CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining

8

Locality Sensitivity Hashing

Huan Sun, CSE@The Ohio State University 11/07/2017

Sequence Mining: Description

□ Input

- A database D of sequences called data-sequences, in which:
 - $I=\{i_1, i_2,...,i_n\}$ is the set of items
 - each sequence is a list of transactions ordered by transaction-time
 - each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Database \mathcal{D}

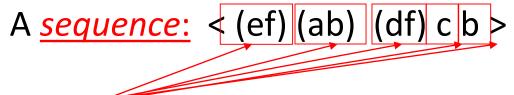
Sequence-Id	Transaction	Items	
Doquettee 1a	Time		
C1	1	Ringworld	
C1	2	Foundation	
C1	15	Ringworld Engineers, Second Foundation	
C2	1	Foundation, Ringworld	
C2	20	Foundation and Empire	
C2	50	Ringworld Engineers	

Sequential Pattern and Sequential Pattern Mining

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>



- An <u>element</u> may contain a set of *items* (also called *events*)
- □ Items within an element are unordered and we list them alphabetically

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Formal definition:

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

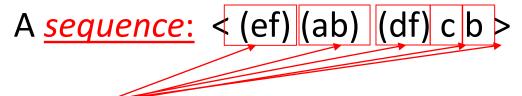
A sequence $\alpha = \langle a_1 a_2 \cdots a_n \rangle$ is called a **subsequence** of another sequence $\beta = \langle b_1 b_2 \cdots b_m \rangle$, and β is a **supersequence** of α , denoted as $\alpha \sqsubseteq \beta$, if there exist integers $1 \le j_1 < j_2 < \cdots < j_n \le m$ such that $a_1 \subseteq b_{j_1}, a_2 \subseteq b_{j_2}, \ldots, a_n \subseteq b_{j_n}$. For example, if $\alpha = \langle (ab), d \rangle$ and $\beta = \langle (abc), (de) \rangle$, where a, b, c, d, and e are items, then α is a subsequence of β and β is a supersequence of α .

Sequential Pattern and Sequential Pattern Mining

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>



- An <u>element</u> may contain a set of *items* (also called *events*)
- □ Items within an element are unordered and we list them alphabetically

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)\underline{d(cf)}}>$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

A Basic Property of Sequential Patterns: Apriori

- □ A basic property: Apriori (Agrawal & Sirkant'94)
 - If a sequence S is not frequent
 - Then none of the super-sequences of S is frequent
 - \blacksquare E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

Initial candidates: All 8-singleton sequences

Scan DB once, count support for each candidate

 $min_sup = 2$

Cand.	sup
<a>	3
	5
<c></c>	4
<d></d>	3
<e></e>	3
<f></f>	2
282	
MS	1

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

How_{\$}

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate

□ Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Why?

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- □ Scan DB once, count support for each candidate

□ Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

Why?

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

- Initial candidates: All 8-singleton sequences
 - □ <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate

□ Generate length-2 candidate sequences

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d>></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
<f></f>						

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

- Without Apriori pruning:(8 singletons) 8*8+8*7/2 = 92length-2 candidates
- With pruning, length-2 candidates: 36 + 15= 51

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> 10 cand, not in DB at all <a> <c> <d> <e> <f> <q> <h> 1st scan: 8 cand. 6 length-1 seq. pat. $min_sup = 2$

SID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> 10 cand, not in DB at all <a> <c> <d> <e> <f> <g> <h> 1st scan: 8 cand. 6 length-1 seq. pat. $min_sup = 2$

- Repeat (for each level (i.e., length-k))
- Scan DB to find length-k frequent sequences
- ☐ Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
- \Box set k = k+1
- Until no frequent sequence or no candidate can be found

SID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

GSP: Algorithm

Mining Sequential Patterns: Generalizations and Performance Improvements, Srikant and Agrawal et al.

https://pdfs.semanticscholar.org/d420/ea39dc136b9e390 d05e964488a65fcf6ad33.pdf

□ Phase 1:

□ Scan over the database to identify all the frequent items, i.e., 1-element sequences

□ Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- \square In the iteration to generate all k-sequences
 - Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences
 - \blacksquare Prune the candidate sequence if any of its k-1 contiguous subsequence is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found

http://simpledatamining.blogspot.com/2015/03/generalized-sequential-pattern-gsp.html

GSP: Algorithm

Definition Given a sequence $s = \langle s_1 s_2 ... s_n \rangle$ and a subsequence c, c is a *contiguous* subsequence of s if any of the following conditions hold:

- 1. c is derived from s by dropping an item from either s_1 or s_n .
- 2. c is derived from s by dropping an item from an element s_i which has at least 2 items.
- 3. c is a contiguous subsequence of c', and c' is a contiguous subsequence of s.

For example, consider the sequence $s = \langle (1, 2) (3, 4) (5) (6) \rangle$. The sequences $\langle (2) (3, 4) (5) \rangle$, $\langle (1, 2) (3) (5) (6) \rangle$ and $\langle (3) (5) \rangle$ are some of the contiguous subsequences of s. However, $\langle (1, 2) (3, 4) (6) \rangle$ and $\langle (1) (5) (6) \rangle$ are not.

