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Mining Diverse Patterns

0 Mining Multiple-Level Associations
0 Mining Multi-Dimensional Associations
0 Mining Negative Correlations

0 Mining Compressed and Redundancy-Aware Patterns



Mining Multiple-Level Frequent Patterns

ltems often form hierarchies Uniform support

Ex.: Dairyland 2% milk; Level 1
Wonder wheat bread min_sup = 5%

Milk

[support = 10%]

How to set min-support evel 2~ 2% Milk i Skim Milk
min_sup = 5%

thresholds? [support = 6%] | | [support =2%]

___________________________

d  Uniform min-support across multiple levels (reasonable?)



Mining Multiple-Level Frequent Patterns

ltems often form hierarchies Uniform support

Ex.: Dairyland 2% milk; Level 1
Wonder wheat bread min_sup = 5%

Level 2

How to set min-support min._sup = 5%

thresholds?

Uniform min-support across multiple levels (reasonable?)

Reduced support
il Level 1
[support = 10%] min_sup = 5%
2% Milk Skim Milk 1 Level2

[support = 6%]

[support = 2%] |

_____

min_sup = 1%

d Level-reduced min-support: ltems at the lower level are expected to

have lower support



ML/MD Associations with Flexible Support Constraints
_

7 Why flexible support constraints?

Real life occurrence frequencies vary greatly

= Diamond, watch, pens in a shopping basket

Uniform support may not be an interesting model

1 A flexible model

The lower-level, the more dimension combination, and the long pattern length, usually the
smaller support

General rules should be easy to specify and understand

Special items and special group of items may be specified individually and have higher

priority



Multi-level Association: Redundancy Filtering

Some rules may be redundant due to “ancestor” relationships between

items.

Example
milk = wheat bread [support = 8%, confidence = 70%]
2% milk = wheat bread [support = 2%, confidence = 72%)]

Suppose the 2% milk sold is about /4 of milk sold
We say the first rule is an ancestor of the second rule.

A rule is redundant if its support is close to the “expected” value, based

on the rule’s ancestor.



Multi-Level Mining: Progressive Deepening

A top-down, progressive deepening approach:

First mine high-level frequent items:
milk (15%), bread (10%)

Then mine their lower-level “weaker” frequent itemsets:

2% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different algorithms:
If adopting the same min_support across multi-levels
then toss t if any of #'s ancestors is infrequent.

If adopting reduced min_support at lower levels

then examine only those descendents whose ancestor’s support is frequent /non-negligible.
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2% milk (5%), wheat bread (4%)
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If adopting the same min_support across multi-levels
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then examine only those descendents whose ancestor’s support is frequent /non-negligible.
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Mining Multi-Dimensional Associations

Single-dimensional rules (e.g., items are all in “product” dimension)

buys(X, “milk”) = buys(X, “bread”)

Multi-dimensional rules (i.e., items in = 2 dimensions or predicates)
Inter-dimension association rules (no repeated predicates)
age(X, “18-25") A occupation(X, “student”) = buys(X, “coke”)
Hybrid-dimension association rules (repeated predicates)

age(X, “18-25") A buys(X, “popcorn”) = buys(X, “coke”)



Mining Rare Patterns vs. Negative Patterns
—

1 Rare patterns
Very low support but interesting (e.g., buying Rolex watches)

How to mine them?¢ Setting individualized, group-based min-support

thresholds for different groups of items

11
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Mining Rare Patterns vs. Negative Patterns

Rare patterns
Very low support but interesting (e.g., buying Rolex watches)

How to mine them?¢ Setting individualized, group-based min-support

thresholds for different groups of items
Negative patterns
Negatively correlated: Unlikely to happen together

Ex.: Since it is unlikely that the same customer buys both a Ford
Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a
Ford Expedition and buying a Ford Fusion are likely negatively

correlated patterns

How to define negative patterns?



Defining Negative Correlated Patterns
B

7 A (relative) support-based definition

o If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

o Then A and B are negatively correlated

13



Defining Negative Correlated Patterns
B

1 A (relative) support-based definition

o If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

o Then A and B are negatively correlated o £ ift?

Does this remind you the definition of lift:

71 |s this a good definition for large transaction datasets?

14
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Defining Negative Correlated Patterns

A (relative) support-based definition

If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

Then A and B are negatively correlated

s -
Does this remind you the definition of lift:

Is this a good definition for large transaction datasets?

Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one
transaction contained both A and B

When there are in total 200 transactions, we have
s(A U B) = 0.005, s(A) X s(B) = 0.25, s(A U B) << s(A) X s(B)
But when there are 10° transactions, we have
s(AUB)=1/10° s(A) X s(B)=1/103Xx1/103, s(A U B) > s(A) X s(B)
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Defining Negative Correlated Patterns

A (relative) support-based definition

If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup
(A) X sup(B)

you the definition of lift?
Then A and B are negatively correlated

Does this remind

Is this a good definition for large transaction datasets?

Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one
transaction contained both A and B

When there are in total 200 transactions, we have
s(A U B) = 0.005, s(A) X s(B) = 0.25, s(A U B) << s(A) X s(B)
But when there are 10° transactions, we have
s(AUB)=1/10° s(A) X s(B)=1/103x1/103, s(A U B) > s(A) X s(B)

What is the problem2—Null tfransactions: The support-based definition is not null-
invariant!



Defining Negative Correlation:

Need Null-Invariance in Definition
TR

1 A good definition on negative correlation should take care of the null-invariance problem

1 Whether two itemsets A and B are negatively correlated should not be influenced by the
number of null-transactions

Which measure should we use? Recall last lectures....

17



Defining Negative Correlation:

Need Null-Invariance in Definition
]

1 A good definition on negative correlation should take care of the null-invariance problem

Whether two itemsets A and B are negatively correlated should not be influenced by the
number of null-transactions

1 A Kulczynski measure-based definition
If itemsets A and B are frequent but
(s(A U B)/s(A) + s(A U B)/s(B))/2 < ¢,

where € is a negative pattern threshold, then A and B are negatively correlated

1 For the same needle package problem:
No matter there are in total 200 or 10° transactions
m If € = 0.02, we have
(s(A U B)/s(A) + s(A UB)/s(B))/2 = (0.01 + 0.01)/2 <€

18
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Constraint-based Data Mining
B

11 Finding <!l the patterns in a database autonomousiye — unrealistic!

o1 The patterns could be too many but not focused!

