
CSE 5243 INTRO. TO DATA MINING

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

Advanced Frequent Pattern Mining
&

Locality Sensitivity Hashing

Huan Sun, CSE@The Ohio State University
11/07/2017

2

Sequence Mining: Description

 Input
 A database D of sequences called data-sequences, in which:
 I={i1, i2,…,in} is the set of items
 each sequence is a list of transactions ordered by transaction-time
 each transaction consists of fields: sequence-id, transaction-id, transaction-time and

a set of items.

3

Sequential Pattern and Sequential Pattern Mining
 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab) (df) c b >

 An element may contain a set of items (also called
events)

 Items within an element are unordered and we list
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

4

Sequential Pattern and Sequential Pattern Mining
 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

Formal definition:

5

Sequential Pattern and Sequential Pattern Mining
 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab) (df) c b >

 An element may contain a set of items (also called
events)

 Items within an element are unordered and we list
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence
10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

 Given support threshold min_sup = 2, <(ab)c> is a sequential pattern

6

A Basic Property of Sequential Patterns: Apriori

 A basic property: Apriori (Agrawal & Sirkant’94)
 If a sequence S is not frequent
 Then none of the super-sequences of S is frequent
 E.g, <hb> is infrequent  so do <hab> and <(ah)b>

7

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
 Scan DB once, count support for each candidate

SID Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
min_sup = 2

Cand. sup

<a> 3

 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

8

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
 Scan DB once, count support for each candidate
 Generate length-2 candidate sequences

SID Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

How?

9

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
 Scan DB once, count support for each candidate
 Generate length-2 candidate sequences

SID Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

Why?

10

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
 Scan DB once, count support for each candidate
 Generate length-2 candidate sequences

SID Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

Why?

11

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining
 Initial candidates: All 8-singleton sequences

 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
 Scan DB once, count support for each candidate
 Generate length-2 candidate sequences

SID Sequence
10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
<a> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

 Without Apriori pruning:
(8 singletons) 8*8+8*7/2 = 92
length-2 candidates

 With pruning, length-2
candidates: 36 + 15= 51

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

12

GSP Mining and Pruning

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat.
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat.

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID Sequence

10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

min_sup = 2

13

GSP Mining and Pruning

<a> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat.
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat.

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID Sequence

10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

min_sup = 2
 Repeat (for each level (i.e., length-k))
 Scan DB to find length-k frequent sequences
 Generate length-(k+1) candidate sequences from length-k frequent

sequences using Apriori
 set k = k+1

 Until no frequent sequence or no candidate can be found

14

GSP: Algorithm
 Phase 1:

 Scan over the database to identify all the frequent items, i.e., 1-element sequences

 Phase 2:
 Iteratively scan over the database to discover all frequent sequences. Each iteration

discovers all the sequences with the same length.
 In the iteration to generate all k-sequences

 Generate the set of all candidate k-sequences, Ck, by joining two (k-1)-sequences
 Prune the candidate sequence if any of its k-1 contiguous subsequence is not frequent
 Scan over the database to determine the support of the remaining candidate sequences

 Terminate when no more frequent sequences can be found

http://simpledatamining.blogspot.com/2015/03/generalize
d-sequential-pattern-gsp.html

Mining Sequential Patterns: Generalizations and Performance
Improvements, Srikant and Agrawal et al.
https://pdfs.semanticscholar.org/d420/ea39dc136b9e390
d05e964488a65fcf6ad33.pdf

A detailed illustration:

15

GSP: Algorithm
 Phase 1:

 Scan over the database to identify all the frequent items, i.e., 1-
element sequences

 Phase 2:
 Iteratively scan over the database to discover all frequent

sequences. Each iteration discovers all the sequences with the
same length.

 In the iteration to generate all k-sequences
 Generate the set of all candidate k-sequences, Ck, by joining two (k-

1)-sequences
 Prune the candidate sequence if any of its k-1 contiguous

subsequence is not frequent
 Scan over the database to determine the support of the remaining

candidate sequences

 Terminate when no more frequent sequences can be found

16

Bottlenecks of GSP

 A huge set of candidates could be generated
 1,000 frequent length-1 sequences generate

length-2 candidates!