- \blacksquare In the iteration to generate all k-sequences
 - Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences
 - Prune the candidate sequence if any of its k-1 contiguous subsequence is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- □ Terminate when no more frequent sequences can be found

Bottlenecks of GSP

- A huge set of candidates could be generated
 - 1,000 frequent length-1 sequences generate length-2 candidates!

$$1000 \times 1000 + \frac{1000 \times 999}{2} = 1,499,500$$

- Multiple scans of database in mining
- □ Real challenge: mining long sequential patterns
 - An exponential number of short candidates
 - A length-100 sequential pattern needs 10³⁰ candidate sequences!

$$\sum_{i=1}^{100} \binom{100}{i} = 2^{100} - 1 \approx 10^{30}$$

GSP: Optimization Techniques

- Applied to phase 2: computation-intensive
- □ Technique 1: the hash-tree data structure
 - Used for counting candidates to reduce the number of candidates that need to be checked
 - Leaf: a list of sequences
 - Interior node: a hash table
- Technique 2: data-representation transformation
 - From horizontal format to vertical format

Transaction-Time	Items
10	1, 2
25	4, 6
45	3
50	1, 2
65	3
90	2, 4 6
95	6

Item	Times
1	$ ightarrow 10 ightarrow 50 ightarrow ext{NULL}$
2	ightarrow 10 $ ightarrow$ 50 $ ightarrow$ 90 $ ightarrow$ NULL
3	ightarrow 45 $ ightarrow$ 65 $ ightarrow$ NULL
4	$ ightarrow 25 ightarrow 90 ightarrow ext{NULL}$
5	ightarrow NULL
6	ightarrow 25 $ ightarrow$ 95 $ ightarrow$ NULL
7	$ ightarrow ext{NULL}$

SPADE

Problems in the GSP Algorithm

- Multiple database scans
- Complex hash structures with poor locality
- Scale up linearly as the size of dataset increases

SPADE: Sequential PAttern Discovery using Equivalence classes

- Use a vertical id-list database
- Prefix-based equivalence classes
- Frequent sequences enumerated through simple temporal joins
- Lattice-theoretic approach to decompose search space

Advantages of SPADE

- 3 scans over the database
- Potential for in-memory computation and parallelization

Paper Link:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.6042&rep=rep1&type=pdf

MMDS Secs. 3.2-3.4.

Slides adapted from: J. Leskovec, A. Rajaraman,

J. Ullman: Mining of Massive Datasets,

http://www.mmds.org

FINDING SIMILAR ITEMS

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:
 - \blacksquare Mirror websites, or approximate mirrors \rightarrow remove duplicates
 - \square Similar news articles at many news sites \rightarrow cluster

Task: Finding Similar Documents

- Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- □ Applications:
 - \blacksquare Mirror websites, or approximate mirrors \rightarrow remove duplicates
 - \square Similar news articles at many news sites \rightarrow cluster

What are the challenges?

Task: Finding Similar Documents

- □ Goal: Given a large number (N in the millions or billions) of documents, find "near duplicate" pairs
- Applications:
 - Mirror websites, or approximate mirrors → remove duplicates
 - Similar news articles at many news sites → cluster

□ Problems:

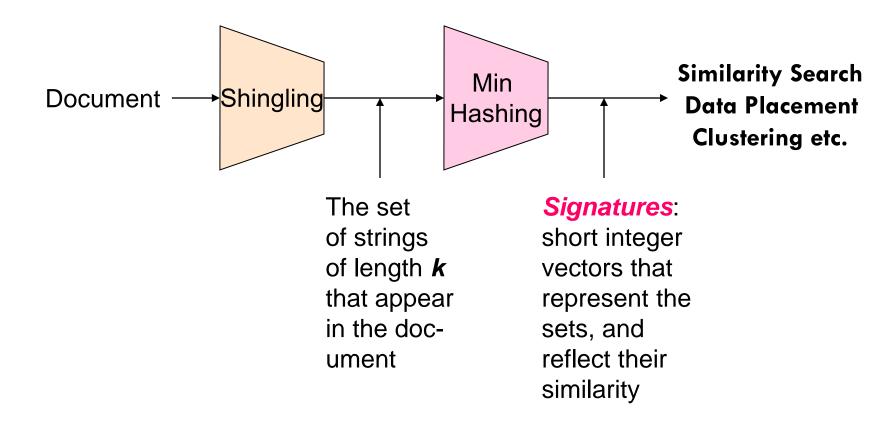
- Many small pieces of one document can appear out of order in another
- Too many documents to compare all pairs
- Documents are so large or so many (scale issues)

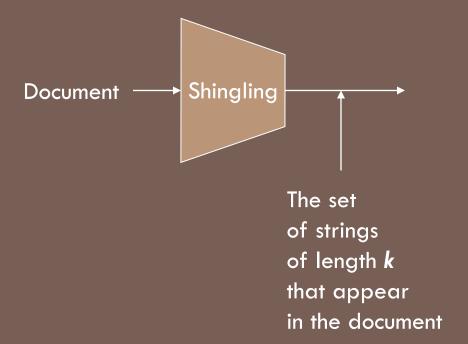
Two Essential Steps for Similar Docs

- 1. Shingling: Convert documents to sets
- 2. Min-Hashing: Convert large sets to short signatures, while preserving similarity

Host of follow up applications
e.g. Similarity Search
Data Placement
Clustering etc.

