CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining
&
Locality Sensitivity Hashing

Huan Sun, CSE@The Ohio State University
11/07 /2017

Sequence Mining: Description

Input
A database D of sequences called data-sequences, in which:
I={i;, ip,...,i } is the set of items
each sequence is a list of transactions ordered by transaction-time

each transaction consists of fields: sequence-id, transaction-id, transaction-time and
a set of items.

Database D
Sequence-Id | Transaction | Items
Time
C1 1 Ringworld
C1 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers

Sequential Pattern and Sequential Pattern Mining

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent

subsequences (i.e., satisfying the min_sup threshold)

A sequence database

10
20
30
40

A sequence: < (ef)|(ab) (df) clb >

<a(abc)(ac)d(cf)> a An element may contain a set of items (also called
<(ad)c(bc)(ae)> events) i | tered and we |

a Items within an element are unordered and we list
Szl o> them alphabetically
<eg(af)cbc>

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

10 <a(abc)(ac)d(cf)>
20 <(ad)c(bc)(ae)> <a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>
30 <(ef)(ab)(df)cb>
40 <eg(af)cbc>

A sequence o, = (aja;---ay,) is called a subsequence of another sequence
B=(bby---b,),and B is a supersequence of o, denoted as o. C 3, if there exist integers
1< i< jp<--<jp<msuchthata; Cbj,a, Cbj,...,a, € bj,. Forexample, if
o = ((ab),d) and B = ((abc), (de)), where a, b, ¢, d, and e are items, then o is a subse-
quence of 3 and [3 is a supersequence of o.

Formal definition:

Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

A sequence: < (ef)|(ab) (df) clb >

10 <a(abc)(ac)d(cf)> A An element may contain a set of items (also called
20 <(ad)c(bc)(ae)> events) i | tered and we |

a Items within an element are unordered and we list
30 S(EHEl s> them alphabetically
40 <eg(af)cbc>

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

ad Given support threshold min_sup = 2, <(ab)c> is a sequential pattern

A Basic Property of Sequential Patterns: Apriori
N =

71 A basic property: Apriori (Agrawal & Sirkant’94)
o0 If a sequence S is not frequent

o Then none of the super-sequences of S is frequent
1 E.g, <hb> is infrequent =2 so do <hab> and <(ah)b>

GSP (Generalized Sequential Patterns):

GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining srikant & Agrawal @ EpsT'96)

_ —ﬁ-
o Initial candidates: All 8-singleton sequences -
10 <(bd)cb(ac)>
0 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
<(bf)(ce)b(fg)>
1 Scan DB once, count support for each candidate 20 (bf){ce)olfe)
30 <(ah)(bf)abf>
: 40 <(be)(ce)d>
min_sup = 2
50 <a(bd)bcb(ade)>

<a>

<c>
<d>

<e>

N W W R U W

<f>

3

GSP (Generalized Sequential Patterns):

GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining srikant & Agrawal @ EpsT'96)

_] —ﬁ-
o Initial candidates: All 8-singleton sequences -
10 <(bd)cb(ac)>
0 <a>, , <c>, <d>, <e>, <f>, <g>, <h>
<(bf)(ce)b(fg)>
=1 Scan DB once, count support for each candidate 20 (bf){ce)olfe)
. 30 <(ah)(bf)abf>
1 Generate length-2 candidate sequences
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>
How?

GSP (Generalized Sequential Patterns):

GSP (Generalized Sequential Patterns):

Apriori-Based Sequential Pattern Mining srikant & Agrawal @ epsr'oe)

Initial candidates: All 8-singleton sequences L2 SIS Ele
10 <(bd)cb(ac)>
<a>, , <c>, <d>, <e>, <f>, <g>, <h>
. 20 <(bf)(ce)b(fg)>
Scan DB once, count support for each candidate (bf){ce)ble)
. 30 <(ah)(bf)abf>
Generate length-2 candidate sequences
<a> <c> <d> <e> <f> 40 <(be)(ce)d>
<a> <aa> <ab> <ac> <ad> <ae> <af> 50 <a(bd)bcb(ade)>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>

Why?

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

10

Initial candidates: All 8-singleton sequences L2 SIS Ele
10 <(bd)cb(ac)>
<a>, , <c>, <d>, <e>, <f>, <g>, <h>
. 20 <(bf)(ce)b(fg)>
Scan DB once, count support for each candidate (bf){ce)ble)
. 30 <(ah)(bf)abf>
Generate length-2 candidate sequences
<a> <c> <d> <e> <f> 40 <(be)(ce)d>
<a> <aa> <ab> <ac> <ad> <ae> <af> 50 <a(bd)bcb(ade)>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
Why?
<a> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

11

GSP (Generalized Sequential Patterns):
Apriori-Based Sequential Pattern Mining

Initial candidates: All 8-singleton sequences

<a>, , <c>, <d>, <e>, <f>, <g>, <h>

Scan DB once, count support for each candidate

Generate length-2 candidate sequences

<a> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
 <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
<a> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
 <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

GSP (Generalized Sequential Patterns):
Srikant & Agrawal @ EDBT’96)

SID Sequence

10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

d Without Apriori pruning:
(8 singletons) 8*8+8*7/2 =92
length-2 candidates

aQ With pruning, length-2

candidates: 36 + 15=51

GSP Mining and Pruning

] _ .
5% scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> i:handlhda:ges cannot pass min_sup
resho
4th scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> ... Candidates not in DB

12

3"d scan: 46 cand. 20 length-3 seq. pat. 20

cand. not in DB at all <abb> <aab> <aba> <baa> <bab> ...

2"d scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> .. <(ef)>

10 cand. not in DB at all W I

15t scan: 8 cand. 6 length-1 seq. pat. <a> <c> <d> <e> <f> <g> <h>

min_sup = 2
10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

GSP Mining and Pruning

5th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> Candidates cannot pass min_sup
threshold

4th scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> ... Candidates not in DB

3"d scan: 46 cand. 20 length-3 seq. pat. 20

cand. not in DB at all <abb> <aab> <aba> <baa> <bab> ...