 Multiple scans of database in mining

 Real challenge: mining long sequential patterns
 An exponential number of short candidates
 A length-100 sequential pattern needs 1030

candidate sequences!

500,499,1
2

999100010001000 =
×

+×

30100
100

1
1012

100
≈−=







∑
=i i

17

GSP: Optimization Techniques

 Applied to phase 2: computation-intensive
 Technique 1: the hash-tree data structure

 Used for counting candidates to reduce the number of candidates
that need to be checked
 Leaf: a list of sequences
 Interior node: a hash table

 Technique 2: data-representation transformation
 From horizontal format to vertical format

18

SPADE

 Problems in the GSP Algorithm
 Multiple database scans
 Complex hash structures with poor locality
 Scale up linearly as the size of dataset increases

 SPADE: Sequential PAttern Discovery using Equivalence classes
 Use a vertical id-list database
 Prefix-based equivalence classes
 Frequent sequences enumerated through simple temporal joins
 Lattice-theoretic approach to decompose search space

 Advantages of SPADE
 3 scans over the database
 Potential for in-memory computation and parallelization

Paper Link:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6042&rep=rep1&type=pdf

FINDING SIMILAR ITEMS

MMDS Secs. 3.2-3.4.
Slides adapted from: J. Leskovec, A. Rajaraman,
J. Ullman: Mining of Massive Datasets,
http://www.mmds.org

Slides also adapted from Prof. Srinivasan Parthasarathy @OSU

20

Task: Finding Similar Documents
 Goal: Given a large number (𝑵𝑵 in the millions or billions) of

documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors  remove duplicates
 Similar news articles at many news sites  cluster

21

Task: Finding Similar Documents
 Goal: Given a large number (𝑵𝑵 in the millions or billions) of

documents, find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors  remove duplicates
 Similar news articles at many news sites  cluster

What are the challenges?

22

Task: Finding Similar Documents
 Goal: Given a large number (𝑵𝑵 in the millions or billions) of documents,

find “near duplicate” pairs

 Applications:
 Mirror websites, or approximate mirrors  remove duplicates
 Similar news articles at many news sites  cluster

 Problems:
 Many small pieces of one document can appear out of order in another
 Too many documents to compare all pairs
 Documents are so large or so many (scale issues)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

23

Two Essential Steps for Similar Docs

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while
preserving similarity

Host of follow up applications
e.g. Similarity Search

Data Placement
Clustering etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

24

The Big Picture

Document

The set
of strings
of length k
that appear
in the doc-
ument

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarity Search
Data Placement
Clustering etc.

SHINGLING
Step 1: Shingling: Convert documents to sets

Document

The set
of strings
of length k
that appear
in the document

26

Documents as High-Dim Data

 Step 1: Shingling: Convert documents to sets

 Simple approaches:
 Document = set of words appearing in document
 Document = set of “important” words
 Don’t work well for this application. Why?

 Need to account for ordering of words!

 A different way: Shingles!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

27

Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc
 Tokens can be characters, words or something else, depending on the

application
 Assume tokens = characters for examples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

28

Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc
 Tokens can be characters, words or something else, depending on the

application
 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

29

Define: Shingles

 A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc
 Tokens can be characters, words or something else, depending on the

application
 Assume tokens = characters for examples

 Example: k=2; document D1 = abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}

 Another option: Shingles as a bag (multiset), count ab twice: S’(D1) =
{ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

30

Shingles: How to treat white-space chars?

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

It makes sense to replace any sequence of one or more white-space characters (blank, tab,
newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

31

How to choose K?

 Documents that have lots of shingles in common have similar text,
even if the text appears in different order

 Caveat: You must pick k large enough, or most documents will have
most shingles
 k = 5 is OK for short documents
 k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

32

Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes
 Like a Code Book
 If #shingles manageable  Simple dictionary suffices

e.g., 9-shingle => bucket number [0, 2^32 - 1]
(using 4 bytes instead of 9)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

33

Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes
 Like a Code Book
 If #shingles manageable  Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles
 Idea: Two documents could (rarely) appear to have shingles in common,

when in fact only the hash-values were shared

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

34

Compressing Shingles

 To compress long shingles, we can hash them to (say) 4 bytes
 Like a Code Book
 If #shingles manageable  Simple dictionary suffices