The Big Picture





SHINGLING

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

- □ Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- □ A different way: Shingles!

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}

Define: Shingles

- \square A *k*-shingle (or *k*-gram) for a document is a sequence of *k* tokens that appears in the doc
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
- □ Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}

■ Another option: Shingles as a bag (multiset), count ab twice: $S'(D_1) = \{ab, bc, ca, ab\}$

Shingles: How to treat white-space chars?

Example 3.4: If we use k = 9, but eliminate whitespace altogether, then we would see some lexical similarity in the sentences "The plane was ready for touch down". and "The quarterback scored a touchdown". However, if we retain the blanks, then the first has shingles touch dow and ouch down, while the second has touchdown. If we eliminated the blanks, then both would have touchdown. \Box

It makes sense to replace any sequence of one or more white-space characters (blank, tab, newline, etc.) by a single blank.

This way distinguishes shingles that cover two or more words from those that do not.

How to choose K?

- Documents that have lots of shingles in common have similar text,
 even if the text appears in different order
- □ Caveat: You must pick *k* large enough, or most documents will have most shingles
 - $\mathbf{k} = 5$ is OK for short documents
 - $\mathbf{k} = 10$ is better for long documents

Compressing Shingles

- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices

```
e.g., 9-shingle => bucket number [0, 2<sup>32</sup> - 1] (using 4 bytes instead of 9)
```

Compressing Shingles

- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices
- \square Doc represented by the set of hash/dict. values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared

Compressing Shingles

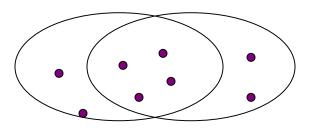
- □ To compress long shingles, we can hash them to (say) 4 bytes
 - □ Like a Code Book
 - □ If #shingles manageable → Simple dictionary suffices
- \square Doc represented by the set of hash/dict. values of its k-shingles

Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1) = \{ab, bc, ca\}$ Hash the singles: $h(D_1) = \{1, 5, 7\}$

Similarity Metric for Shingles

- □ Document D_1 is a set of its k-shingles $C_1 = S(D_1)$
- \square Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity:

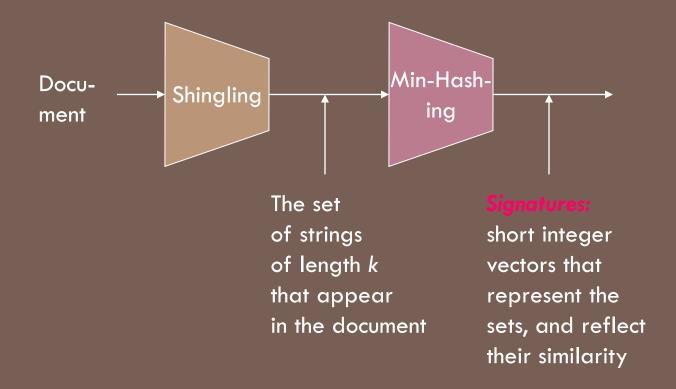
$$sim(D_1, D_2) = |C_1 \cap C_2| / |C_1 \cup C_2|$$



Motivation for Minhash/LSH

- lacksquare Suppose we need to find similar documents among N=1 million documents
- Naïvely, we would have to compute pairwise Jaccard similarities for every pair of docs

- $N(N-1)/2 \approx 5*10^{11}$ comparisons
- At 10⁵ secs/day and 10⁶ comparisons/sec, it would take 5 days
- \square For N=10 million, it takes more than a year...

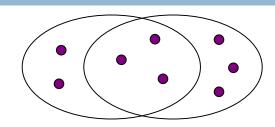


MINHASHING

Step 2: Minhashing: Convert large variable length sets to short fixed-length signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection



- □ Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- **Example:** $C_1 = 101111$; $C_2 = 10011$
 - \square Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1, C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

Rows = elements (shingles)

Note: Transposed Document Matrix

Documents

- Columns = sets (documents)
 - □ 1 in row **e** and column **s** if and only if **e** is a valid shingle of document represented by s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!