20
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Constraint-based Data Mining

Finding «!! the patterns in a database

The patterns could be too many but not focused!

Data mining should be an process

User directs what to be mined using a
graphical user interface)

¢ — unrealisticl

(or a
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Constraint-based Data Mining

Finding «!! the patterns in a database ¢ — unrealistic!

The patterns could be too many but not focused!

Data mining should be an process

User directs what to be mined using o (or a
graphical user interface)

Constraint-based mining
User flexibility: provides on what to be mined

System optimization: explores such constraints for efficient mining—
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Categories of Constraints

CONSTRAINT 1 (ITEM CONSTRAINT). Anitem constraint
specifies what are the particular individual or groups of items
that should or should not be present in the pattern. O

For example, a dairy company may be interested in patterns
containing only dairy products, when it mines transactions
in a grocery store.

CONSTRAINT 2 (LENGTH CONSTRAINT). A length con-
straint specifies the requirement on the length of the patterns,
i.e., the number of items in the patterns. O

For example, when mining classification rules for documents,
a user may be interested in only frequent patterns with at
least 5 keywords, a typical length constraint.
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Categories of Constraints

CONSTRAINT 3  (MODEL-BASED CONSTRAINT). A model-
based constraint looks for patterns which are sub- or super-
patterns of some given patterns (models). 0

For example, a travel agent may be interested in what other
cities that a visitor is likely to travel if s/he visits both Wash-
ington and New York city. That is, they want to find fre-
quent patterns which are super-patterns of {Washington,

New York city}. CONSTRAINT 4 (AGGREGATE CONSTRAINT). An aggre-

gate constraint is on an aggregate of items in a pattern,
where the aggregate function can be SUM, AVG, MAX, MIN,

etc. O

For example, a marketing analyst may like to find frequent
patterns where the average price of all items in each pattern
is over $100.



Constrained Frequent Pattern Mining: A Mining Query

Optimization Problem
I

1 Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

25
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Constrained Frequent Pattern Mining: A Mining Query
Optimization Problem

Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

A naive solution

First find all frequent sets, and test them for constraint satisfaction
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The Apriori Algorithm — Example

Database D itemset|sup.| | [itemset/sup.
TID |items C,| {1} | 2 T >
100(1 3 4 2y | 3 || @& 3
200235 |=CaND| (3 | 3 3 | 3
300|1235 {4} 1 (51 3
4002 5 {5} | 3 _
C, litemset] sup C, [ltemsetl
L, litemset|sup 12} | 1| ScanD {12}
{13 | 2 13| 2 |- {13}
23| 2|—| a5 | 1 g g
25} | 3 ) 2
EB 5% 5 {25} | 3 {2 5}
{35}y | 2 {3 5}
Cslitemset| ScanD  Lslitemset/sup
{2 3 5} - {235} 2




Naive Algorithm: Apriori + Constraint (Naive Solution)

Database D itemset|s

up.| | |itemset|sup.

TID |ltems C,| {1} 2 1 1} >

100|1 3 4 2} 3 .| (= 3

200(235 | =D y3 | 3 3 | 3

300(1235 {4 1 S

4002 5 {5) 3 S
C, litemset] sup C, [ltemsetl @

L, litemset|sup 12} | 1| ScanD {12}

{13 | 2 13| 2 |- {13}

23y 2 |+— | {15 | 1 {15}

251 L3 {23} | 2 {2 3}

@ 3532 {25} | 3 {2 5}

{35}y | 2 {3 5}

Cslitemset| ScanD  Lslitemset/sup
{2 3 5} - {225},

AY
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Constrained Frequent Pattern Mining: A Mining Query
Optimization Problem

Given a frequent pattern mining query with a set of constraints C, the algorithm
should be

: it only finds frequent sets that satisfy the given constraints C

: all frequent sets satisfying the given constraints C are found

A naive solution
First find all frequent sets, and test them for constraint satisfaction

More efficient approaches:
Analyze the properties of comprehensively

the frequent pattern computation.



Anti-Monotonicity in Constraint-Based Mining
.,

71 Anti-monotonicity

11 When an itemset S violates the constraint, so does any of

its superset
o sum(S.Price) < v is anti-monotone?

o sum(S.Price) =2 v is anti-monotone?

30



Anti-Monotonicity in Constraint-Based Mining
.,

71 Anti-monotonicity

11 When an itemset S violates the constraint, so does any of

its superset
o sum(S.Price) < v is anti-monofone

o sum(S.Price) =2 v is not anti-monotone

31
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Anti-Monotonicity in Constraint-Based Mining

Anti-monotonicity

When an itemset S violates the constraint, so does any of

its superset
sum(S.Price) < v is

sum(S.Price) = v is

Example. C: range(S.profit) < 15 is
ltemset ab violates C

So does every superset of ab

Define range(S.profit) = max(S.A) — min(S.A)

TDB (min_sup=2)

TID | Transaction
10 a,b,cdf
20 b,c,d,f,g,h
30 a, cde,f
40 c,e f, g
ltem | Profit

a 40

b 0

C -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Anti-Monotone?

Constraint Antimonotone
VeSS No
SoV no
ScV yes
min(S)<v no
min(S) > v yes
max(S) Lv yes
max(S) 2 v no
count(S) Lv yes
count(S)>v no
sum(S)<v(a € S,a=20) yes
sum(S)>2v(a € S,a=20) no
range(S) <v yes
range(S) > v no

avg(S)ov,0e{= £ 2} convertible

support(S) > & yes
support(S) <& no




Monotonicity in Constraint-Based Mining
.,

-1 Monotonicity

1 When an intemset S satisfies the constraint,

so does any of its superset
o1 sum(S.Price) Z v is ©

2 min(S.Price) <v is ?