 Doc represented by the set of hash/dict. values of its k-shingles

 Example: k=2; document D1= abcab
Set of 2-shingles: S(D1) = {ab, bc, ca}
Hash the singles: h(D1) = {1, 5, 7}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

35

Similarity Metric for Shingles

 Document D1 is a set of its k-shingles C1=S(D1)

 Equivalently, each document is a 0/1 vector in the space of k-shingles
 Each unique shingle is a dimension

 Vectors are very sparse

 A natural similarity measure is the Jaccard similarity:

sim(D1, D2) = |C1∩C2|/|C1∪C2|

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

36

Motivation for Minhash/LSH

 Suppose we need to find similar documents among 𝑵𝑵 = 𝟏𝟏 million
documents

 Naïvely, we would have to compute pairwise Jaccard similarities for
every pair of docs

 𝑵𝑵(𝑵𝑵− 𝟏𝟏)/𝟐𝟐 ≈ 5*1011 comparisons
 At 105 secs/day and 106 comparisons/sec,

it would take 5 days

 For 𝑵𝑵 = 𝟏𝟏𝟏𝟏 million, it takes more than a year…
J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

MINHASHING
Step 2: Minhashing: Convert large variable length sets to
short fixed-length signatures, while preserving similarity

Docu-
ment

The set
of strings
of length k
that appear
in the document

Signatures:
short integer
vectors that
represent the
sets, and reflect
their similarity

38

Encoding Sets as Bit Vectors
 Many similarity problems can be formalized as finding subsets that

have significant intersection

 Encode sets using 0/1 (bit, boolean) vectors
 One dimension per element in the universal set

 Interpret set intersection as bitwise AND, and
set union as bitwise OR

 Example: C1 = 10111; C2 = 10011
 Size of intersection = 3; size of union = 4,

 Jaccard similarity (not distance) = 3/4

 Distance: d(C1,C2) = 1 – (Jaccard similarity) = 1/4

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

39

From Sets to Boolean Matrices
 Rows = elements (shingles)

 Columns = sets (documents)
 1 in row e and column s if and only if e is a valid shingle of

document represented by s

 Column similarity is the Jaccard similarity of the corresponding
sets (rows with value 1)

 Typical matrix is sparse!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

0101

0111

1001

1000

1010
1011

0111
Documents

Sh
in

gl
es

Note:Transposed Document Matrix

40

Outline: Finding Similar Columns

 So far:
 Documents → Sets of shingles
 Represent sets as boolean vectors in a matrix

 Next goal: Find similar columns while computing
small signatures
 Similarity of columns == similarity of signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

41

Outline: Finding Similar Columns

 Next Goal: Find similar columns, Small signatures

 Naïve approach:
 1) Signatures of columns: small summaries of columns
 2) Examine pairs of signatures to find similar columns
 Essential: Similarities of signatures and columns are related

 3) Optional: Check that columns with similar signatures are really similar

 Warnings:
 Comparing all pairs may take too much time: Job for LSH
 These methods can produce false negatives, and even false positives (if the optional check is

not made) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

42

Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:
 (1) h(C) is small enough that the signature fits in RAM
 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

43

Hashing Columns (Signatures) : LSH principle

 Key idea: “hash” each column C to a small signature h(C), such that:
 (1) h(C) is small enough that the signature fits in RAM
 (2) sim(C1, C2) is the same as the “similarity” of signatures h(C1) and h(C2)

 Goal: Find a hash function h(·) such that:
 If sim(C1,C2) is high, then with high prob. h(C1) = h(C2)

 If sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Hash docs into buckets. Expect that “most” pairs of near duplicate
docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

44

Min-Hashing

 Goal: Find a hash function h(·) such that:
 if sim(C1,C2) is high, then with high prob. h(C1) = h(C2)
 if sim(C1,C2) is low, then with high prob. h(C1) ≠ h(C2)

 Clearly, the hash function depends on the similarity metric:
 Not all similarity metrics have a suitable hash function

 There is a suitable hash function for the Jaccard similarity: It is called
Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

45

Min-Hashing

 Imagine the rows of the boolean matrix permuted under random
permutation π

 Define a “hash” function hπ(C) = the index of the first (in the
permuted order π) row in which column C has value 1:

hπ (C) = minπ π(C)

 Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

46

Zoo example (shingle size k=1)

{ dog, cat, lion, tiger, mouse}
[cat, mouse, lion, dog, tiger]
[lion, cat, mouse, dog, tiger]

Universe

A = { mouse, lion }

mh1(A) = min ({mouse, lion }) = mouse
mh2(A) = min ({ mouse, lion }) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

47

Key Fact

For two sets A, B, and a min-hash function mhi():

Unbiased estimator for Sim using K hashes (notation policy – this
is a different K from size of shingle)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

48

Min-Hashing Example

3

4

7

2

6

1

5

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

2nd element of the permutation
is the first to map to a 1

4th element of the permutation
is the first to map to a 1

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents) Permutation π

Note: Another (equivalent) way is to
store row indexes
or raw shingles
(e.g. mouse, lion):

1 5 1 5
2 3 1 3
6 4 6 4

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://www.mmds.org

49

The Min-Hash Property

 Choose a random permutation π
 Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

 Why?
 Let X be a doc (set of shingles), y∈ X is a shingle

 Then: Pr[π(y) = min(π(X))] = 1/|X|
 It is equally likely that any y∈ X is mapped to the min element

 Let y be s.t. π(y) = min(π(C1∪C2))

 Then either: π(y) = min(π(C1)) if y ∈ C1 , or

π(y) = min(π(C2)) if y ∈ C2

 So the prob. that both are true is the prob. y ∈ C1 ∩ C2

 Pr[min(π(C1))=min(π(C2))]=|C1∩C2|/|C1∪C2|= sim(C1, C2)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

01

10

00

11

00

00

One of the two cols had to have 1 at
position y

Presenter
Presentation Notes
Size of the universe of all possible vals of min((C1C2)) is |C1C2| and in |C1C2| of cases it can be that min((C1))=min((C2)) which exactly the jaccard between C1 and C2

For two columns A and B, we have h_π(A) = h_π(B) exactly when the minimum hash value of the union A ∪ B lies in the intersection A ∩ B. Thus Pr[h_π(A) = h_π(B)] = |A ∩ B| / |A ∪ B|.

50

The Min-Hash Property (Take 2: simpler proof)
 Choose a random permutation π
 Claim: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

 Why?
 Given a set X, the probability that any one element is the min-

hash under π is 1/|X|  (0)
 It is equally likely that any y∈ X is mapped to the min element

 Given a set X, the probability that one of any k elements is the
min-hash under π is k/|X|  (1)

 For C1 ∪ C2, the probability that any element is the min-hash
under π is 1/|C1 ∪ C2| (from 0)  (2)

 For any C1 and C2, the probability of choosing the same min-hash
under π is |C1∩C2|/|C1 ∪ C2|  from (1) and (2)

Presenter
Presentation Notes
Size of the universe of all possible vals of min((C1C2)) is |C1C2| and in |C1C2| of cases it can be that min((C1))=min((C2)) which exactly the jaccard between C1 and C2

For two columns A and B, we have h_π(A) = h_π(B) exactly when the minimum hash value of the union A ∪ B lies in the intersection A ∩ B. Thus Pr[h_π(A) = h_π(B)] = |A ∩ B| / |A ∪ B|.

51

Similarity for Signatures

 We know: Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)

 Now generalize to multiple hash functions

 The similarity of two signatures is the fraction of the hash functions in
which they agree

 Note: Because of the Min-Hash property, the similarity of columns is
the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Presenter
Presentation Notes
Each agress with prob s.
So to estimate s we compute what fraction of hash functions agree

52

Min-Hashing Example

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Similarities:
1-3 2-4 1-2 3-4

Col/Col 0.75 0.75 0 0
Sig/Sig 0.67 1.00 0 0

Signature matrix M

1212

5

7

6

3

1

2

4

1412

4

5

1

6

7

3

2

2121

0101

0101

1010

1010

1010

1001

0101

Input matrix (Shingles x Documents)

3

4

7

2

6

1

5

Permutation π

53

Min-Hash Signatures

 Pick K=100 random permutations of the rows

 Think of sig(C) as a column vector
 sig(C)[i] = according to the i-th permutation, the index of the first

row that has a 1 in column C

sig(C)[i] = min (πi(C))
 Note: The sketch (signature) of document C is small ~𝟏𝟏𝟏𝟏𝟏𝟏 bytes!