_	Documents				
Shingles	1	1	1	0	
	1	1	0	1	
	0	1	0	1	
	0	0	0	1	
	1	0	0	1	
	1	1	1	0	
	1	0	1	0	

Outline: Finding Similar Columns

- □ So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix

- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

□ Next Goal: Find similar columns, Small signatures

■ Naïve approach:

- 1) Signatures of columns: small summaries of columns
- 2) Examine pairs of signatures to find similar columns
 - **Essential:** Similarities of signatures and columns are related
- 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)
 J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Hashing Columns (Signatures): LSH principle

- \square Key idea: "hash" each column C to a small signature h(C), such that:
 - \Box (1) h(C) is small enough that the signature fits in RAM
 - \square (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$

Hashing Columns (Signatures): LSH principle

- \square Key idea: "hash" each column C to a small signature h(C), such that:
 - \Box (1) h(C) is small enough that the signature fits in RAM
 - \square (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- □ Goal: Find a hash function $h(\cdot)$ such that:
 - □ If $sim(C_1,C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - □ If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- □ Goal: Find a hash function $h(\cdot)$ such that:
 - \square if $sim(C_1,C_2)$ is high, then with high prob. $h(C_1)=h(C_2)$
 - □ if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- □ Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- \blacksquare Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

□ Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Zoo example (shingle size k=1)

```
Universe \longrightarrow { dog, cat, lion, tiger, mouse}
       \pi_1 \longrightarrow [cat, mouse, lion, dog, tiger]
       \pi_2 \longrightarrow [lion, cat, mouse, dog, tiger]
            A = { mouse, lion }
mh_1(A) = min ( \pi_1 \{mouse, lion \}) = mouse
mh_2(A) = min ( \pi_2\{ mouse, lion \}) = lion
```

Key Fact

For two sets A, B, and a min-hash function mh_i():

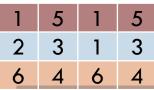
$$Pr[mh_i(A) = mh_i(B)] = Sim(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

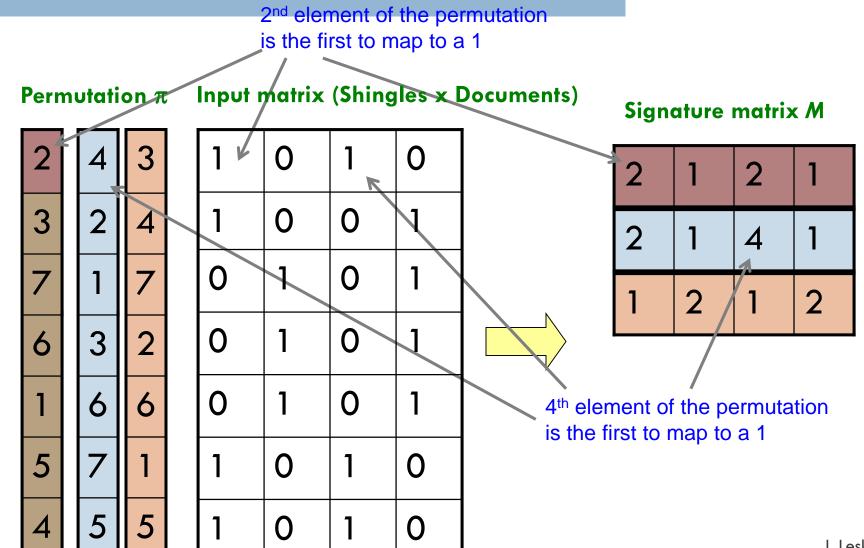
Unbiased estimator for Sim using *K* hashes (notation policy – this is a different K from size of shingle)

$$\hat{Sim}(A, B) = \frac{1}{k} \sum_{i=1:k} I[mh_i(A) = mh_i(B)]$$

Min-Hashing Example

Note: Another (equivalent) way is to store row indexes or raw shingles (e.g. mouse, lion):





The Min-Hash Property

- $lue{}$ Choose a random permutation $oldsymbol{\pi}$
- □ Why?
 - \blacksquare Let X be a doc (set of shingles), $y \in X$ is a shingle
 - □ Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - $lue{}$ So the prob. that **both** are true is the prob. $\mathbf{y} \in \mathsf{C}_1 \cap \mathsf{C}_2$
 - □ $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

0
0
1
0
1
0

One of the two cols had to have 1 at position **y**

The Min-Hash Property (Take 2: simpler proof)

- $lue{}$ Choose a random permutation π
- $\square \ \underline{\mathsf{Claim:}} \ \mathsf{Pr}[h_{\pi}(\mathsf{C}_1) = h_{\pi}(\mathsf{C}_2)] = \mathit{sim}(\mathsf{C}_1, \, \mathsf{C}_2)$
- □ Why?
 - □ Given a set X, the probability that any one element is the minhash under π is 1/|X| \leftarrow (0)
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - □ Given a set X, the probability that one of any \mathbf{k} elements is the min-hash under π is $\mathbf{k}/|\mathbf{X}|$ \leftarrow (1)
 - □ For $C_1 \cup C_2$, the probability that any element is the min-hash under π is $1/|C_1 \cup C_2|$ (from 0) \leftarrow (2)
 - For any C_1 and C_2 , the probability of choosing the same min-hash under π is $|C_1 \cap C_2|/|C_1 \cup C_2|$ from (1) and (2)