2"d scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> .. <(ef)>

10 cand. not in DB at all /A% I
—— _——

15t scan: 8 cand. 6 length-1 seq. pat. <a> <c> <d> <e> <f> <g> <h>

min_sup = 2
O Repeat (for each level (i.e., length-k)) SID Sequence
O Scan DB to find length-k frequent sequences 10 <(bd)cb(ac)>
O Generate length-(k+1) candidate sequences from length-k frequent - <(bf)(ce)b(fg)>
sequences using Apriori 30 <(ah)(bf)abf>
d setk=k+1 40 <(be)(ce)d>
QO Until no frequent sequence or no candidate can be found - <a(bd)bcb(ade)>

13

14

Mining Sequential Patterns: Generalizations and Performance
Improvements, Srikant and Agrawal et al.

GSP: Algorithm

Phase 1:

Scan over the database to identify all the frequent items, i.e., 1-element sequences

Phase 2:

lteratively scan over the database to discover all frequent sequences. Each iteration
discovers all the sequences with the same length.

In the iteration to generate all k-sequences
Generate the set of all candidate k-sequences, C,, by joining two (k-T1)-sequences
Prune the candidate sequence if any of its k-1 contiguous subsequence is not frequent

Scan over the database to determine the support of the remaining candidate sequences

Terminate when no more frequent sequences can be found

A detailed illustration:

GSP: Algorithm

. subsequence of s if any of the following conditions hold:

Definition Given a sequence s = {$18...8,) and a subsequence ¢, ¢ is a contiguous

1. ¢ is derived from s by dropping an item from either s; or s,.
2. c¢is derived from s by dropping an item from an element s; which has at least 2 items.
3. ¢is a contiguous subsequence of ¢, and ¢ is a contiguous subsequence of s,

For example, consider the sequence s = ((1,2) (3,4) (5) (6)). The sequences {(2) (3,
4) (5)), ((1,2) (3) (5) (6)) and ((3) (5))} are some of the contiguous subsequences of s.
However, ((1,2) (3,4) (6)) and {(1) (5) (6)) are not.

In the iteration to generate all k-sequences

B Generate the set of all candidate k-sequences, C, by joining two (k-
1)-sequences

W Prune the candidate sequence if any of its k-1 contiguous
subsequence is not frequent

B Scan over the database to determine the support of the remaining
candidate sequences

Terminate when no more frequent sequences can be found

15

16

Bottlenecks of GSP

A huge set of candidates could be generated

1,000 frequent length-1 sequences generate

length-2 candidates!

1000 %1000 + 1000; 999 _ 1499500

Multiple scans of database in mining

Real challenge: mining long sequential patterns
An exponential number of short candidates

A length-100 sequential pattern needs 103°
candidate sequences!

17

GSP: Optimization Techniques

Applied to phase 2: computation-intensive

Technique 1: the hash-tree data structure

Used for counting candidates to reduce the number of candidates

that need to be checked
Leaf: a list of sequences

Interior node: a hash table

Technique 2: data-representation transformation

From horizontal format to vertical format

Ttem

Times

Transaction-Time | Items
10 1,2
25 4,6
45 3
50 1,2
65 3
90 2,4
95 6

=1 O T W b

— 10 — 50 — NULL

— 10 — 50 — 90 — NULL
— 45 — 65 — NULL

— 25 — 90 — NULL

— NULL

— 25 —+ 95 — NULL

— NULL

SPADE

Problems in the GSP Algorithm
Multiple database scans
Complex hash structures with poor locality
Scale up linearly as the size of dataset increases

SPADE: Sequential PAttern Discovery using Equivalence classes
Use a vertical id-list database
Prefix-based equivalence classes
Frequent sequences enumerated through simple temporal joins
Lattice-theoretic approach to decompose search space

Advantages of SPADE
3 scans over the database
Potential for in-memory computation and parallelization

Paper Link:

18

MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman,
J. Ullman: Mining of Massive Datasets,
http: / /www.mmds.org

FINDING SIMILAR ITEMS

20

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of
documents, find “near duplicate” pairs

Applications:
Mirror websites, or approximate mirrors = remove duplicates

Similar news articles at many news sites =2 cluster

21

Task: Finding Similar Documents

Goal: Given a large number (N in the millions or billions) of
documents, find “near duplicate” pairs

Applications:
Mirror websites, or approximate mirrors = remove duplicates

Similar news articles at many news sites =2 cluster

What are the challenges?

Task: Finding Similar Documents

TS
0 Goal: Given a large number (N in the millions or billions) of documents,

find ““near duplicate” pairs

0 Applications:
O Mirror websites, or approximate mirrors = remove duplicates

O Similar news articles at many news sites 2> cluster

0 Problems:
o1 Many small pieces of one document can appear out of order in another
o1 Too many documents to compare all pairs

o1 Documents are so large or so many (scale issues)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

22

Two Essential Steps for Similar Docs
—

1. Shingling: Convert documents to sets

2. Min-Hashing: Convert large sets to short signatures, while
preserving similarity

Host of follow up applications
e.g. Similarity Search
Data Placement

Clustering etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

23

24

The Big Picture

Document —

T

Shingling

/

The set

of strings
of length k
that appear
in the doc-
ument

Hashing

/ Clustering etec.

T

Min Similarity Search
> Data Placement

»
>

Signatures:
short integer
vectors that
represent the
sets, and
reflect their
similarity

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

[
>

Document

The set

of strings

of length k

that appear

in the document

SHINGLING

Step 1: Convert documents to sets

Documents as High-Dim Data

_
-1 Step 1: Shingling: Convert documents to sets

0 Simple approaches:
Document = set of words appearing in document
Document = set of “important” words

Don’t work well for this application. Why?

7 Need to account for ordering of words!

o A different way: Shingles!