 We achieved our goal! We “compressed” long bit vectors into
short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

54

Implementation Trick

 Permuting rows even once is prohibitive

 Approximate Linear Permutation Hashing

 Pick K independent hash functions (use a, b below)
 Apply the idea on each column (document) for each hash function and get minhash signature

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

How to pick a random
hash function h(x)?

Universal hashing:

ha,b(x)=((a·x+b) mod p) mod N
where:
a,b … random integers
p … prime number (p > N)

55

Summary: 3 Steps

 Shingling: Convert documents to sets
 We used hashing to assign each shingle an ID

 Min-Hashing: Convert large sets to short signatures, while
preserving similarity
 We used similarity preserving hashing to generate signatures with

property Pr[hπ(C1) = hπ(C2)] = sim(C1, C2)
 We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Backup slides56

57

Sequential Pattern Mining in Vertical Data Format:
The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential
PAttern Discovery using
Equivalent Class) [M. Zaki
2001]

min_sup = 2

 A sequence database is mapped to: <SID, EID>
 Grow the subsequences (patterns) one item at a time by Apriori candidate generation

58

PrefixSpan: A Pattern-Growth Approach

 PrefixSpan Mining: Prefix Projections
 Step 1: Find length-1 sequential patterns
 <a>, , <c>, <d>, <e>, <f>

 Step 2: Divide search space and mine each projected DB
 <a>-projected DB,
 -projected DB,
 …
 <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

 Prefix and suffix
 Given <a(abc)(ac)d(cf)>
 Prefixes: <a>, <aa>,

<a(ab)>, <a(abc)>, …
 Suffix: Prefixes-based

projection

PrefixSpan (Prefix-projected
Sequential pattern mining)
Pei, et al. @TKDE’04

min_sup = 2

59

prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, , <c>, <d>, <e>, <f>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

prefix <aa>

…
prefix <af>

…
prefix prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

-projected DB

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:
 No candidate subseqs. to be generated
 Projected DBs keep shrinking

min_sup = 2

60

Consideration:
Pseudo-Projection vs. Physical PrImplementation ojection
 Major cost of PrefixSpan: Constructing projected DBs

 Suffixes largely repeating in recursive projected DBs

 When DB can be held in main memory, use pseudo projection

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: (, 2)

s|<ab>: (, 5)

 No physically copying suffixes

 Pointer to the sequence

 Offset of the suffix

 But if it does not fit in memory

 Physical projection

 Suggested approach:

 Integration of physical and pseudo-projection

 Swapping to pseudo-projection when the data fits in memory

61

CloSpan: Mining Closed Sequential Patterns
 A closed sequential pattern s: There exists no superpattern s’ such that s’ כ s, and s’ and

s have the same support

 Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

 Why directly mine closed sequential patterns?
 Reduce # of (redundant) patterns
 Attain the same expressive power

 Property P1: If s כ s1, s is closed iff two project DBs have the same
size

 Explore Backward Subpattern and Backward Superpattern
pruning to prune redundant search space

 Greatly enhances efficiency (Yan, et al., SDM’03)

62

<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

 If s כ s1, s is closed iff two project DBs have the same size
 When two projected sequence DBs have the same size?
 Here is one example:

Only need to keep
size = 12 (including
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2

63

Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Sequential Pattern Mining

 Constraint-Based Frequent Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary

64

Constraint-Based Pattern Mining

 Why Constraint-Based Mining?

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Constrained Mining with Convertible Constraints

 Handling Multiple Constraints

 Constraint-Based Sequential-Pattern Mining

65

Why Constraint-Based Mining?
 Finding all the patterns in a dataset autonomously?—unrealistic!

 Too many patterns but not necessarily user-interested!

 Pattern mining in practice: Often a user-guided, interactive process

 User directs what to be mined using a data mining query language (or a graphical user
interface), specifying various kinds of constraints

 What is constraint-based mining?

 Mine together with user-provided constraints

 Why constraint-based mining?

