to the same bucket unless they are **identical** in a particular band.

- Hereafter, we assume that “**same bucket**” means “**identical in that band**”.

- Assumption needed only to simplify analysis, not for correctness of algorithm.
Example of Bands

Assume the following case:

- Suppose 100,000 columns of M (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose $b = 20$ bands of $r = 5$ integers/band

- **Goal**: Find pairs of documents that are at least $s = 0.8$ similar
C₁, C₂ are 80% Similar

- Find pairs of \(\geq s = 0.8 \) similarity, set \(b = 20 \), \(r = 5 \)

- Assume: \(\text{sim}(C₁, C₂) = 0.8 \)
 - Since \(\text{sim}(C₁, C₂) \geq s \), we want \(C₁, C₂ \) to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
C₁, C₂ are 80% Similar

- **Find pairs of** $\geq s=0.8$ **similarity, set** $b=20$, $r=5$

- **Assume:** $\text{sim}(C₁, C₂) = 0.8$
 - Since $\text{sim}(C₁, C₂) \geq s$, we want $C₁, C₂$ to be a **candidate pair**: We want them to hash to at least 1 common bucket (at least one band is identical)

- **Probability $C₁, C₂$ identical in one particular band:** $(0.8)^5 = 0.328$

- Probability $C₁, C₂$ are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about $1/3000$th of the 80%-similar column pairs are **false negatives** (we miss them)

- We would find 99.965% pairs of truly similar documents
C_1, C_2 are 30% Similar

- **Find pairs of** \(\geq s=0.8 \) similarity, set \(b=20, r=5 \)

- **Assume:** \(\text{sim}(C_1, C_2) = 0.3 \)
 - Since \(\text{sim}(C_1, C_2) < s \) we want \(C_1, C_2 \) to hash to **NO common buckets** (all bands should be different)
C₁, C₂ are 30% Similar

- **Find pairs of** \(\geq s=0.8 \) **similarity, set** \(b=20, \ r=5 \)

- **Assume:** \(\text{sim}(C₁, C₂) = 0.3 \)
 - Since \(\text{sim}(C₁, C₂) < s \) we want \(C₁, C₂ \) to hash to **NO common buckets** (all bands should be different)

- **Probability \(C₁, C₂ \) identical in one particular band:** \((0.3)^5 = 0.00243 \)
 - **Probability \(C₁, C₂ \) identical in at least 1 of 20 bands:** \(1 - (1 - 0.00243)^{20} = 0.0474 \)
 - In other words, approximately 4.74\% pairs of docs with similarity 30\% end up becoming **candidate pairs**
 - They are **false positives** since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold \(s \)
LSH Involves a Tradeoff

- **Pick:**
 - The number of Min-Hashes (rows of M)
 - The number of bands b, and
 - The number of rows r per band

 to balance false positives/negatives

- **Example:** If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Probability of sharing a bucket

No chance if \(t < s \)

Similarity threshold \(s \)

Similarity \(t = \text{sim}(C_1, C_2) \) of two sets

Probability = 1 if \(t > s \)

Probability of sharing a bucket

Remember: Probability of equal hash-values = similarity

Similarity $t = \text{sim}(C_1, C_2)$ of two sets
Columns C_1 and C_2 have similarity t

- Pick any band (r rows)
 - Prob. that all rows in band equal = t^r
 - Prob. that some row in band unequal = $1 - t^r$

- Prob. that no band identical = $(1 - t^r)^b$

- Prob. that at least 1 band identical = $1 - (1 - t^r)^b$
What b Bands of r Rows Gives You

Similarity $t = \text{sim}(C_1, C_2)$ of two sets

$\text{Probability of sharing a bucket}$

$t \sim \left(\frac{1}{b}\right)^{1/r}$

$1 - (1 - t^r)^b$

At least one band identical
Example: \(b = 20; r = 5 \)

- Similarity threshold \(s \)
- Prob. that at least 1 band is identical:

<table>
<thead>
<tr>
<th>(s)</th>
<th>(1-(1-s^r)^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.2</td>
<td>.006</td>
</tr>
<tr>
<td>.3</td>
<td>.047</td>
</tr>
<tr>
<td>.4</td>
<td>.186</td>
</tr>
<tr>
<td>.5</td>
<td>.470</td>
</tr>
<tr>
<td>.6</td>
<td>.802</td>
</tr>
<tr>
<td>.7</td>
<td>.975</td>
</tr>
<tr>
<td>.8</td>
<td>.9996</td>
</tr>
</tbody>
</table>
Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions ($r=5$, $b=10$)

Blue area: False Negative rate
Green area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures.

- Check in main memory that candidate pairs really do have similar signatures.

- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents.
Summary: 3 Steps

- **Shingling:** Convert documents to sets
 - We used hashing to assign each shingle an ID

- **Min-Hashing:** Convert large sets to short signatures, while preserving similarity
 - We used *similarity preserving hashing* to generate signatures with property \(\Pr[h_\pi(C_1) = h_\pi(C_2)] = \text{sim}(C_1, C_2) \)
 - We used hashing to get around generating random permutations

- **Locality-Sensitive Hashing:** Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity \(\geq s \)

Chapter 4 Graph Data:
http://www.dataminingbook.info/pmwiki.php

GRAPH BASICS AND A GENTLE INTRODUCTION TO PAGERANK

Slides adapted from Prof. Srinivasan Parthasarathy @OSU
Graphs from the Real World

The Web: hyperlinked docs

Social networks

http://www.touchgraph.com/news
Primitives and Notations

- $G = (V, E)$
 - $E \subseteq V \times V$, and can also be represented as an adjacency matrix.
- Undirected vs. directed graph

A directed edge (v_i, v_j) is also called an arc, and is said to be from v_i to v_j. We also say that v_i is the tail and v_j the head of the arc.
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree

The degree of a node $v_i \in V$ is the number of edges incident with it.
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree

For directed graphs, the *indegree* of node v_i, denoted as $id(v_i)$, is the number of edges with v_i as head, that is, the number of incoming edges at v_i. The *outdegree* of v_i, denoted $od(v_i)$, is the number of edges with v_i as the tail, that is, the number of outgoing edges from v_i.
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The *eccentricity* of a node v_i is the maximum distance from v_i to any other node in the graph:

$$\text{Eccentricity}(v) = \max_{u \neq v} \text{dist}(u, v)$$
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The eccentricity of a node v_i is the maximum distance from v_i to any other node in the graph:

$$\text{Eccentricity}(v) = \max_{u \neq v} \text{dist}(u, v)$$
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The radius of a connected graph, denoted $r(G)$, is the minimum eccentricity of any node in the graph:

$$\text{Radius}(G) = \min_{v \in V} \text{Eccentricity}(v)$$
Primitives and Notations

- $G = (V, E)$
 - E can also be represented as an adjacency matrix
- Undirected vs. directed graph
- Degree
- (Shortest) distance between two vertices

The diameter, denoted $d(G)$, is the maximum eccentricity of any vertex in the graph:

$$\text{Diameter}(G) = \max_{v \in V} \text{Eccentricity}(v)$$
Properties of Nodes

- Centrality: how “central” or important a node is in the graph
 - How close the node is to all other nodes?

 \[
 \text{Closeness Centrality}(v) = \frac{1}{\sum_{u \neq v} \text{dist}(u, v)}
 \]

 A node \(v_i \) with the smallest total distance, \(\sum_j d(v_i, v_j) \), is called the median node.
Properties of Nodes

- **Centrality**: how "central" or important a node is in the graph
 - How close the node is to all other nodes?
 - How much is a node a "choke point"?

Betweenness centrality: How many shortest paths between all pairs of vertices include \(v_i \).

\[
\gamma_{jk}(v_i) = \frac{\eta_{jk}(v_i)}{\eta_{jk}} : \text{the fraction of shortest paths between vertices } v_j \text{ and } v_k \text{ through } v_i
\]

The betweenness centrality for a node \(v_i \) is defined as

\[
c(v_i) = \sum_{j \neq i} \sum_{k \neq i} \gamma_{jk}(v_i) = \sum_{j \neq i} \sum_{k \neq j \neq i} \frac{\eta_{jk}(v_i)}{\eta_{jk}}
\]
Properties of Nodes

- Clustering coefficient: how much does a node cluster with neighbors
 - Local clustering coefficient

 The **local clustering coefficient** of a vertex (node) in a graph quantifies how close its neighbors are to being a clique (complete graph).

 The proportion of links between the vertices within its neighbourhood divided by the number of links that could possibly exist between them.
Properties of Nodes

- Clustering coefficient: how much does a node cluster with neighbors
 - Local clustering coefficient

 The **local clustering coefficient** of a vertex (node) in a graph quantifies how close its neighbors are to being a clique (complete graph).

 The proportion of links between the vertices within its neighbourhood divided by the number of links that could possibly exist between them.

 \[
 C_i = \frac{2|\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}.
 \]

 Undirected graph:

 \[
 C_i = \frac{\underline{\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}}}{k_i(k_i - 1)}.
 \]

 Directed graph:
Properties of Nodes

- Clustering coefficient: how much does a node cluster with neighbors
 - Local clustering coefficient
 \[C_i = \frac{2|\{e_{jk} : v_j, v_k \in N_i, e_{jk} \in E\}|}{k_i(k_i - 1)}. \]
 - Global clustering coefficient
 \[C = \frac{3 \times \text{number of triangles}}{\text{number of connected triplets of vertices}} = \frac{\text{number of closed triplets}}{\text{number of connected triplets of vertices}}. \]

A triplet consists of three connected nodes. A triangle therefore includes three closed triplets. A connected triplet is defined to be a connected subgraph consisting of three vertices and two edges. Each triangle forms three connected triplets.
Besides the keywords, what other evidence can one use to rate the importance of a webpage?
Background

- Besides the keywords, what other evidence can one use to rate the importance of a webpage?