26 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

27

Define: Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc

Tokens can be characters, words or something else, depending on the
application

Assume tokens = characters for examples

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

28

Define: Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc

Tokens can be characters, words or something else, depending on the
application

Assume tokens = characters for examples

Example: k=2; document D, = abcab
Set of 2-shingles: S$(D,) = {ab, bc, ca}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

29

Define: Shingles

A k-shingle (or k-gram) for a document is a sequence of k tokens
that appears in the doc

Tokens can be characters, words or something else, depending on the
application

Assume tokens = characters for examples

Example: k=2; document D, = abcab
Set of 2-shingles: S$(D,) = {ab, bc, ca}

Another option: Shingles as a bag (multiset), count ab twice: $’(D,) =
{ab, bc, ca, ab}

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Shingles: How to treat white-space chars?
—

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then we
would see some lexical similarity in the sentences “The plane was ready for
touch down”. and “The quarterback scored a touchdown”. However, if we
retain the blanks, then the first has shingles touch dow and ouch down, while
the second has touchdown. If we eliminated the blanks, then both would have
touchdown. [

It makes sense to replace any sequence of one or more white-space characters (blank, tab,
newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

30 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

31

How to choose K?¢

Documents that have lots of shingles in common have similar text,
even if the text appears in different order

Caveat: You must pick k large enough, or most documents will have
most shingles

k = 5 is OK for short documents

k = 10 is better for long documents

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

32

Compressing Shingles

To compress long shingles, we can hash them to (say) 4 bytes
Like a Code Book

If #shingles manageable = Simple dictionary suffices

e.g., 9-shingle => bucket number [0, 232 - 1]
(using 4 bytes instead of 9)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Compressing Shingles

N
1 To compress long shingles, we can hash them to (say) 4 bytes
Like a Code Book

If #shingles manageable = Simple dictionary suffices

1 Doc represented by the set of hash/dict. values of its k-shingles

Idea: Two documents could (rarely) appear to have shingles in common,
when in fact only the hash-values were shared

33 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Compressing Shingles

I
1 To compress long shingles, we can hash them to (say) 4 bytes

Like a Code Book

If #shingles manageable = Simple dictionary suffices

1 Doc represented by the set of hash/dict. values of its k-shingles

1 Example: k=2; document D,= abcab
Set of 2-shingles: S(D,) = {ab, bc, ca}
Hash the singles: h(D,) = {1, 5, 7}

34 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Similarity Metric for Shingles
—

- Document D, is a set of its k-shingles C,=$S(D,)

o Equivalently, each document is a 0/1 vector in the space of k-shingles
Each unique shingle is a dimension

Vectors are very sparse

o A natural similarity measure is the Jaccard similarity:
sim(D,, D,) = |C,NC,|/|C,uC, |

35 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

36

Motivation for Minhash /LSH

Suppose we need to find similar documents among N = 1 million
documents

Naively, we would have to compute pairwise Jaccard similarities for
every pair of docs

N(N —1)/2 = 5*%10'! comparisons

At 10° secs/day and 10° comparisons/sec,
it would take 5 days

For N = 10 million, it takes more than a year...

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Min-Hash-

‘ V _ ‘ V

Docu-

ment

The set

of strings short integer

of length k vectors that
that appear represent the

in the document sets, and reflect

their similarity

MINHASHING

Step 2: Convert large variable length sets to
short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors
=

0 Many similarity problems can be formalized as finding subsets that
have significant intersection

0 Encode sets using 0/1 (bit, boolean) vectors

One dimension per element in the universal set

1 Interpret set intersection as bitwise AND, and
set union as bitwise OR

o Example: C, = 10111; C, = 10011
Size of intersection = 3; size of union = 4,
Jaccard similarity (not distance) = 3/4

Distance: d(C,,C,) = 1 = (Jaccard similarity) = 1/4

38 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

From Sets to Boolean Matrices
—

- Rows = elements (shingles) Note: [ransposed Document Matrix

Documents
1 Columns = sets (documents) :] 1 o
1 in row e and column s if and only if e is a valid shingle of

document represented by s]] 0]]

Column similarity is the Jaccard similarity of the corresponding 0 ,I 0]
sets (rows with value 1) %

Typical matrix is sparse! E” O |10 |0 1
£
0p)

1 |10 [0 |1

T [T |1 |0

1 10 |T |0

39 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Outline: Finding Similar Columns
—
0 So far:

Documents — Sets of shingles

Represent sets as boolean vectors in a matrix

0 Next goal: Find similar columns while computing
small signatures

Similarity of columns == similarity of signatures

40 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Outline: Finding Similar Columns

]
0 Next Goal: Find similar columns, Small signatures

0 Naive approach:
1) Signatures of columns: small summaries of columns

2) Examine pairs of signatures to find similar columns

w Essential: Similarities of signatures and columns are related

3) Optional: Check that columns with similar signatures are really similar

0 Warnings:
Comparing all pairs may take too much time: Job for LSH

m These methods can produce false negatives, and even false positives (if the optional check is

41 not que) J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Hashing Columns (Signatures) : LSH principle
]
o Key idea: “hash” each column C to a small signature h(C), such that:
(1) h(C) is small enough that the signature fits in RAM
(2) sim(C,, C,) is the same as the “similarity” of signatures h(C,) and h(C,)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

42

Hashing Columns (Signatures) : LSH principle
]
o Key idea: “hash” each column C to a small signature h(C), such that:
(1) h(C) is small enough that the signature fits in RAM
(2) sim(C,, C,) is the same as the “similarity” of signatures h(C,) and h(C,)

0 Goal: Find a hash function h(:) such that:
If sim(C,,C,) is high, then with high prob. h(C,) = h(C,)

If sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

0 Hash docs into buckets. Expect that ““most”’ pairs of near duplicate
docs hash into the same bucket!

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

43

44

Min-Hashing

Goal: Find a hash function h(:) such that:
if sim(C,,C,) is high, then with high prob. h(C,) = h(C,)
if sim(C,,C,) is low, then with high prob. h(C,) # h(C,)

Clearly, the hash function depends on the similarity metric:

Not all similarity metrics have a suitable hash function

There is a suitable hash function for the Jaccard similarity: It is called
Min-Hashing

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Min-Hashing

I
7 Imagine the rows of the boolean matrix permuted under random

permutation 7

0 Define a “hash” function h (C) = the index of the first (in the
permuted order T) row in which column C has value 1:

h,(C) = min,, #(C)