 User flexibility: User provides constraints on what to be mined

 Optimization: System explores such constraints for mining efficiency

 E.g., Push constraints deeply into the mining process

66

Various Kinds of User-Specified Constraints in Data Mining

 Knowledge type constraint—Specifying what kinds of knowledge to mine

 Ex.: Classification, association, clustering, outlier finding, …

 Data constraint—using SQL-like queries

 Ex.: Find products sold together in NY stores this year

 Dimension/level constraint—similar to projection in relational database

 Ex.: In relevance to region, price, brand, customer category

 Interestingness constraint—various kinds of thresholds

 Ex.: Strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7

 Rule (or pattern) constraint

 Ex.: Small sales (price < $10) triggers big sales (sum > $200)

The focus of this study

67

Pattern Space Pruning with Pattern Anti-Monotonicity

 A constraint c is anti-monotone

 If an itemset S violates constraint c, so does any of its superset

 That is, mining on itemset S can be terminated

 Ex. 1: c1: sum(S.price) ≤ v is anti-monotone

 Ex. 2: c2: range(S.profit) ≤ 15 is anti-monotone

 Itemset ab violates c2 (range(ab) = 40)

 So does every superset of ab

 Ex. 3. c3: sum(S.Price) ≥ v is not anti-monotone

 Ex. 4. Is c4: support(S) ≥ σ anti-monotone?

 Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative

68

Pattern Monotonicity and Its Roles
 A constraint c is monotone: If an itemset S satisfies the

constraint c, so does any of its superset

 That is, we do not need to check c in subsequent mining

 Ex. 1: c1: sum(S.Price) ≥ v is monotone

 Ex. 2: c2: min(S.Price) ≤ v is monotone

 Ex. 3: c3: range(S.profit) ≥ 15 is monotone

 Itemset ab satisfies c3

 So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
Note: item.price > 0
Profit can be negative

69

Data Space Pruning with Data Anti-Monotonicity

 A constraint c is data anti-monotone: In the mining process, if a data entry t
cannot satisfy a pattern p under c, t cannot satisfy p’s superset either

 Data space pruning: Data entry t can be pruned

 Ex. 1: c1: sum(S.Profit) ≥ v is data anti-monotone
 Let constraint c1 be: sum(S.Profit) ≥ 25
 T30: {b, c, d, f, g} can be removed since none of their combinations can

make an S whose sum of the profit is ≥ 25

 Ex. 2: c2: min(S.Price) ≤ v is data anti-monotone
 Consider v = 5 but every item in a transaction, say T50 , has a price higher

than 10

 Ex. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
Note: item.price > 0
Profit can be negative

70

Expressing Patterns in Compressed Form: Closed Patterns

 How to handle such a challenge?

 Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and
there exists no super-pattern Y כ X, with the same support as X

 Let Transaction DB TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 Suppose minsup = 1. How many closed patterns does TDB1 contain?

 Two: P1: “{a1, …, a50}: 2”; P2: “{a1, …, a100}: 1”

 Closed pattern is a lossless compression of frequent patterns

 Reduces the # of patterns but does not lose the support information!

 You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”

71

Expressing Patterns in Compressed Form: Max-Patterns

 Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern
if X is frequent and there exists no frequent super-pattern Y כ X

 Difference from close-patterns?

 Do not care the real support of the sub-patterns of a max-pattern

 Let Transaction DB TDB1: T1: {a1, …, a50}; T2: {a1, …, a100}

 Suppose minsup = 1. How many max-patterns does TDB1 contain?

 One: P: “{a1, …, a100}: 1”

 Max-pattern is a lossy compression!
 We only know {a1, …, a40} is frequent
 But we do not know the real support of {a1, …, a40}, …, any more!
 Thus in many applications, close-patterns are more desirable than max-patterns

72

Assume only f’s are
frequent & the
frequent item
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection
 What if FP-tree cannot fit in memory?—Do not construct FP-tree

 “Project” the database based on frequent single items
 Construct & mine FP-tree for each projected DB

 Parallel projection vs. partition projection
 Parallel projection: Project the DB on each frequent item
 Space costly, all partitions can be processed in parallel

 Partition projection: Partition the DB in order
 Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h
f3 f4 i j
f2 f4 k
f1 f3 h
…