34



Monotonicity in Constraint-Based Mining
.,

-1 Monotonicity

1 When an intemset S satisfies the constraint,

so does any of its superset
o1 sum(S.Price) = v is monotone

o min(S.Price) < v is monotone

35
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Monotonicity in Constraint-Based Mining

Monotonicity

When an intemset S satisfies the constraint,

so does any of its superset
sum(S.Price) > v is
min(S.Price) <v is

Example. C: range(S.profit) > 15
ltemset ab satisfies C

So does every superset of ab

TDB (min_sup=2)

TID Transaction
10 a,b,cdf
20 b,c,d,f,g,h
30 a, cde,f
40 c,e f, g
Item | Profit

a 40

b 0

C -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Monotone?

Constraint Monotone
VeSS yes
SoV yes
ScV no
min(S) <v yes
min(S) > v no
max(S) <v no
max(S) > v yes
count(S) <v no
count(S) > v yes
sum(S)<v(a € S,a=20) no
sum(S)2v(a € S,a=20) yes
range(S)<v no
range(S) 2 v yes
avg(S)ov,0e{= £, 2} convertible
support(S) = & no
support(S)<§ yes
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The Apriori Algorithm — Example

Database D itemset|sup.| | [itemset/sup.
TID |items C,| {1} | 2 T >
100(1 3 4 2y | 3 || @& 3
200235 |=CaND| (3 | 3 3 | 3
300|1235 {4} 1 (51 3
4002 5 {5} | 3 _
C, litemset] sup C, [ltemsetl
L, litemset|sup 12} | 1| ScanD {12}
{13 | 2 13| 2 |- {13}
23| 2|—| a5 | 1 g g
25} | 3 ) 2
EB 5% 5 {25} | 3 {2 5}
{35}y | 2 {3 5}
Cslitemset| ScanD  Lslitemset/sup
{2 3 5} - {235} 2
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Naive Algorithm: Apriori + Constraint

Database D itemset|sup.| | [itemset/sup.
TID |items C,| {1} | 2 T >
100|134 2y | 3 || @& 3
200235 |=CaND| (3 | 3 3 | 3
3001235 {4y | 1 S
4002 5 {5) 3 S
C, litemset] sup C, [ltemsetl
L, |itemset|sup 12} | 1| ScanD {12}
{13 | 2 13| 2 |- {1 3}
23y 2 |+— | {15 | 1 {15}
251 L3 {23} | 2 {2 3}
@ 3532 {25} | 3 {2 5}
{35} | 2 {3 5}
C;litemset] gcanD Lz l|itemset|sup
{2 35) " 228 2
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Pushing the constraint deep into the process

Database D itemset|sup. , [itemset[sup.
TID |ltems Cl {1} 2 {1} 2
100|1 3 4 2 | 3 || ¢2 3
2001235 | D 13y | 3 §3§ 3
300(1235 4y | 1 PO
4002 5 513
C; [itemset[sup C, [temset
L, litemset|sup 12} | 1| ScanD {12}
{13 | 2 13| 2 |- {1 3}
{2 3} 2 | «— | 18] L 1255
¢ Lssil2 G oo
190 Y5 | £ \~ )
C;litemset]  Scan D =L3 itemset| sup
{235 {235} 2

Why?



Converting “Tough” Constraints
B

11 Convert tough constraints into anti-monotone or monotone by properly

ordering items

41
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Converting “Tough” Constraints

Convert tough constraints into anti-monotone or monotone by properly

ordering items

Examine C: avg(S.profit) = 25

Order items in value-descending order
<a,f,g,d b, h c e>
If an itemset afb violates C

So does afbh, afb™

It becomes
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Converting “Tough” Constraints

Convert tough constraints into anti-monotone

or monotone by properly ordering items

Examine C: avg(S.profit) = 25
Order items in value-descending order
<a,f,g,d b, h c e>
If an itemset afb violates C
So does afbh, afb™

It becomes

TDB (min_sup=2)

TID

Transaction

10

a b, cdf

20

b,c,d,f,g,h

30

a c,de,f

40

c,e f, g

ltem

Profit

40

0

-20

10

-30

30

20

SQ | == (QA|lO | T

-10
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Convertible Constraints

Let R be an order of items

Convertible anti-monotone

If an itemset S violates a constraint C, so does every itemset having S as a

prefix w.r.t. R

Ex. avg(S) < v w.r.t. item value ascending order

Why?
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Convertible Constraints

Let R be an order of items

Convertible anti-monotone

If an itemset S violates a constraint C, so does every itemset having S as a prefix
w.r.t. R

Ex. avg(S) £ v w.r.t. item value ascending order

Convertible monotone

If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t.
R

Ex. avg(S) = v w.r.t. item value ascending order
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Strongly Convertible Constraints

avg(X) = 25 is convertible anti-monotone w.r.t. item
value descending order R: <q, f, g, d, b, h, ¢, e>

If an itemset af violates a constraint C, so does every
itemset with af as prefix, such as afd

avg(X) = 25 is convertible monotone w.r.t. item value
ascending order R'': <e, ¢, h, b, d, g, f, a>

If an itemset d satisfies a constraint C, so does itemsets df
and dfa, which having d as a prefix

Thus, avg(X) =2 25 is

ltem | Profit

a 40
b 0

C -20
d 10
e -30
f 30
g 20
h -10
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What Constraints Are Convertible?

value, v < 0)

, Convertible Convertible Strongly
Constraint anti-monotone | monotone | convertible
avg(S)<,2v Yes Yes Yes
median(S) <, > v Yes Yes Yes
<y (i
sum(S) < v (items could be of any Yes NO No
value, v > 0)
<y (i
sum(S) < v (items could be of any N Yes No
value, v<0)
>y (i
sum(S) = v (items could be of any N Yes No
value, v > 0)
>y (i
sum(S) = v (items could be of any Yes NO NO
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Combing Them Together—A General Picture