0 Use several (e.g., 100) independent hash functions (that is,
permutations) to create a signature of a column

45 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

46

Loo example (shingle size k=1)

Universe —{dog, cat, lion, tiger, mouse}
771 — [cat, mouse, lion, dog, tiger]
m2 — [lion, cat, mouse, dog, tiger]

A ={ mouse, lion }
mhi(A) =min (7T1{mouse, lion }) = mouse
mh2(A) =min (7T2{ mouse, lion }) = lion

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

47

Key Fact

For two sets A, B, and a min-hash function mhi():

AN B
AU B|

Unbiased estimator for Sim using K hashes (notation policy — this
IS a different K from size of shingle)

Sim(A, B) = L3 4. IImhi(A) = mhi(B))]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

48

Min-Hashing Example

Permutatio

Note: Another (equivalent) way is to
store row indexes

or raw shingles

(e.g. mouse, lion):

151 5
2 3 1 3
6 4 6 4

2nd element of the permutation

is the firsttomaptoal

Inputy/atrix (Shingle

1 |0

O~ | N | W

0

0
\.I\

1

1

3

11|16 1
Z{{1] |1 |O 0
41515 |1 |O 0

Documents)

Signature matrix M

4 element of the permutation
is the firsttomaptoal

J. Leskovec, A. Rajaraman, J. Ullman:
Mining of Massive Datasets, http://www.mmds.org

49

The Min-Hash Property e

OO0

Choose a random permutation 1 1

Claim: Pr[h_(C,) = h_(C,)] = sim(C,, C,) 0 | o
Why?

Let X be a doc (set of shingles), ye X is a shingle 0 1

Then: Pr[rt(y) = min(n(X))] = 1/| X| 1 0

It is equally likely that any y € X is mapped to the min element

Let y be s.t. T(y) = min(nt(C,UC,))

Then either: n(y) = min(n(C,)) ify € C;, or
my) = min(r(C,)) if y € €, One of the two cols had to have 1 at

So the prob. that both are true is the prob.y € C, N C, position y

Pr[min(n(C,))=min(n(C,))]1=| C,NC,| /| C,UC, | = sim(C,, C,)

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Presenter
Presentation Notes
Size of the universe of all possible vals of min((C1C2)) is |C1C2| and in |C1C2| of cases it can be that min((C1))=min((C2)) which exactly the jaccard between C1 and C2

For two columns A and B, we have h_π(A) = h_π(B) exactly when the minimum hash value of the union A ∪ B lies in the intersection A ∩ B. Thus Pr[h_π(A) = h_π(B)] = |A ∩ B| / |A ∪ B|.

The Min-Hash Property (Take 2: simpler proof)

Choose a random permutation &
Claim: Pr[h_(C,) = h (C,)] = sim(C,, C,)

Why?
Given a set X, the probability that any one element is the min-
hash under wis 1/|X]| < (0)

It is equally likely that any y e X is mapped to the min element

Given a set X, the probability that one of any k elements is the

min-hash under mis k/ | X| < (1)
For C, U C,, the probability that any element is the min-hash
under mis 1/|C, U C,| (from 0) < (2)

For any C, and C,, the probability of choosing the same min-hash
under mis |C,NC,|/|C, U C,| <€ from (1) and (2)

Presenter
Presentation Notes
Size of the universe of all possible vals of min((C1C2)) is |C1C2| and in |C1C2| of cases it can be that min((C1))=min((C2)) which exactly the jaccard between C1 and C2

For two columns A and B, we have h_π(A) = h_π(B) exactly when the minimum hash value of the union A ∪ B lies in the intersection A ∩ B. Thus Pr[h_π(A) = h_π(B)] = |A ∩ B| / |A ∪ B|.

51

Similarity for Signatures

We know: Pr[h_(C,) = h_(C,)] = sim(C,, C,)

Now generalize to multiple hash functions

The similarity of two signatures is the fraction of the hash functions in
which they agree

Note: Because of the Min-Hash property, the similarity of columns is
the same as the expected similarity of their signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Presenter
Presentation Notes
Each agress with prob s.
So to estimate s we compute what fraction of hash functions agree

Min-Hashing Example
—

Permutation T Input matrix (Shingles x Documents)

I43101o
3

7

6

]

Signature matrix M

e

1 Similarities:

1-3 2-4 1-2 3-4
Col/Col| 0.75 0.75 O 0]
5 1 0 1 0 Sig/Sig| 0.67 1.00 O 0]

O~ M| N | M
O] O] OO

OO N O W
o
o

59 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

53

Min-Hash Signatures

Pick K=100 random permutations of the rows
Think of sig(C) as a column vector

sig(C)[i] = according to the i-th permutation, the index of the first
row that has a 1 in column C

s1ig(C)[1] = min (m;(C))

Note: The sketch (signature) of document C is small ~100 bytes!

We achieved our goal! We ““compressed’ long bit vectors into
short signatures

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

Implementation Trick
—

0 Permuting rows even once is prohibitive
0 Approximate Linear Permutation Hashing

0 Pick K independent hash functions (use a, b below)

Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random
hash function h(x)?

Universal hashing:

h, p(X)=((a-x+b) mod p) mod N
where:

a,b ... random integers

P ... prime number (p > N)

54 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

55

Summary: 3 Steps

Shingling: Convert documents to sets

We used hashing to assign each shingle an ID

Min-Hashing: Convert large sets to short signatures, while
preserving similarity

We used similarity preserving hashing to generate signatures with
property Pr[h (C,) = h_(C,)] = sim(C,, C,)

We used hashing to get around generating random permutations

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http:/ /www.mmds.org

- Backup slides

Sequential Pattern Mining in Vertical Data Format:
The SPADE Algorithm

ad A sequence database is mapped to: <SID, EID>
Q Grow the subsequences (patterns) one item at a time by Apriori candidate generation

1 <a(abc)(ac)d(cf)>
2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>
4

<eg(af)cbc>
min_sup = 2

Ref: SPADE (Sequential

PAttern Discovery using

Equivalent Class) [M. Zaki

2001]