Trans. DB Parallel projection

f2 f3
f3
f2
…

f4-proj. DB f3-proj. DB f4-proj. DB

f2
f1
…

Partition projection

f2 f3
f3
f2
…

f1
…

f3-proj. DB

f2 will be projected to f3-proj.
DB only when processing f4-
proj. DB

73

Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database
 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low,
cosine: middle

74

Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?
 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database
 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low,
cosine: middle

75

What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets
 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the

papers; ……

 Null-invariance is an important property
 Lift, χ2 and cosine are good measures if null transactions are not predominant

 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

 Exercise: Mining research collaborations from research bibliographic data
 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 Can you find the likely advisor-advisee relationship and during which years such a relationship

happened?
 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee

Relationships from Research Publication Networks", KDD'10

76

Mining Compressed Patterns
 Why mining compressed patterns?

 Too many scattered patterns but not so meaningful

 Pattern distance measure

 δ-clustering: For each pattern P, find all patterns which can be
expressed by P and whose distance to P is within δ (δ-cover)

 All patterns in the cluster can be represented by P

 Method for efficient, direct mining of compressed frequent
patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On
Compressing Frequent Patterns", Knowledge and Data
Engineering, 60:5-29, 2007)

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

 Closed patterns
 P1, P2, P3, P4, P5
 Emphasizes too much on

support
 There is no compression

 Max-patterns
 P3: information loss

 Desired output (a good balance):
 P2, P3, P4

77

Redundancy-Aware Top-k Patterns
 Desired patterns: high significance & low redundancy

 Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a
pattern set

 Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

78

Redundancy Filtering at Mining Multi-Level Associations
 Multi-level association mining may generate many redundant rules

 Redundancy filtering: Some rules may be redundant due to “ancestor”
relationships between items

 milk ⇒ wheat bread [support = 8%, confidence = 70%] (1)

 2% milk ⇒ wheat bread [support = 2%, confidence = 72%] (2)

 Suppose the “2% milk” sold is about “¼” of milk sold

 Does (2) provide any novel information?

 A rule is redundant if its support is close to the “expected” value, according to
its “ancestor” rule, and it has a similar confidence as its “ancestor”

 Rule (1) is an ancestor of rule (2), which one to prune?

79

Succinctness

 Succinctness:

 Given A1, the set of items satisfying a succinctness constraint C, then any set S
satisfying C is based on A1 , i.e., S contains a subset belonging to A1

 Idea: Without looking at the transaction database, whether an itemset S
satisfies constraint C can be determined based on the selection of items

 min(S.Price) ≤ v is succinct

 sum(S.Price) ≥ v is not succinct

 Optimization: If C is succinct, C is pre-counting pushable

80

Which Constraints Are Succinct?

Constraint Succinct
v ∈ S yes
S ⊇ V yes

S ⊆ V yes
min(S) ≤ v yes

min(S) ≥ v yes
max(S) ≤ v yes

max(S) ≥ v yes
sum(S) ≤ v (a ∈ S, a ≥ 0) no
sum(S) ≥ v (a ∈ S, a ≥ 0) no

range(S) ≤ v no
range(S) ≥ v no

avg(S) θ v, θ ∈ { =, ≤, ≥ } no
support(S) ≥ ξ no

support(S) ≤ ξ no

81

Push a Succinct Constraint Deep

TID Items
100 1 3 4
200 2 3 5
300 1 2 3 5
400 2 5

Database D itemset sup.
{1} 2
{2} 3
{3} 3
{4} 1
{5} 3

itemset sup.
{1} 2
{2} 3
{3} 3
{5} 3

Scan D

C1
L1

itemset
{1 2}
{1 3}
{1 5}
{2 3}
{2 5}
{3 5}

itemset sup
{1 2} 1
{1 3} 2
{1 5} 1
{2 3} 2
{2 5} 3
{3 5} 2

itemset sup
{1 3} 2
{2 3} 2
{2 5} 3
{3 5} 2

L2

C2 C2
Scan D

C3 L3itemset
{2 3 5}

Scan D itemset sup
{2 3 5} 2

Constraint:
min{S.price <= 1 }

Sheet1

		TID		Items

		100		1 3 4

		200		2 3 5

		300		1 2 3 5

		400		2 5

Sheet1

		itemset		sup.

		{1}		2

		{2}		3

		{3}		3

		{4}		1

		{5}		3

Sheet1

		itemset		sup.