Similarity for Signatures

- $\square \text{ We know: } \Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The similarity of two signatures is the fraction of the hash functions in which they agree
- □ **Note:** Because of the Min-Hash property, the similarity of columns is the same as the expected similarity of their signatures

Min-Hashing Example

Permutation π

Input matrix (Shingles x Documents)

Signature matrix M

2	4	3
3	2	4
7	1	7
6	3	2
1	6	6
5	7	1
4	5	5

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3			3-4	
col/Col	0.75	0.75	0	0	
ig/Sig	0.67	1.00	0	0	

Min-Hash Signatures

- □ Pick K=100 random permutations of the rows
- □ Think of sig(C) as a column vector
- \square sig(C)[i] = according to the *i*-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- \square Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures

Implementation Trick

- Permuting rows even once is prohibitive
- Approximate Linear Permutation Hashing
- Pick K independent hash functions (use a, b below)
 - Apply the idea on each column (document) for each hash function and get minhash signature

How to pick a random hash function h(x)?

Universal hashing:

```
h_{a,b}(x)=((a\cdot x+b) \mod p) \mod N
where:
a,b ... random integers
p ... prime number (p > N)
```

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used similarity preserving hashing to generate signatures with property $\Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations

Backup slides

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- ☐ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>

 $min_sup = 2$

Ref: SPADE (<u>S</u>equential

<u>PA</u>ttern <u>D</u>iscovery using

<u>E</u>quivalent Class) [M. Zaki
2001]

SID	EID	Items
1	1	a
1	2 3	abc
1	3	ac
1	4	$^{\mathrm{d}}$
1	5 1 2 3	$\operatorname{\mathbf{cf}}$
2 2 2	1	ad
2	2	\mathbf{c}
2		$_{ m bc}$
2	4	ae
3	1	ef
3	$\frac{2}{3}$	ab
3	3	df
3	4	\mathbf{c}
3	5 1 2 3	b
4	1	\mathbf{e}
4	2	g
4		af
4	4	c
4	5	b
4	6	\mathbf{c}

\mathbf{a}		b		
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			

	$^{\mathrm{ab}}$			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

aba				
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

PrefixSpan: A Pattern-Growth Approach

SID	Sequence	
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	~
20	<(ad)c(bc)(ae)>	
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>	
40	<eg(af)cbc></eg(af)cbc>	

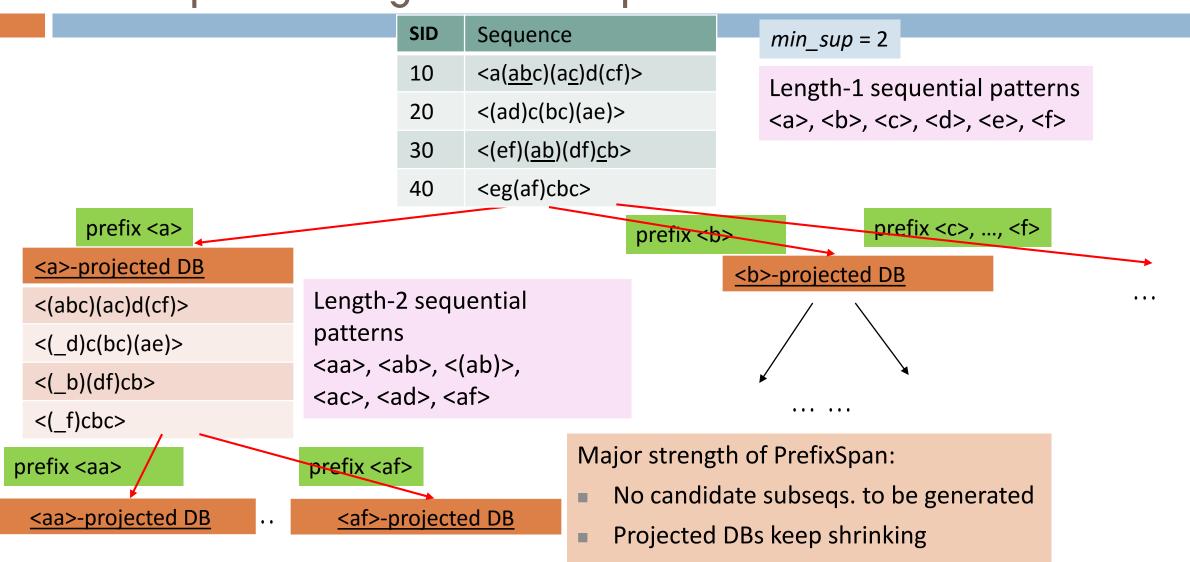
min_sup = 2		
Prefix	Suffix (Projection)	
<a>	<(abc)(ac)d(cf)>	
<aa></aa>	<(_bc)(ac)d(cf)>	
<ab></ab>	<(_c)(ac)d(cf)>	

- Prefix and suffix
 - Given <a(abc)(ac)d(cf)>
 - Prefixes: <a>, <aa>,
 <a(ab)>, <a(abc)>, ...
 - Suffix: Prefixes-based projection

- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - **...**
 - <f>-projected DB, ...