57

[SID | EID | Items |

&L

abe

ac

d

cf

ad

C

bc

ae

ef

ab

df

e | b |]] | | o) Cof o] Be| o] B B[DI B =] =] | = =

o U | S0 B[=] U | Q| B 2 | L2 DO | O | G| B =

o|lT|e|Blm|o (T

a b
SID EID SID EID
1 1 1 2
1 2 2 K
1 3 = o
2 1 3 5
2 4 4 5
3 2
4 3
ab ba
SID EID (a) EID(b) SID EID (b) EID(a)
1 1 2 1 2 3
2 1 3 2 3 4
= 2 53
4 3 5
aba
SID EID (a) EID(b) EID(&)
1 1 2 3
i 1 3 4

PrefixSpan: A Pattern-Growth Approach

S sequence Minsup=2
- Prefix Suffix (Projection) = Prefixand suffix
10 <a(abc)(ac)d(cf)> %
<a>

20 <(ad)c(bc)(ae)> <(abc)(ac)d(cf)> O Given <a(abc)(ac)d(cf)>

30 <(ef)(ab)(df)cb> <aa> <(_bc)(ac)d(cf)> O Prefixes: <a>, <aa>,
40 <eg(af)cbc> <ab> <(_c)(ac)d(cf)> <a(ab)>, <a(abc)>, ...
\ ~ p Suffix: Prefixes-based
o PrefixSpan Mining: Prefix Projections projection

Step 1: Find length-1 sequential patterns
m <a>, , <c>, <d>, <e>, <f>
Step 2: Divide search space and mine each projected DB

m <a>-projected DB,

= -projected DB, PrefixSpan (Prefix-projected
... Sequential pattern mining)
m <f>-projected DB, ... Pei, et al. @ TKDE'04

58

PrefixSpan: Mining Prefix-Projected DBs

min_sup = 2

10 <alabc)(ac)d(cf)> Length-1 sequential patterns

20 <(ad)c(bc)(ae)> <a>, , <c>, <d>, <e>, <f>
30 <(ef)(ab)(df)cb>
<eg(af)cbc>
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns

<aa>, <ab>, <(ab)>,

<(_b)(df)cb> <ac>, <ad>, <af>

<(_f)cbc>

— Major strength of PrefixSpan:
No candidate subseqgs. to be generated
= Projected DBs keep shrinking

59

60

Consideration:

Pseudo-Projection vs. Physical Primplementation ojection
Major cost of PrefixSpan: Constructing projected DBs

Suffixes largely repeating in recursive projected DBs

When DB can be held in main memory, use pseudo projection

O No physically copying suffixes s = <a(abc)(ac)d(cf)>
Q Pointer to the sequence l <a>
0 Offset of the suffix s|<a>: (, 2) <(abc)(ac)d(cf)>

A Butif it does not fit in memory l <ab>

d Physical projection s|<ab>: (, 5) <(_c)(ac)d(cf)>
Q Suggested approach:
0 Integration of physical and pseudo-projection

d Swapping to pseudo-projection when the data fits in memory

CloSpan: Mining Closed Sequential Patterns
—

1 A closed sequential pattern s: There exists no superpattern s’ such that s’ 3 s, and s’ and

s have the same support

7 Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15

Q Why directly mine closed sequential patterns?
- Reduce # of (redundant) patterns
0 Attain the same expressive power
Q Property P;: If sD s, sis closed iff two project DBs have the same
Size
Q Explore Backward Subpattern and Backward Superpattern
pruning to prune redundant search space

d Greatly enhances efficiency (Yan, et al.,, SDM’03)

61

CloSpan: When Two Projected DBs Have the Same Size

ID Sequence

Q Ifsds,, sis closed iff two project DBs have the same size 1 <aefbcg> LS = 2
2 When two projected sequence DBs have the same size? 2 <afegb(ac)>
O Here is one example: 3 <(af)eas
% <a/<%> \§>\ <r>
<efbcg> <cg> <fbcg> <bcg>
<fegb(ac)> <(ac)> <gb(ac)> P
<(_f)ea> <a> <ea>

<bcg>

Size = 6)
\Q>
Only need to keep

<egb(ac)> size = 12 (including <cg>
<ea> parentheses) <(ac)>

Kk % Backward superpattern pruning

/" Backward subpattern pruning

63

Chapter 7 : Advanced Frequent Pattern Mining

Mining Diverse Patterns

Sequential Pattern Mining

Constraint-Based Frequent Pattern Mining :

Graph Pattern Mining

Pattern Mining Application: Mining Software Copy-and-Paste Bugs

Summary

64

Constraint-Based Pattern Mining

0 Why Constraint-Based Mining?

O Different Kinds of Constraints: Different Pruning Strategies
Constrained Mining with Pattern Anti-Monotonicity
Constrained Mining with Pattern Monotonicity

0 Constrained Mining with Data Anti-Monotonicity
Constrained Mining with Succinct Constraints
Constrained Mining with Convertible Constraints
Handling Multiple Constraints

Constraint-Based Sequential-Pattern Mining

65

Why Constraint-Based Mining?

Finding all the patterns in a dataset autonomously2—unreailistic!
Too many patterns but not necessarily user-interested!
Pattern mining in practice: Often a user-guided, interactive process

User directs what to be mined using a data mining query language (or a graphical user
interface), specifying various kinds of constraints

What is constraint-based mining?
Mine together with user-provided constraints

Why constraint-based mining?
User flexibility: User provides constraints on what to be mined
Optimization: System explores such constraints for mining efficiency

E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining
_]

O Knowledge type constraint—Specifying what kinds of knowledge to mine
O Ex.: Classification, association, clustering, outlier finding, ...
O Data constraint—using SQL-like queries
0 Ex.: Find products sold together in NY stores this year
O Dimension/level constraint—similar to projection in relational database
O Ex.:In relevance to region, price, brand, customer category
O Interestingness constraint—various kinds of thresholds
O Ex.: Strong rules: min_sup > 0.02, min_conf > 0.6, min_correlation > 0.7

Q Rule (or pattern) constraint <j The focus of this study
O Ex.: Small sales (price < $10) triggers big sales (sum > $200)

66

67

Pattern Space Pruning with Pattern Anti-Monotonicity

10 a,b,c,d, fh
20 b,c,d,f g h
30 b,c,d,f g
40 a,c e fg

min_sup = 2

Item Price

a 100
b 40
C 150
d 35
e 55
f 45
g 80
h 10

Profit
40

—20
—-15
—30
—10
20

A constraint c is anti-monotone
If an itemset S violates constraint ¢, so does any of its superset
That is, mining on itemset S can be terminated
Ex. 1: c,: sum(S.price) < v is anti-monotone
Ex. 2: c,: range(S.profit) <15 is anti-monotone
Itemset ab violates c, (range(ab) = 40)
So does every superset of ab
Ex. 3. c5: sum(S.Price) = v is not anti-monotone
Ex. 4. Is c,: support(S) = o anti-monotone?

Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price >0
Profit can be negative

Pattern Monotonicity and Its Roles

= A constraint c is monotone: If an itemset S satisfies the

TID Transaction constraint ¢, so does any of its superset

10 a,b,cdfh . . o
20 bedfeh That is, we do not need to check c in subsequent mining

00 [b.e d':g = Ex. 1:c;:sum(S.Price) =2 v is monotone
40 a,cefg

min_sup = 2 = Ex. 2:c,: min(S.Price) < v is monotone
e —— = Ex. 3: ¢c;: range(S.profit) > 15 is monotone

a 100 40

b 40 0 Itemset ab satisfies c;

C 150 =20

d 35 —15 So does every superset of ab

e 55 -30

f 45 -10

g 80 20 Note: item.price >0

h 10 5 Profit can be negative

68

69

a,b,c,d f h
20 b,c,d,f g h
30 b,c,d,f g

40 a,cefg

min_sup = 2

Item Price
a 100
b 40
C 150
d 35
e 55
f 45
g 80
h 10

Profit
40

—20
—-15
—30
—10
20

O

O

Data Space Pruning with Data Anti-Monotonicity
--_

A constraint c is data anti-monotone: In the mining process, if a data entry ¢
cannot satisfy a pattern p under ¢, f cannot satisfy p’s superset either

Data space pruning: Data entry t can be pruned
Ex. 1: ¢;: sum(S.Profit) 2 v is data anti-monotone

Let constraint ¢, be: sum(S.Profit) > 25

m T,5:{b, ¢, d, f, g} can be removed since none of their combinations can
make an S whose sum of the profit is > 25

Ex. 2: c,: min(S.Price) < v is data anti-monotone

= Consider v = 5 but every item in a transaction, say T5,, has a price higher
than 10

Ex. 3: c5: range(S.Profit) > 25 is data anti-monotone

Note: item.price >0
Profit can be negative

70

Expressing Patterns in Compressed Form: Closed Patterns

How to handle such a challenge?

Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and
there exists no super-pattern Y D X, with the same support as X

Let Transaction DB TDB;: T;: {a;, ..., aso}; T,z {ay, ..., 9150}
Suppose minsup = 1. How many closed patterns does TDB, contain?
Two: P.: “{a,, ..., asok: 27; Py “{ay, oo, aygok: 17
Closed pattern is a lossless compression of frequent patterns

Reduces the # of patterns but does not lose the support information!

You will still be able to say: “{a,, ..., a,}: 2", “{as, as}: 17

71

Expressing Patterns in Compressed Form: Max-Patterns

Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern

if X is frequent and there exists no frequent super-pattern Y D X
Difference from close-patterns?
Do not care the real support of the sub-patterns of a max-pattern
Let Transaction DB TDB,: T;: {ay, ..., a5o}; To: {a, ..., A100}
Suppose minsup = 1. How many max-patterns does TDB, contain?
One: P: “{ay, ..., 3901 17
Max-pattern is a lossy compression!
We only know {a;, ..., a,,} is frequent

But we do not know the real support of {a;, ..., a .}, ..., any more!

Thus in many applications, close-patterns are more desirable than max-patterns

72

Scaling FP-growth by Item-Based Data

What if FP-tree cannot fit in memory2—Do not construct FP-tree
“Project” the database based on frequent single items
Construct & mine FP-tree for each projected DB

Parallel projection vs. partition projection
Parallel projection: Project the DB on each frequent item

Space costly, all partitions can be processed in parallel
Partition projection: Partition the DB in order

Passing the unprocessed parts to subsequent partitions

Projection

Trans. DB Parallel projection Partition projection

f,f;f,9h ﬂ\m f,-proj. DB f,-proj. DB f,-proj. DB

f3f,1] Assume only f’s are f, f; f, 3 f,

f, f, k frequent & the f, f, f3

f, fah frequent item f, f, f, will be projected to f;-proj.

ordering is: f,-f,-f;-f,

DB only when processing f,-
proj. DB

Analysis of DBLP Coauthor Relationships

O DBLP: Computer science research publication bibliographic database

O > 3.8 million entries on authors, paper, venue, year, and other information

ID Author A Author B s(AUB) | s(A) | s(B) Jaccard Cosine Kulc

1 Hans-Peter Kriegel Martin Ester 28 146 h4 0.163 (2) 0.315 (7) 0.355 (9)

2 Michael Carey Miron Livny 26 104 h8 0.191 (1) 0.335 (4) 0.349 (10)
3 Hans-Peter Kriegel Joerg Sander 24 146 36 0.152 (3) 0.331 (5) 0.416 (8)
4 Christos Faloutsos Spiros Papadimitriou 20 162 26 0.119 (7) 0.308 (10) 0.446 (7)

5 Hans-Peter Kriegel Martin Pfeifle a8 146 | I g 0.123 (6) 0.351 (2) 0.562 (2>
6 Hector Garcia-Molina Wilburt Labio 16 144 18 0.110 (9) | 0312 (8) | 0.500 (4)

7 Divyakant Agrawal Wang Hsiung 46 120 16 3| 0.133 (5) 0.365 (1) 0.567 (1)

8 Elke Rundensteiner Murali Mani 16 104 20 0.148 (4) 0.351 (3) 0.477 (6)

9 Divyakant Agrawal Oliver Po Iz 120 T2 —0.100 (10) | 0.316 (6) 0.550 (3)>
10 Gerhard Weikum Martin Theobald 12 106 14 0.111 (8)

Which pairs of authors are strongly related?