		{1}		2

		{2}		3

		{3}		3

		{5}		3

Sheet1

		itemset

		{1 2}

		{1 3}

		{1 5}

		{2 3}

		{2 5}

		{3 5}

Sheet1

		itemset		sup

		{1 2}		1

		{1 3}		2

		{1 5}		1

		{2 3}		2

		{2 5}		3

		{3 5}		2

Sheet1

		itemset		sup

		{1 3}		2

		{2 3}		2

		{2 5}		3

		{3 5}		2

Sheet1

		itemset

		{2 3 5}

Sheet1

		itemset		sup

		{2 3 5}		2

82

Sequential Pattern Mining
 Sequential Pattern and Sequential Pattern Mining

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data Format

 PrefixSpan: Sequential Pattern Mining by Pattern-Growth

 CloSpan: Mining Closed Sequential Patterns

83

GSP: Candidate Generation

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence

< (1) (3) (5) > is not frequent.

84

GSP Algorithm: Apriori Candidate Generation

Mining Sequential Patterns, Agrawal et al., ICDE’95

	CSE 5243 Intro. to Data Mining
	Sequence Mining: Description
	Sequential Pattern and Sequential Pattern Mining
	Sequential Pattern and Sequential Pattern Mining
	Sequential Pattern and Sequential Pattern Mining
	A Basic Property of Sequential Patterns: Apriori
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP Mining and Pruning
	GSP Mining and Pruning
	GSP: Algorithm
	GSP: Algorithm
	Bottlenecks of GSP
	GSP: Optimization Techniques
	SPADE
	�Finding Similar Items
	Task: Finding Similar Documents
	Task: Finding Similar Documents
	Task: Finding Similar Documents
	Two Essential Steps for Similar Docs
	The Big Picture
	�Shingling
	Documents as High-Dim Data
	Define: Shingles
	Define: Shingles
	Define: Shingles
	Shingles: How to treat white-space chars?
	How to choose K?
	Compressing Shingles
	Compressing Shingles
	Compressing Shingles
	Similarity Metric for Shingles
	Motivation for Minhash/LSH
	�MinHashing
	Encoding Sets as Bit Vectors
	From Sets to Boolean Matrices
	Outline: Finding Similar Columns
	Outline: Finding Similar Columns
	Hashing Columns (Signatures) : LSH principle
	Hashing Columns (Signatures) : LSH principle
	Min-Hashing
	Min-Hashing
	Zoo example (shingle size k=1)
	Key Fact
	Min-Hashing Example
	The Min-Hash Property
	The Min-Hash Property (Take 2: simpler proof)
	Similarity for Signatures
	Min-Hashing Example
	Min-Hash Signatures
	Implementation Trick
	Summary: 3 Steps
	Backup slides
	Sequential Pattern Mining in Vertical Data Format: �The SPADE Algorithm
	PrefixSpan: A Pattern-Growth Approach
	PrefixSpan: Mining Prefix-Projected DBs
	Consideration: �Pseudo-Projection vs. Physical PrImplementation ojection
	CloSpan: Mining Closed Sequential Patterns
	CloSpan: When Two Projected DBs Have the Same Size
	Chapter 7 : Advanced Frequent Pattern Mining
	Constraint-Based Pattern Mining
	Why Constraint-Based Mining?
	Various Kinds of User-Specified Constraints in Data Mining
	Pattern Space Pruning with Pattern Anti-Monotonicity
	Pattern Monotonicity and Its Roles
	Data Space Pruning with Data Anti-Monotonicity
	Expressing Patterns in Compressed Form: Closed Patterns
	Expressing Patterns in Compressed Form: Max-Patterns
	Scaling FP-growth by Item-Based Data Projection
	Analysis of DBLP Coauthor Relationships
	Analysis of DBLP Coauthor Relationships
	What Measures to Choose for Effective Pattern Evaluation?
	Mining Compressed Patterns
	Redundancy-Aware Top-k Patterns
	Redundancy Filtering at Mining Multi-Level Associations
	Succinctness
	Which Constraints Are Succinct?
	Push a Succinct Constraint Deep
	Sequential Pattern Mining
	GSP: Candidate Generation
	GSP Algorithm: Apriori Candidate Generation