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

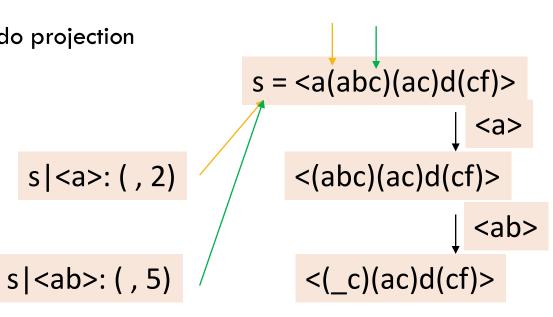
PrefixSpan: Mining Prefix-Projected DBs



Consideration:

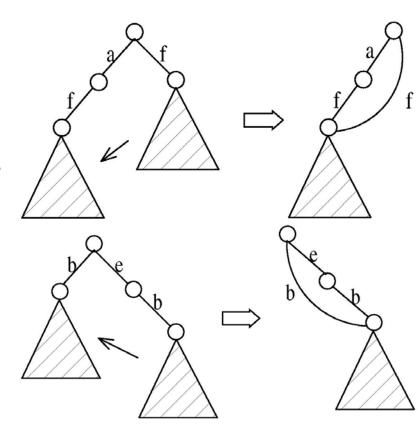
Pseudo-Projection vs. Physical PrImplementation ojection

- Major cost of PrefixSpan: Constructing projected DBs
 - Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
 - But if it does not fit in memory
 - Physical projection
 - Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory

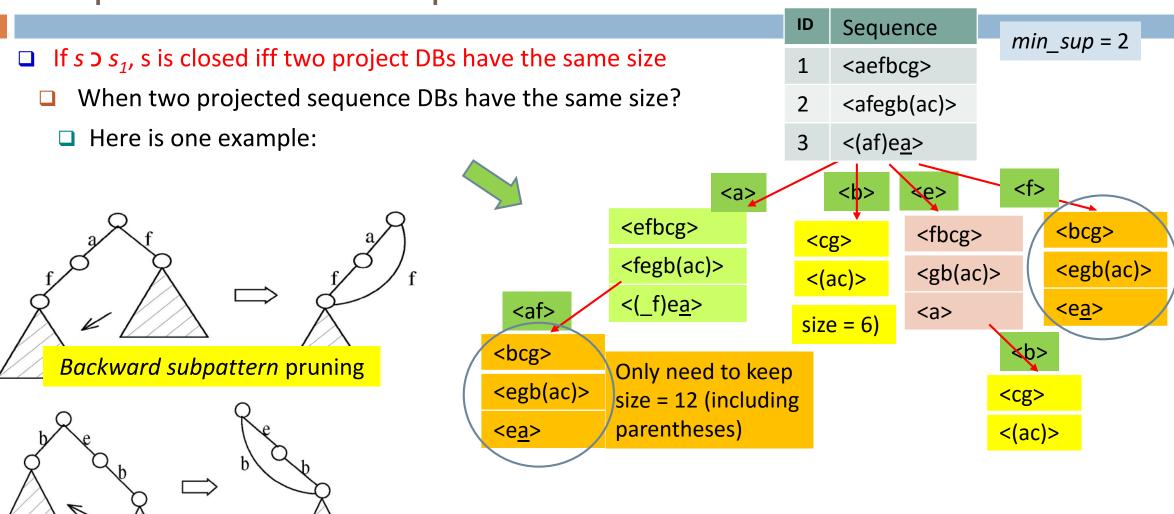


CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: There exists no superpattern s' such that s' > s, and s' and s have the same support
- □ Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15
- Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power
- Property P_1 : If $s \supset s_1$, s is closed iff two project DBs have the same size
- Explore *Backward Subpattern* and *Backward Superpattern* pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM'03)



CloSpan: When Two Projected DBs Have the Same Size



Backward superpattern pruning

Chapter 7: Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

- □ Finding all the patterns in a dataset autonomously?—unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides constraints on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- Knowledge type constraint—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
 - Ex.: Find products sold together in NY stores this year
- □ Dimension/level constraint—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint—various kinds of thresholds
 - \square Ex.: Strong rules: min_sup ≥ 0.02 , min_conf ≥ 0.6 , min_correlation ≥ 0.7
- Rule (or pattern) constraint
 The focus of this study
 - Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

TID	Transaction
10	a, b, c, d, f, h
20	b, c, d, f, g, h
30	b, c, d, f, g
40	a, c, e, f, g

$min_sup = 2$

Item	Price	Profit
а	100	40
b	40	0
С	150	-20
d	35	-15
е	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : $sum(S.price) \le v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
 - Itemset ab violates c_2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c_3 : $sum(S.Price) \ge v$ is not anti-monotone
- Ex. 4. Is c_4 : support(S) $\geq \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price > 0
Profit can be negative