Constraint Antimonotone Monotone
VesS no yes
SoV no yes
ScV yes no
min(S) <v no yes
min(S) > v yes no
max(S) v yes no
max(S) 2 v no yes
count(S)<v yes no
count(S)>v no yes
sum(S)<v(a € S,a=20) yes no
sum(S)=2v(a € S,a=0) no yes
range(S) <v yes no
range(S) 2 v no yes
support(S) = § yes no
support(S)<§ no yes
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Classification of Constraints

Strongly

convertible

Convertible
anti-monotone

Inconvertible

Monotone

Convertible
monotone
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Mining With Convertible Constraints

C: avg(S.profit) =2 25

Scan transaction DB once
remove infrequent items

ltem h in transaction 40 is dropped

ltemsets a and f are good

TDB (min_sup=2)

TID

Transaction

10

a, fdb,c

20

f,g,d, b, c

30

a, fdc, e

40

f,g,h,c,e

ltem Profit

a

40

30

20

10

0

-10

-20

DO 10O | TDT|IT |l |=—

-30
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Can Apriori Handle Convertible Constraint?
A convertible, not monotone nor anti-monotone cannot be pushed

deep into the an Apriori mining algorithm

Within the level wise framework, no direct pruning based on the constraint
can be made

ltemset df violates constraint C: avg(X)>=25

Can we prune df afterwards?

ltem | Value

a 40
b 0

C -20
d 10
e -30
f 30
g 20
h -10
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Can Apriori Handle Convertible Constraint?
A convertible, not monotone nor anti-monotone cannot be pushed

deep into the an Apriori mining algorithm

Within the level wise framework, no direct pruning based on the constraint
can be made

ltemset df violates constraint C: avg(X)>=25

Since adf satisfies C, Apriori needs df to assemble adf, df
cannot be pruned

But it can be pushed into frequent-pattern growth framework!

ltem | Value

a 40
b 0

C -20
d 10
e -30
f 30
g 20
h -10
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Mining With Convertible Constraints in FP-Growth Framework

C: avg(X)>=25, min_sup=2
List items in every transaction in value descending
order R: <q, f, g, d, b, h, c, e>
C is convertible anti-monotone w.r.t. R
Scan TDB once

remove infrequent items
ltem h is dropped

ltemsets a and f are good, ...

Projection-based mining

Imposing an appropriate order on item projection

Many tough constraints can be converted into (anti)-
monotone

TDB (min_sup=2)

Item

Value

a

DO | T|IT|QlQ|—

TID | Transaction
10 a, f,dbc
20 f,g,d, b, c
30 a, f,dce
40 f,g,h,c,e




Mining With Convertible Constraints in FP-Growth Framework
_ ]

Tran. DB
afdbc
fgdbe
afdce
fghee

freq. items: a. f. g. d. b.c. e

C(a)=true
R: a-f-g-d-b-c-e

C(H=true
C(g)=true
/\ Constrained Frequent Pattern Mining: A
a-proj. DB f-proj. DB Pattern-Growth View
fdbe dbe
fdce gdbe
freq. items: £, d. c dee Jian Pei, Jiawei Han, SIGKDD 2002
C(at)=true %CE i
C(ad)=true freq. items: g. d. b.c. e
C(ac)=false C(tg)=true
C(fd)=false

54

af-proj. DB

ad-proj. DB

de - fg-proj. DB
de dbe
< ce

freq. items: d. ¢
C(afd)=true
C(afc)=false

freq. items: ¢
C(adc)=talse

freq. items: ¢
C(fgc)=false

Figure 1: Mining frequent itemsets satisfying constraint avg(S) > 25
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Handling Multiple Constraints

Different constraints may require different or even conflicting item-

ordering

If there exists an order R s.t. both C; and C, are convertible w.r.t. R,

then there is no conflict between the two convertible constraints

If there exists conflict on order of items

Try to satisfy one constraint first

Then using the order for the other constraint to mine frequent itemsets in the

corresponding projected database
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Summary



57

Sequence Databases & Sequential Patterns

Sequential pattern mining has broad applications
Customer shopping sequences

Purchase a laptop first, then a digital camera, and then a smartphone, within
6 months

Medical treatments, natural disasters (e.g., earthquakes), science &
engineering processes, stocks and markets, ...

Weblog click streams, calling patterns, ...
Software engineering: Program execution sequences, ...
Biological sequences: DNA, protein, ...

Transaction DB, sequence DB vs. time-series DB

Gapped vs. non-gapped sequential patterns

Shopping sequences, clicking streams vs. biological sequences
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Sequence Mining: Description

Input
A database D of sequences called data-sequences, in which:
I={i;, iy,...,i } is the set of items
each sequence is a list of transactions ordered by transaction-time

each transaction consists of fields: sequence-id, transaction-id, transaction-time and
a set of items.

Problem
To discover all the sequential patterns with a user-specified minimum support
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Input Database: example

Database D
Sequence-Id | Transaction | Items
Time
Cl1 1 Ringworld
Cl 2 Foundation
C1 15 Ringworld Engineers, Second Foundation
C2 1 Foundation, Ringworld
C2 20 Foundation and Empire
C2 50 Ringworld Engineers

45% of customers who bought Foundation will buy Foundation and Empire within the next

month.