Use Kulc to find Advisor-advisee, close collaborators

0.312 (9)‘0.485 5)

[

Advisor-advisee relation: Kulc: high, Jaccard: low,]

cosine: middle

Analysis of DBLP Coauthor Relationships

AQ DBLP: Computer science research publication bibliographic database

> 3.8 million entries on authors, paper, venue, year, and other information

ID Author A Author B s(AUB) | s(A) | s(B) Jaccard Cosine Kulc

1 Hans-Peter Kriegel Martin Ester 28 146 54 0.163 (2) 0.315 (7) 0.355 (9)

2 Michael Carey Miron Livny 26 104 h8 0.191 (1) 0.335 (4) 0.349 (10)
3 Hans-Peter Kriegel Joerg Sander 24 146 36 0.152 (3) 0.331 (5) 0.416 (8)
4 Christos Faloutsos Spiros Papadimitriou 20 162 26 0.119 (7) 0.308 (10) 0.446 (7)

5 Hans-Peter Kriegel Martin Pfeifle a8 146 | I8 qf_0.123 (6) 0.351 (2) 0.56? 2>
6 Hector Garcia-Molina Wilburt Labio 16 144 18 0.110 (9) [0312 (8) 500 (4)

7 Divyakant Agrawal Wang Hsiung 46 120 16 3| 0.133 (5) 0.365 (1) 0.567 (1)

8 Elke Rundensteiner Murali Mani 16 104 20 0.148 (4) 0.351 (3) 0.477 (6)

9 Divyakant Agrawal Oliver Po v 120 T2 —#0.100 (10) | 0.316 (6) 0.550 (3)>
10 Gerhard Weikum Martin Theobald 12 106 14 0.111 (8) 0.312 (9)‘0.485 (5)

[Advisor-advisee relation: Kulc: high, Jaccard: low,]
cosine: middle

Which pairs of authors are strongly related?

Use Kulc to find Advisor-advisee, close collaborators

/75

What Measures to Choose for Effective Pattern Evaluation?

Null value cases are predominant in many large datasets

Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the
papers;

Null-invariance is an important property

Lift, X2 and cosine are good measures if null transactions are not predominant

Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

Exercise: Mining research collaborations from research bibliographic data
Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)

Can you find the likely advisor-advisee relationship and during which years such a relationship
happened?

Ref.: C. Wang, J. Han, Y. Jig, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee
Relationships from Research Publication Networks", KDD'10

Mining Compressed Patterns

Pat-ID | Item-Sets Support
P1 {38,16,18,12} 205227
P2 {38,16,18,12,17} 205211
P3 {39,38,16,18,12,17} | 101758
P4 {39,16,18,12,17} 161563
P5 {39,16,18,12} 161576
O Closed patterns

g

O Desired output (a good balance):

76

0 P1, P2, P3, P4, P5

0 Emphasizes too much on

support

0 There is no compression

Max-patterns
2 P3:information loss

Q P2, P3,P4

Why mining compressed patterns?

Too many scattered patterns but not so meaningful

Pattern distance measure

. T(P;)NT (P
Dist(P,) =1 — ITEP—BUTEégI

&-clustering: For each pattern P, find all patterns which can be
expressed by P and whose distance to P is within & (6-cover)

All patterns in the cluster can be represented by P

Method for efficient, direct mining of compressed frequent
patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On
Compressing Frequent Patterns”, Knowledge and Data
Engineering, 60:5-29, 2007)

77

Redundancy-Aware Top-k Patterns

11 Desired patterns: high significance & low redundancy

d Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a

pattern set

@ O
@e ® oo
eo®® 09

@O0Cg S
O0® &
o D) ..O

QOUBDIJIUSIS

(a) a set of patterns

O
@) .@ O
@ O ... OO..
T o

significance

(c) traditional top-k

&
@) O
@ © o @
@O P® o @
@ OQLe
Ce®y O
(] .O
significance + relevance
(b) redundancy-aware
top-k
@
@ O
oo © o
@ .. o O
@OO%@
@XOX J
SXP
relevance

(d) summarization

Q Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06

78

Redundancy Filtering at Mining Multi-Level Associations

Multi-level association mining may generate many redundant rules

Redundancy filtering: Some rules may be redundant due to “ancestor”
relationships between items

milk = wheat bread [support = 8%, confidence = 70%] (1)
2% milk = wheat bread [support = 2%, confidence = 72%] (2)
Suppose the “2% milk” sold is about “1/4” of milk sold

Does (2) provide any novel information?

A rule is redundant if its support is close to the “expected” value, according to
its “ancestor” rule, and it has a similar confidence as its “ancestor”

Rule (1) is an ancestor of rule (2), which one to prune?

79

Succinctness

Succinctness:

Given A; the set of items satisfying a succinctness constraint C, then any set S

satisfying C is based on A, , i.e., S contains a subset belonging to A,

|dea: Without looking at the transaction database, whether an itemset S

satisfies constraint C can be determined based on the selection of items
min(S.Price) < v is succinct
sum(S.Price) = v is not succinct

Optimization: If C is succinct, C is pre-counting pushable

80

Which Constraints Are Succinct?e

Constraint Succinct
VeSS yes
SoV yes
ScV yes
min(S) <v yes
min(S) > v yes
max(S) <v yes
max(S) > v yes
sum(S)<v(a € S,a=20) no
sum(S)>2v(a € S,a=>0) no
range(S) <v no
range(S) 2 v no
avg(S)ov,0e{= <, >} no
support(S) > § no
support(S) <& no

81

Push a Succinct Constraint Deep

Database D itemset|sup. , [itemset|sup.
TID |ltems C, Eli 2 1} >
100|1 3 4 2 3 > 3
200(235 | D| g3 | 3 EBi -
300(1235 {4} 1 (5 3
4002 5 {5} 3 _
C, litemset| sup C, EEhnS:
L, [itemset{sup {12} | 1 Scan D {12}
13| 2 13y | 2 | - 113}
2312 |—| s |1 15
(> 3 o) (221 2 ==
= - tfi ri ~ 5-2 51
¢ {85} 2 S @25
1\) \JJ’ | - s -
Cslitemsetl scan D =L3 itemset| sup
{235 {233} 2

Sheet1

		TID		Items

		100		1 3 4

		200		2 3 5

		300		1 2 3 5

		400		2 5

Sheet1

		itemset		sup.