- **Solution:** Use the hyperlink structure

- E.g. a webpage linked by many webpages is probably important.
 - but this method is not global (comprehensive).

- PageRank is developed by Larry Page in 1998.
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink

- A user randomly clicks the hyperlink to surf WWW.
 - The probability a user stop in a particular webpage is the PageRank value.
Idea

- A graph representing WWW
 - Node: webpage
 - Directed edge: hyperlink

- A user randomly clicks the hyperlink to surf WWW.
 - The probability a user stop in a particular webpage is the PageRank value.

- A node that is linked by many nodes with high PageRank value receives a high rank itself;
 If there are no links to a node, then there is no support for that page.
A simple version

\[R(u) = \sum_{v \in B_u} \frac{R(v)}{N_v} \]

- \(u \): a webpage
- \(B_u \): the set of \(u \)'s backlinks
- \(N_v \): the number of forward links of page \(v \)

- Initially, \(R(u) \) is \(1/N \) for every webpage
- Iteratively update each webpage’s PR value until convergence.
Let $G = (V, E)$ be a directed graph, with $|V| = n$. The adjacency matrix of G is an $n \times n$ asymmetric matrix A given as

$$A(u, v) = \begin{cases}
1 & \text{if } (u, v) \in E \\
0 & \text{if } (u, v) \notin E
\end{cases}$$

Let $p(u)$ be a positive real number, called the prestige score for node u.

$$p(v) = \sum_u A(u, v) \cdot p(u)$$

$$= \sum_u A^T(v, u) \cdot p(u)$$

the prestige of a node depends on the prestige of other nodes pointing to it
Formal Formulation

Let $p(u)$ be a positive real number, called the *prestige* score for node u.

\[
p(v) = \sum_u A(u, v) \cdot p(u)
\]

\[
= \sum_u A^T(v, u) \cdot p(u)
\]

the prestige of a node depends on the prestige of other nodes pointing to it

Across all the nodes, we can recursively express the prestige scores as

\[
p' = A^T p
\]

where p is an n-dimensional column vector corresponding to the prestige scores for each vertex.
Iterative Computation

\[p_k = A^T p_{k-1} \]
\[= A^T (A^T p_{k-2}) = (A^T)^2 p_{k-2} \]
\[= (A^T)^2 (A^T p_{k-3}) = (A^T)^3 p_{k-3} \]
\[\vdots \]
\[= (A^T)^k p_0 \]

where \(p_0 \) is the initial prestige vector. It is well known that the vector \(p_k \) converges to the dominant eigenvector of \(A^T \) with increasing \(k \).
Example 1

PageRank Calculation: first iteration

\[
M = \begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0
\end{bmatrix} = \text{the transpose of } A \\
\text{(adjacency matrix)}
\]

\[
\begin{bmatrix}
\text{yahoo} \\
\text{Amazon} \\
\text{Microsoft}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{1}{3} \\
\frac{1}{2} \\
\frac{1}{6}
\end{bmatrix} =
\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 1 \\
0 & \frac{1}{2} & 0
\end{bmatrix}
\begin{bmatrix}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{3}
\end{bmatrix}
\]
Example 1

PageRank Calculation: second iteration

\[M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix} \]

\[
\begin{bmatrix}
\text{yahoo} \\
\text{Amazon} \\
\text{Microsoft}
\end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}
\]

\[
\begin{bmatrix}
\frac{5}{12} \\
\frac{1}{3} \\
\frac{1}{4}
\end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{bmatrix}\begin{bmatrix} \frac{1}{3} \\ \frac{1}{2} \\ \frac{1}{6} \end{bmatrix}
\]
Example 1

Convergence after some iterations
A simple version

\[R(u) = \sum_{v \in B_u} \frac{R(v)}{N_v} \]

- \(u\): a webpage
- \(B_u\): the set of \(u\)’s backlinks
- \(N_v\): the number of forward links of page \(v\)

- Initially, \(R(u)\) is \(1/N\) for every webpage
- Iteratively update each webpage’s PR value until convergence.
A little more advanced version

- Adding a damping factor d
- Imagine that a surfer would stop clicking a hyperlink with probability $1-d$

$$R(u) = \frac{(1-d)}{N-1} + d\sum_{v \in B_u} \frac{R(v)}{N_v}$$

- $R(u)$ is at least $(1-d)/(N-1)$
 - N is the total number of nodes.
Other applications

- Social network (Facebook, Twitter, etc)
 - Node: Person; Edge: Follower / Followee / Friend
 - Higher PR value: Celebrity

- Citation network
 - Node: Paper; Edge: Citation
 - Higher PR values: Important Papers.

- Protein-protein interaction network
 - Node: Protein; Edge: Two proteins bind together
 - Higher PR values: Essential proteins.
Backup slides