Sequential Pattern and Sequential Pattern Mining
——

1 Sequential pattern mining: Given a set of sequences, find the complete set of frequent
subsequences (i.e., satisfying the min_sup threshold)

A sequence database

A sequence: < (ef)|(ab) (df) clb >

10 <a(abc)(ac)d(cf)> ad An element may contain a set of items (also called
20  <(ad)c(bc)(ae)> events) i | tered and we |

a Items within an element are unordered and we list
30 S(EiEEeEe> them alphabetically
40 <eg(af)cbc>

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

Q Given support threshold min_sup = 2, <(ab)c> is a sequential pattern
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A Basic Property of Sequential Patterns: Apriori

A basic property: Apriori (Agrawal & Sirkant’94)
If a sequence S is not frequent

Then none of the super-sequences of S is frequent
E.g, <hb> is infrequent =2 so do <hab> and <(ah)b>

Seq. ID Sequence
10 <(bd)cb(ac)> _
20 <(bf)(ce)b(fg)> (,37;>.//7en55up_pzort threshold
30 <(ah)(bf)abf> _SUp =
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>




min_sup = 2

Cand.
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Initial candidates: All 8-singleton sequences

Scan DB once, count support for each candidate

<a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

Generate length-2 candidate sequences

sup

N W W B U1 W

<a> <b> <c> <d> <e> <f>
<a> <aa> <ab> <ac> <ad> <ae> <af>
<b> <ba> <bb> <bc> <bd> <be> <bf>
<c> <ca> <cb> <cc> <cd> <ce> <cf>
<d> <da> <db> <dc> <dd> <de> <df>
<e> <ea> <eb> <ec> <ed> <ee> <ef>
<f> <fa> <fb> <fc> <fd> <fe> <ff>
<a> <b> <c> <d> <e> <f>
<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>
<b> <(bc)> <(bd)> <(be)> <(bf)>
<c> <(cd)> <(ce)> <(cf)>
<d> <(de)> <(df)>
<e> <(ef)>
<f>

GSP: Apriori-Based Sequential Pattern Mining

SID Sequence

10 <(bd)cb(ac)>
20 <(bf)(ce)b(fg)>
30 <(ah)(bf)abf>
40 <(be)(ce)d>
50 <a(bd)bcb(ade)>

Q Without Apriori pruning:

(8 singletons) 8*8+8*7/2 =92
length-2 candidates

Q  With pruning, length-2
candidates: 36 + 15=51
GSP (Generalized Sequential

Patterns): Srikant & Agrawal
@ EDBT’96)



GSP Mining and Pruning

5th scan: 1 cand. 1 length-5 seq. pat. <(bd)cba> Candidates cannot pass min_sup

4t scan: 8 cand. 7 length-4 seq. pat. <abba> <(bd)bc> ... Candidates not in DB
o

3"d scan: 46 cand. 20 length-3 seq. pat. 20 e

cand. not in DB at all <abb> <aab> <aba> <baa> <bab> ...

2" scan: 51 cand. 19 length-2 seq. pat. ;05 an>"" <af> <ba> <bb> ... < <(ab)> ... <(ef)>

10 cand. not in DB at all (W I
15t scan: 8 cand. 6 length-1 seq. pat. <a> <b> <c> <d> <e> <f> <g> <h>

min_sup = 2
O Repeat (for each level (i.e., length-k)) SID Sequence
O  Scan DB to find length-k frequent sequences 10 <(bd)cb(ac)>
O  Generate length-(k+1) candidate sequences from length-k frequent 20 <(bf)(ce)b(fe)>
sequences using Apriori - <(ah)(bf)abf>
O setk=k+1 40 <(be)(ce)d>

Q Until no frequent sequence or no candidate can be found
63

50 <a(bd)bcb(ade)>
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GSP: Algorithm

Phase 1:

Scan over the database to identify all the frequent items, i.e., 1-
element sequences

Phase 2:

lteratively scan over the database to discover all frequent
sequences. Each iteration discovers all the sequences with the same
length.

In the iteration to generate all k-sequences

Generate the set of all candidate k-sequences, C, by joining two (k-T)-
sequences if only their first and last items are different

Prune the candidate sequence if any of its k-1 contiguous subsequence is
not frequent

Scan over the database to determine the support of the remaining
candidate sequences

Terminate when no more frequent sequences can be found



GSP: Candidate Generation
—

Frequent Candidate 4-Sequences
3-Sequences after join after pruning
((1,2) 3)) | ((1,2) (3,4)) | {((1,2) (3,4))
((1,2) @) | {(1,2)(3) (5))
((1)(3,4))
((1,3) (5))
((2) (3,4))
{(2) (3) (5))

Figure 3: Candidate Generation: Example

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence
< (1) (3) (5) > is not frequent.
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GSP: Optimization Techniques

Applied to phase 2: computation-intensive

Technique 1: the hash-tree data structure

Used for counting candidates to reduce the number of candidates

that need to be checked
Leaf: a list of sequences

Interior node: a hash table

Technique 2: data-representation transformation

From horizontal format to vertical format

Ttem

Times

Transaction-Time | Items
10 1,2
25 4,6
45 3
50 1,2
65 3
90 2,4
95 6

=1 O T W b

— 10 — 50 — NULL

— 10 — 50 — 90 — NULL
— 45 — 65 — NULL

— 25 — 90 — NULL

— NULL

— 25 —+ 95 — NULL

— NULL




Backup slides



Sequential Pattern Mining in Vertical Data Format:

The SPADE Algorithm
I

O A sequence database is mapped to: <SID, EID>
aQ Grow the subsequences (patterns) one item at a time by Apriori candidate generation

[SID | EID | Items | a b
T T = SID EID SID EID
1 2 abc 1 ! ! -
S0 Sequence 15 | ae — C—
1 <a(abc)(ac)d(cf)> 1 :‘é ::31f 5 T 5 =
2 <(ad)c(bc)(ae)> 5 1 g g ;1 4 5
2 2 C
3 <(ef)(ab)(df)cb> 5 5 e 1 3
4 <eg(af)cbc> 2 4 ae
3 1 of ab ba
min_sup =2 3 5 ab SID EID (a) EID(b) SID EID (b) EID(a)
— 3 3 = 1 1 2 1 ) 3
. - a A 2 1 3 2 3 4
Ref: SPADE (Sequential ’ . }f; = - -
PAttern Discovery using 4 I ¢ 4 3 5
ival al i 4 2 g aba
Equivalent Class) [M. Zaki i i a(,:f SID EID (a) EID() EID(a)
2001] 4 5 b 1 1 2 3
4 6 c 2 1 3 4
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PrefixSpan: A Pattern-Growth Approach