		{1}		2

		{2}		3

		{3}		3

		{4}		1

		{5}		3

Sheet1

		itemset		sup.

		{1}		2

		{2}		3

		{3}		3

		{5}		3

Sheet1

		itemset

		{1 2}

		{1 3}

		{1 5}

		{2 3}

		{2 5}

		{3 5}

Sheet1

		itemset		sup

		{1 2}		1

		{1 3}		2

		{1 5}		1

		{2 3}		2

		{2 5}		3

		{3 5}		2

Sheet1

		itemset		sup

		{1 3}		2

		{2 3}		2

		{2 5}		3

		{3 5}		2

Sheet1

		itemset

		{2 3 5}

Sheet1

		itemset		sup

		{2 3 5}		2

82

Sequential Pattern Mining

Sequential Pattern and Sequential Pattern Mining

GSP: Apriori-Based Sequential Pattern Mining

SPADE: Sequential Pattern Mining in Vertical Data Format
PrefixSpan: Sequential Pattern Mining by Pattern-Growth

CloSpan: Mining Closed Sequential Patterns

GSP: Candidate Generation
—

Frequent Candidate 4-Sequences
3-Sequences after join after pruning
((1,2) 3)) | ((1,2) (3,4)) | {((1,2) (3,4))
((1,2) @) | {(1,2)(3) (5))
((1)(3,4))
((1,3) (5))
((2) (3,4))
{(2) (3) (5))

Figure 3: Candidate Generation: Example

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence

< (1) (3) (5) > is not frequent.

83

84

GSP Algorithm: Apriori Candidate Generation

The apriori-generate [unction takes as argument

Lr—1, the set of all large (£ — 1)-sequences. The func-
tion works as follows. First, join Lp_y with Lp_y;

insert into (',

select p.litemsety, ..., p.itemset; 1, g.litemset;

from Ly p. Li_1 ¢

where p.litemset; = g litemset,., ...,
plitemset;_> = g.litemset;_o;

Next, delete all sequences ¢ € Cp such that some
(k — l)-subsequence of ¢ 1s not in Lp_;.

J-Sequences

Large

Candidate
4-Sequences
(after join)

Candidate
4-Sequences
(after pruning)

T — e — e — e

PO = = = =
ICREJURN JURN N N
T RS S
T T T T ™ T T

(123 4)

Figure 7: Candidate Generation

Mining Sequential Patterns, Agrawal et al., ICDE’?5

	CSE 5243 Intro. to Data Mining
	Sequence Mining: Description
	Sequential Pattern and Sequential Pattern Mining
	Sequential Pattern and Sequential Pattern Mining
	Sequential Pattern and Sequential Pattern Mining
	A Basic Property of Sequential Patterns: Apriori
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP (Generalized Sequential Patterns):�Apriori-Based Sequential Pattern Mining
	GSP Mining and Pruning
	GSP Mining and Pruning
	GSP: Algorithm
	GSP: Algorithm
	Bottlenecks of GSP
	GSP: Optimization Techniques
	SPADE
	�Finding Similar Items
	Task: Finding Similar Documents
	Task: Finding Similar Documents
	Task: Finding Similar Documents
	Two Essential Steps for Similar Docs
	The Big Picture
	�Shingling
	Documents as High-Dim Data
	Define: Shingles
	Define: Shingles
	Define: Shingles
	Shingles: How to treat white-space chars?
	How to choose K?
	Compressing Shingles
	Compressing Shingles
	Compressing Shingles
	Similarity Metric for Shingles
	Motivation for Minhash/LSH
	�MinHashing
	Encoding Sets as Bit Vectors
	From Sets to Boolean Matrices
	Outline: Finding Similar Columns
	Outline: Finding Similar Columns
	Hashing Columns (Signatures) : LSH principle
	Hashing Columns (Signatures) : LSH principle
	Min-Hashing
	Min-Hashing
	Zoo example (shingle size k=1)
	Key Fact
	Min-Hashing Example
	The Min-Hash Property
	The Min-Hash Property (Take 2: simpler proof)
	Similarity for Signatures
	Min-Hashing Example
	Min-Hash Signatures
	Implementation Trick
	Summary: 3 Steps
	Backup slides
	Sequential Pattern Mining in Vertical Data Format: �The SPADE Algorithm
	PrefixSpan: A Pattern-Growth Approach
	PrefixSpan: Mining Prefix-Projected DBs
	Consideration: �Pseudo-Projection vs. Physical PrImplementation ojection
	CloSpan: Mining Closed Sequential Patterns
	CloSpan: When Two Projected DBs Have the Same Size
	Chapter 7 : Advanced Frequent Pattern Mining
	Constraint-Based Pattern Mining
	Why Constraint-Based Mining?
	Various Kinds of User-Specified Constraints in Data Mining
	Pattern Space Pruning with Pattern Anti-Monotonicity
	Pattern Monotonicity and Its Roles
	Data Space Pruning with Data Anti-Monotonicity
	Expressing Patterns in Compressed Form: Closed Patterns
	Expressing Patterns in Compressed Form: Max-Patterns
	Scaling FP-growth by Item-Based Data Projection
	Analysis of DBLP Coauthor Relationships
	Analysis of DBLP Coauthor Relationships
	What Measures to Choose for Effective Pattern Evaluation?
	Mining Compressed Patterns
	Redundancy-Aware Top-k Patterns
	Redundancy Filtering at Mining Multi-Level Associations
	Succinctness
	Which Constraints Are Succinct?
	Push a Succinct Constraint Deep
	Sequential Pattern Mining
	GSP: Candidate Generation
	GSP Algorithm: Apriori Candidate Generation