Pattern Monotonicity and Its Roles

Transaction
a, b, c, d, f, h
b, c, d, f, g, h
b, c, d, f, g
a, c, e, f, g

	•				
m	ın	CII	n	_	,
- 1 1 1 1		SU	IJ	_	Z
			1		

Item	Price	Profit
а	100	40
b	40	0
С	150	-20
d	35	-15
е	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is monotone: If an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : $sum(S.Price) \ge v$ is monotone
- Ex. 2: c_2 : $min(S.Price) \le v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset *ab* satisfies c_3
 - So does every superset of ab

Note: item.price > 0
Profit can be negative

Data Space Pruning with Data Anti-Monotonicity

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	

$min_sup = 2$

Item	Price	Profit
а	100	40
b	40	0
С	150	-20
d	35	-15
е	55	-30
f	45	-10
g	80	20
h	10	5

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- \square Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data anti-monotone
 - Let constraint c_1 be: $sum(S.Profit) \ge 25$
 - T_{30} : {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- \square Ex. 2: c_2 : $min(S.Price) \le v$ is data anti-monotone
 - Consider v = 5 but every item in a transaction, say T_{50} , has a price higher than 10
- \square Ex. 3: c₃: range(S.Profit) > 25 is data anti-monotone

Note: item.price > 0
Profit can be negative

Expressing Patterns in Compressed Form: Closed Patterns

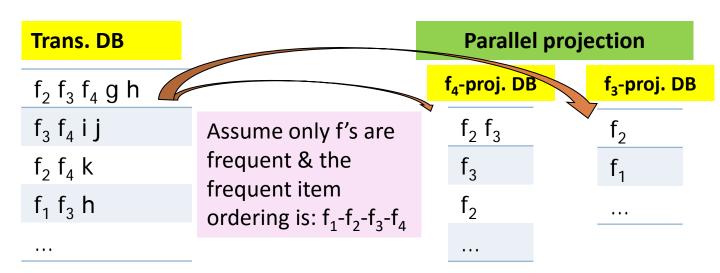
- How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y > X, with the same support as X
 - Let Transaction DB TDB₁: T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{100}\}$: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: "{a₂, ..., a₄₀}: 2", "{a₅, a₅₁}: 1"

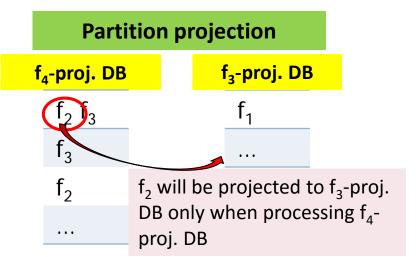
Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : $\{a_1, ..., a_{50}\}$; T_2 : $\{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}, ...,$ any more!
 - □ Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

- □ What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions





Analysis of DBLP Coauthor Relationships

- □ DBLP: Computer science research publication bibliographic database
 - □ > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152 (3)	0.331 (5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119 (7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	1 6	120	16	0.133 (5)	0.365 (1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148 (4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	\triangleleft 12	120	12	0.100(10)	0.316 (6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
- > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191 (1)	0.335(4)	0.349 (10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416 (8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110 (9)	0.314 (8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	\bigcirc 6	120	16	0.133 (5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	$\overline{}$	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485 (5)

Advisor-advisee relation: Kulc: high, Jaccard: low,

cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- \Box Lift, χ^2 and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
Р3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
P5	{39,16,18,12}	161576

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - P3: information loss
- Desired output (a good balance):
 - □ P2, P3, P4

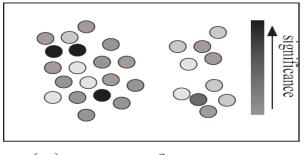
- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

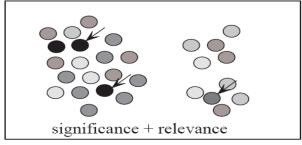
- δ -clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ -cover)
- All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

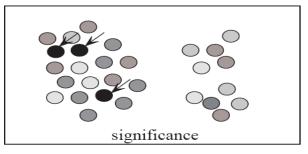
Desired patterns: high significance & low redundancy



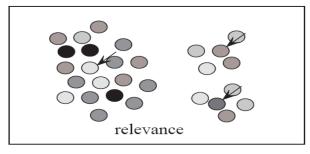
(a) a set of patterns



(b) redundancy-aware top-k



(c) traditional top-k



(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- □ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items
 - \blacksquare milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
 - \square 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
 - Suppose the "2% milk" sold is about "1/4" of milk sold
 - Does (2) provide any novel information?
- A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