- Prefix  Suffix (Projection) = Prefixand suffix
10  <a(abc)(ac)d(cf)> %
<a>

20 <(ad)c(bc)(ae)> <(abc)(ac)d(cf)> O  Given <a(abc)(ac)d(cf)>

30  <(ef)(ab)(df)cb> <aa> <(_bc)(ac)d(cf)> O  Prefixes: <a>, <aa>,
40  <eg(af)cbc> <ab> <(_c)(ac)d(cf)> <a(ab)>, <a(abc)>, ...
\ jl Suffix: Prefixes-based
= PrefixSpan Mining: Prefix Projections projection

Step 1: Find length-1 sequential patterns

m <a>, <b>, <c>, <d>, <e>, <f>

Step 2: Divide search space and mine each projected DB
m <a>-projected DB,

= <b>-projected DB, PrefixSpan (Prefix-projected
... Sequential pattern mining)
m <f>-projected DB, ... Pei, et al. @ TKDE'04
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PrefixSpan: Mining Prefix-Projected DBs

min_sup = 2

107 | <a(abcl(ac)dicf)> Length-1 sequential patterns

20 <(ad)c(bc)(ae)> <a>, <b>, <c>, <d>, <e>, <f>
30 <(ef)(ab)(df)cb>
<eg(af)cbc>
<(abc)(ac)d(cf)> Length-2 sequential
<(_d)c(bc)(ae)> patterns

<aa>, <ab>, <(ab)>,

<(_b)(df)cb> <ac>, <ad>, <af>

<(_f)cbc>

— Major strength of PrefixSpan:
No candidate subsegs. to be generated
= Projected DBs keep shrinking

70
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Consideration:

Pseudo-Projection vs. Physical Primplementation ojection
Major cost of PrefixSpan: Constructing projected DBs

Suffixes largely repeating in recursive projected DBs

When DB can be held in main memory, use pseudo projection

O No physically copying suffixes s = <a(abc)(ac)d(cf)>
Q  Pointer to the sequence l <a>
O Offset of the suffix s|<a>: (, 2) <(abc)(ac)d(cf)>

0 Butif it does not fit in memory l <ab>

2 Physical projection s|<ab>: (, 5) <(_c)(ac)d(cf)>
O Suggested approach:
o Integration of physical and pseudo-projection

O  Swapping to pseudo-projection when the data fits in memory
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CloSpan: Mining Closed Sequential Patterns

A closed sequential pattern s: There exists no superpattern s’ such that s’ D s, and s’ and
s have the same support

Which ones are closed? <abc>: 20, <abcd>:20, <abcde>:

O Why directly mine closed sequential patterns?
2 Reduce # of (redundant) patterns
O Attain the same expressive power
Q Property P,: If s2 s, sis closed iff two project DBs have the same
size

Q Explore Backward Subpattern and Backward Superpattern
pruning to prune redundant search space

Q Greatly enhances efficiency (Yan, et al., SDM’03)




CloSpan: When Two Projected DBs Have the Same Size

ID  Sequence

Q Ifsds,, sis closed iff two project DBs have the same size 1 <aefbcg> TSP = 2
2 When two projected sequence DBs have the same size? 2 <afegb(ac)>
O Here is one example: 3 <(afjea>
% <aa/<%> \§>\ <f>
S <cg> <fbcg> <bcg>
<fegb(ac)> <(ac)> <gb(ac)> <egb(ac)>
<(_f)ea> <a> <ea>

Size = 6)
\«Q>
Only need to keep

size =12 (including <cg>
parentheses) <(ac)>

Backward superpattern pruning
73
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Chapter 7 : Advanced Frequent Pattern Mining

Mining Diverse Patterns

Sequential Pattern Mining

Constraint-Based Frequent Pattern Mining :
Graph Pattern Mining

Pattern Mining Application: Mining Software Copy-and-Paste Bugs

Summary
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Constraint-Based Pattern Mining

0 Why Constraint-Based Mining?

O Different Kinds of Constraints: Different Pruning Strategies
Constrained Mining with Pattern Anti-Monotonicity
Constrained Mining with Pattern Monotonicity

0 Constrained Mining with Data Anti-Monotonicity
Constrained Mining with Succinct Constraints
Constrained Mining with Convertible Constraints
Handling Multiple Constraints

Constraint-Based Sequential-Pattern Mining
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Why Constraint-Based Mining?

Finding all the patterns in a dataset autonomously2—unrealistic!
Too many patterns but not necessarily user-interested!
Pattern mining in practice: Often a user-guided, interactive process

User directs what to be mined using a data mining query language (or a graphical user
interface), specifying various kinds of constraints

What is constraint-based mining?
Mine together with user-provided constraints

Why constraint-based mining?
User flexibility: User provides constraints on what to be mined
Optimization: System explores such constraints for mining efficiency

E.g., Push constraints deeply into the mining process



Various Kinds of User-Specified Constraints in Data Mining
_ ]

O Knowledge type constraint—Specifying what kinds of knowledge to mine
O Ex.: Classification, association, clustering, outlier finding, ...
O Data constraint—using SQL-like queries
O Ex.: Find products sold together in NY stores this year
Q Dimension/level constraint—similar to projection in relational database
O  Ex.:Inrelevance to region, price, brand, customer category
Q Interestingness constraint—various kinds of thresholds
O Ex.: Strong rules: min_sup > 0.02, min_conf > 0.6, min_correlation > 0.7

Q Rule (or pattern) constraint <j The focus of this study
O Ex.: Small sales (price < $10) triggers big sales (sum > $200)
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Pattern Space Pruning with Pattern Anti-Monotonicity

10 a,b,c,d, fh
20 b,c,d, fgh
30 b,cdfg
40 a,c e f, g

min_sup = 2
Item  Price
100
40
150
35
55
45
80
10

o QO

-~ Md QO O

> 0o

Profit
40
0
—20
—-15
—30
—-10
20
5

A constraint c is anti-monotone
If an itemset S violates constraint ¢, so does any of its superset
That is, mining on itemset S can be terminated
Ex. 1: ¢,;: sum(S.price) < v is anti-monotone
Ex. 2: c,: range(S.profit) < 15 is anti-monotone
Itemset ab violates c, (range(ab) = 40)
So does every superset of ab
Ex. 3. c3: sum(S.Price) 2 v is not anti-monotone
Ex. 4. Is ¢c,: support(S) = o anti-monotone?

Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price >0
Profit can be negative



Pattern Monotonicity and Its Roles

= A constraint c is monotone: If an itemset S satisfies the

TID Transaction constraint ¢, so does any of its superset

10 a,b,cdfh
20 b,c,d,fgh
30 b,c,dfg

That is, we do not need to check c in subsequent mining

= Ex.1:c;:sum(S.Price) = v is monotone
40 a,cefg

min_sup =2 = Ex.2:c,: min(S.Price) <v is monotone
: . , ,
e = Ex. 3: ¢;: range(S.profit) > 15 is monotone
a 100 40
b 40 0 Itemset ab satisfies c,
C 150 -20
g 35 -15 So does every superset of ab
e 55 -30
f 45 -10
g 80 20 Note: item.price >0
h 10 5 Profit can be negative
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a,b,c,dfh

20 b,c,d,f,gh

30 b,cdfg

40 a,c e f, g

min_sup = 2

Item  Price Profit
a 100 40
b 40 0
C 150 -20
d 35 —-15
e 55 —30
f 45 -10
g 80 20
h 10 5

O

Data Space Pruning with Data Anti-Monotonicity
--_

A constraint ¢ is dafa anfi-monotone: In the mining process, if a data entry t
cannot satisfy a pattern p under ¢, f cannot satisfy p’s superset either

Data space pruning: Data entry t can be pruned
Ex. 1: ¢;: sum(S.Profit) > v is data anti-monotone

Let constraint ¢, be: sum(S.Profit) = 25

m T,0:{b, ¢, d, f, g} can be removed since none of their combinations can
make an S whose sum of the profitis > 25

Ex. 2: c,: min(S.Price) < v is data anti-monotone

m Consider v = 5 but every item in a transaction, say T5,, has a price higher
than 10

Ex. 3: c5: range(S.Profit) > 25 is data anti-monotone

Note: item.price >0
Profit can be negative
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Expressing Patterns in Compressed Form: Closed Patterns

How to handle such a challenge?

Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and
there exists no super-pattern Y D X, with the same support as X

Let Transaction DB TDB,: T;: {ay, ..., aso}; To: {ay, ..., 100}
Suppose minsup = 1. How many closed patterns does TDB, contain?
Two: P.: “{a;, ..., asok: 27; Py “{ay, .o, ajgok: 17
Closed pattern is a lossless compression of frequent patterns

Reduces the # of patterns but does not lose the support information!

You will still be able to say: “{a,, ..., a .k 2", “{as, as,}: 1”7
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Expressing Patterns in Compressed Form: Max-Patterns

Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern

if X is frequent and there exists no frequent super-pattern Y D X
Difference from close-patterns?
Do not care the real support of the sub-patterns of a max-pattern
Let Transaction DB TDB,: T,: {a;, ..., aso}; To: {a;, ..., a0}
Suppose minsup = 1. How many max-patterns does TDB, contain?
One: P: “{a,, ..., ajgo): 1”7
Max-pattern is a lossy compression!
We only know {a;, ..., a .} is frequent

But we do not know the real support of {a;, ..., a}, ..., any more!

Thus in many applications, close-patterns are more desirable than max-patterns
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Scaling FP-growth by Item-Based Data

What if FP-tree cannot fit in memory2—Do not construct FP-tree
“Project” the database based on frequent single items
Construct & mine FP-tree for each projected DB

Parallel projection vs. partition projection
Parallel projection: Project the DB on each frequent item

Space costly, all partitions can be processed in parallel
Partition projection: Partition the DB in order

Passing the unprocessed parts to subsequent partitions

Projection

Trans. DB Parallel projection Partition projection

ffsfagh ﬂw f;-proj. DB f,-proj. DB f,-proj. DB

f3fsi] Assume only f’s are f, f; f, 3 fy

f, f, k frequent & the f f, fs

£, £, h frequent item f, f, f, will be projected to f,-proj.

ordering is: f,-f,-f;-f,

DB only when processing f,-
proj. DB



Analysis of DBLP Coauthor Relationships

O DBLP: Computer science research publication bibliographic database

O > 3.8 million entries on authors, paper, venue, year, and other information

ID Author A Author B s(AUB) | s(A) | s(B) Jaccard Cosine Kule

1 Hans-Peter Kriegel Martin Ester 28 146 h4 0.163 (2) 0.315 (7) 0.355 (9)

2 Michael Carey Miron Livny 26 104 h8 0.191 (1) 0.335 (4) 0.349 (10)
3 Hans-Peter Kriegel Joerg Sander 24 146 36 0.152 (3) 0.331 (5) 0.416 (8)
4 Christos Faloutsos Spiros Papadimitriou 20 162 26 0.119 (7) 0.308 (10) 0.446 (7)

5 Hans-Peter Kriegel Martin Pfeifle a8 146 | I g 0.123 (6) 0.351 (2) 0.562 (2>
6 Hector Garcia-Molina Wilburt Labio 16 144 18 0.110 (9) | U312 (8) | 0.500 (4)

7 Divyakant Agrawal Wang Hsiung 46 120 16 3| 0.133 (5) 0.365 (1) 0.567 (1)

8 Elke Rundensteiner Murali Mani 16 104 20 0.148 (4) 0.351 (3) 0.477 (6)

9 Divyakant Agrawal Oliver Po Iz 120 T2 —0.100 (10) | 0.316 (6) 0.550 (3)>
10 Gerhard Weikum Martin Theobald 12 106 14 0.111 (8)

Which pairs of authors are strongly related?

Use Kulc to find Advisor-adyvisee, close collaborators

0.312 (9)‘0.485 5)

[

Advisor-advisee relation: Kulc: high, Jaccard: low, ]

cosine: middle




Analysis of DBLP Coauthor Relationships

A DBLP: Computer science research publication bibliographic database

O > 3.8 million entries on authors, paper, venue, year, and other information

ID Author A Author B s(AUB) | s(A) | s(B) Jaccard Cosine Kulc

1 Hans-Peter Kriegel Martin Ester 28 146 54 0.163 (2) 0.315 (7) 0.355 (9)

2 Michael Carey Miron Livny 26 104 h8 0.191 (1) 0.335 (4) 0.349 (10)
3 Hans-Peter Kriegel Joerg Sander 24 146 36 0.152 (3) 0.331 (5) 0.416 (8)
4 Christos Faloutsos Spiros Papadimitriou 20 162 26 0.119 (7) 0.308 (10) 0.446 (7)

5 Hans-Peter Kriegel Martin Pfeifle a8 146 | I8 g 0.123 (6) 0.351 (2) 0.56? 2>
6 Hector Garcia-Molina Wilburt Labio 16 144 18 0.110 (9) [ 0312 (3) 500 (4)

7 Divyakant Agrawal Wang Hsiung 46 120 16 3| 0.133 (5) 0.365 (1) 0.567 (1)

8 Elke Rundensteiner Murali Mani 16 104 20 0.148 (4) 0.351 (3) 0.477 (6)

9 Divyakant Agrawal Oliver Po Iz 120 T2 —#0.100 (10) | 0.316 (6) 0.550 (3)>
10 Gerhard Weikum Martin Theobald 12 106 14 0.111 (8) 0.312 (9)‘0.485 (5)

[ Advisor-advisee relation: Kulc: high, Jaccard: low, ]
cosine: middle

Which pairs of authors are strongly related?

Use Kulc to find Advisor-advisee, close collaborators
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What Measures to Choose for Effective Pattern Evaluation?

Null value cases are predominant in many large datasets

Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the
papers; ......

Null-invariance is an important property

Lift, X2 and cosine are good measures if null transactions are not predominant

Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

Exercise: Mining research collaborations from research bibliographic data
Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)

Can you find the likely advisor-advisee relationship and during which years such a relationship
happened?

Ref.: C. Wang, J. Han, Y. Jig, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee
Relationships from Research Publication Networks", KDD'10



Mining Compressed Patterns

Pat-ID | Item-Sets Support
P1 {38,16,18,12} 205227
P2 {38,16,18,12,17} 205211
P3 {39,38,16,18,12,17} | 101758
P4 {39,16,18,12,17} 161563
P5 {39,16,18,12} 161576
O Closed patterns

a

Q Desired output (a good balance):
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d P1,P2,P3, P4, P5

0 Emphasizes too much on

support

0 There is no compression

Max-patterns
2 P3:information loss

Q P2, P3,P4

Why mining compressed patterns?

Too many scattered patterns but not so meaningful

Pattern distance measure

. T(P;)NT (P
Dist(P, ) =1 — ITEP—BUTEégI

&-clustering: For each pattern P, find all patterns which can be
expressed by P and whose distance to P is within & (6-cover)

All patterns in the cluster can be represented by P

Method for efficient, direct mining of compressed frequent
patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On
Compressing Frequent Patterns”, Knowledge and Data
Engineering, 60:5-29, 2007)
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Redundancy-Aware Top-k Patterns

11 Desired patterns: high significance & low redundancy

Q Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a

pattern set

@ O
@e ® oo
eo®® O

@00Cg ®)
OO0 ® @)
o D) ..O
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(a) a set of patterns
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significance

(c) traditional top-k
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significance + relevance
(b) redundancy-aware
top-k
@
@ O
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relevance

(d) summarization

Q Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Redundancy Filtering at Mining Multi-Level Associations

Multi-level association mining may generate many redundant rules

Redundancy filtering: Some rules may be redundant due to “ancestor”
relationships between items

milk = wheat bread [support = 8%, confidence = 70%] (1)
2% milk = wheat bread [support = 2%, confidence = 72%] (2)
Suppose the “2% milk” sold is about “1/4” of milk sold

Does (2) provide any novel information?

A rule is redundant if its support is close to the “expected” value, according to
its “ancestor” rule, and it has a similar confidence as its “ancestor”

Rule (1) is an ancestor of rule (2), which one to prune?
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Succinctness

Succinctness:

Given A, the set of items satisfying a succinctness constraint C, then any set S

satisfying C is based on A, , i.e., S contains a subset belonging to A,

ldea: Without looking at the transaction database, whether an itemset S

satisfies constraint C can be determined based on the selection of items
min(S.Price) < v is succinct
sum(S.Price) 2 v is not succinct

Optimization: If C is succinct, C is pre-counting pushable
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Which Constraints Are Succinct?

Constraint Succinct
VeSS yes
SoV yes
ScV yes
min(S) <v yes
min(S) > v yes
max(S) <v yes
max(S) > v yes
sum(S)<v(a € S,a=0) no
sum(S)=2v(a € S,a=0) no
range(S) <v no
range(S) > v no
avg(S)ov,0e{= <, 2} no
support(S) = & no
support(S) <& no
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Push a Succinct Constraint Deep

Database D itemset|sup. , [itemset[sup.
TID |ltems Cl {1} 2 {1} 2
100|134 2y | 3 1| g2 3
200235 |=CaND| (3 | 3 §3§ -
300(1235 {4} 1 (5 3
4002 5 {5} 3 _
C; [itemset| sup C, |tEmMSEL
L, |itemset|sup {12} | 1 Scan D {12}
{13 | 2 13| 2| ﬁ g
23 2 |— | 115 | 1 >
25| 3| B oo
§ {5531 2 e (25
1> Y | L . -
C;litemset]  Scan D =L3 itemset| sup
{235 {235} 2
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Sequential Pattern Mining

Sequential Pattern and Sequential Pattern Mining

GSP: Apriori-Based Sequential Pattern Mining

SPADE: Sequential Pattern Mining in Vertical Data Format
PrefixSpan: Sequential Pattern Mining by Pattern-Growth

CloSpan: Mining Closed Sequential Patterns