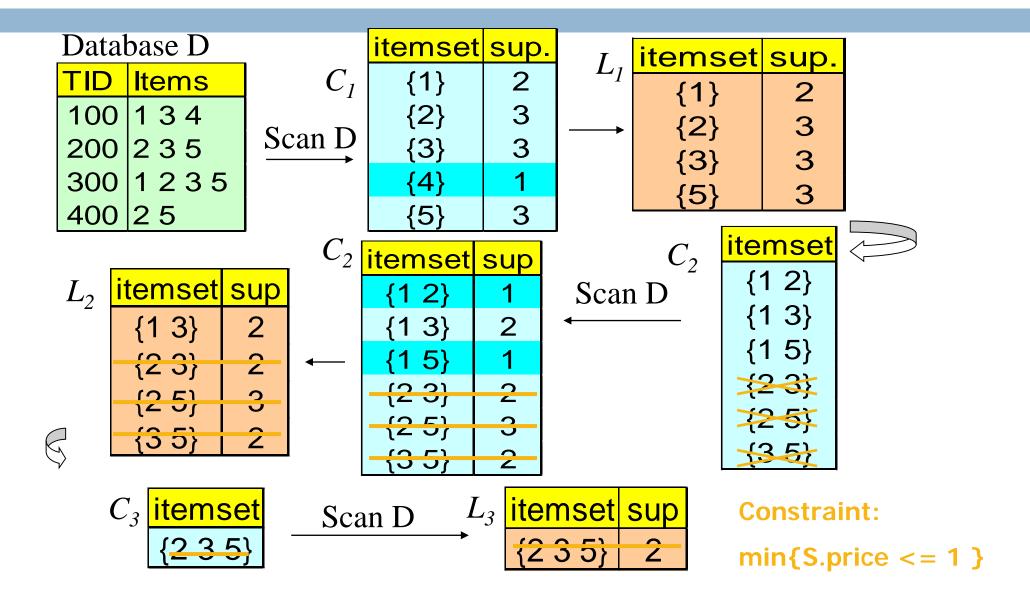
Succinctness

- □ Succinctness:
 - □ Given A_{1} , the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A_{1} , i.e., S contains a subset belonging to A_{1}
 - □ Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - \square min(S.Price) \leq v is succinct
 - \square sum(S.Price) $\ge v$ is not succinct
- Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
v ∈ S	yes
S⊇V	yes
S⊆V	yes
min(S) ≤ v	yes
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	yes
$sum(S) \le v (a \in S, a \ge 0)$	no
$sum(S) \ge v (a \in S, a \ge 0)$	no
range(S) ≤ v	no
range(S) ≥ v	no
avg(S) θ v, $\theta \in \{=, \leq, \geq\}$	no
support(S) ≥ ξ	no
support(S) ≤ ξ	no

Push a Succinct Constraint Deep



Sequential Pattern Mining

- Sequential Pattern and Sequential Pattern Mining
- GSP: Apriori-Based Sequential Pattern Mining
- SPADE: Sequential Pattern Mining in Vertical Data Format
- PrefixSpan: Sequential Pattern Mining by Pattern-Growth
- CloSpan: Mining Closed Sequential Patterns

GSP: Candidate Generation

Frequent	Candidate 4-Sequences			
3-Sequences	after join	after pruning		
$\langle (1,2)(3) \rangle$	$\langle (1,2)(3,4) \rangle$	$\langle (1,2)(3,4) \rangle$		
$\langle (1,2)(4) \rangle$	$\langle (1,2)(3)(5) \rangle$			
$\langle (1) (3,4) \rangle$				
$\langle (1,3)(5) \rangle$				
$\langle (2) (3,4) \rangle$				
$\langle (2) (3) (5) \rangle$				

Figure 3: Candidate Generation: Example

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence < (1) (3) (5) > is not frequent.

GSP Algorithm: Apriori Candidate Generation

The apriori-generate function takes as argument L_{k-1} , the set of all large (k-1)-sequences. The function works as follows. First, join L_{k-1} with L_{k-1} :

```
insert into C_k

select p.litemset_1, ..., p.litemset_{k-1}, q.litemset_{k-1}

from L_{k-1} p, L_{k-1} q

where p.litemset_1 = q.litemset_1, ...,

p.litemset_{k-2} = q.litemset_{k-2};
```

Next, delete all sequences $c \in C_k$ such that some (k-1)-subsequence of c is not in L_{k-1} .

Large	Candidate	Candidate
3-Sequences	4-Sequences	4-Sequences
	(after join)	(after pruning)
$\langle 1 \ 2 \ 3 \rangle$	$\langle 1 \ 2 \ 3 \ 4 \rangle$	$\langle 1 \ 2 \ 3 \ 4 \rangle$
$\langle 1 \ 2 \ 4 \rangle$	$\langle 1 \ 2 \ 4 \ 3 \rangle$	
$\langle 1 \ 3 \ 4 \rangle$	$\langle 1 \ 3 \ 4 \ 5 \rangle$	
$\langle 1 \ 3 \ 5 \rangle$	$\langle 1 \ 3 \ 5 \ 4 \rangle$	
$\langle 2 \ 3 \ 4 \rangle$,	

Figure 7: Candidate Generation