CSE 5243 INTRO. TO DATA MINING

Advanced Frequent Pattern Mining (Chapter 7) Huan Sun, CSE@The Ohio State University 10/31/2017

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

Chapter 7 : Advanced Frequent Pattern Mining

- 🗆 Mining Diverse Patterns 🦊
- Constraint-Based Frequent Pattern Mining
- Sequential Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Mining Diverse Patterns

Mining Multiple-Level Associations

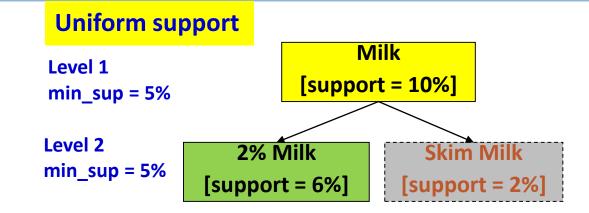
Mining Multi-Dimensional Associations

Mining Negative Correlations

Mining Compressed and Redundancy-Aware Patterns

Mining Multiple-Level Frequent Patterns

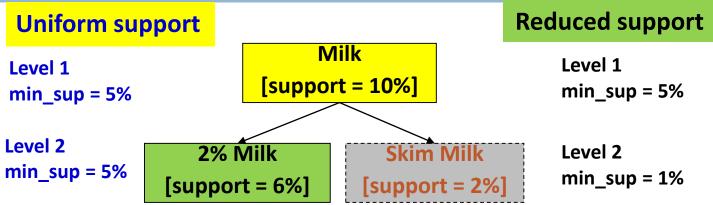
- Items often form hierarchies
 - Ex.: Dairyland 2% milk; Wonder wheat bread
- How to set min-support thresholds?



Uniform min-support across multiple levels (reasonable?)

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies Uniform
 - Ex.: Dairyland 2% milk; Wonder wheat bread
 - How to set min-support thresholds?



- Uniform min-support across multiple levels (reasonable?)
- Level-reduced min-support: Items at the lower level are expected to have lower support

ML/MD Associations with Flexible Support Constraints

Why flexible support constraints?

- Real life occurrence frequencies vary greatly
 - Diamond, watch, pens in a shopping basket
- Uniform support may not be an interesting model

□ A flexible model

- The lower-level, the more dimension combination, and the long pattern length, usually the smaller support
- General rules should be easy to specify and understand
- Special items and special group of items may be specified individually and have higher priority

Multi-level Association: Redundancy Filtering

- Some rules may be redundant due to "ancestor" relationships between items.
- Example
 - **milk** \Rightarrow wheat bread [support = 8%, confidence = 70%]
 - 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%]
 - **D** Suppose the 2% milk sold is about $\frac{1}{4}$ of milk sold
- □ We say the first rule is an ancestor of the second rule.
- A rule is redundant if its support is close to the "expected" value, based on the rule's ancestor.

Multi-Level Mining: Progressive Deepening

□ A top-down, progressive deepening approach:

First mine high-level frequent items: milk (15%), bread (10%)

Then mine their lower-level "weaker" frequent itemsets: 2% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different algorithms:

- If adopting the same min_support across multi-levels then toss t if any of t's ancestors is infrequent.
- If adopting reduced min_support at lower levels
 then examine only these descendents where greaster's support is frequent (non

Multi-Level Mining: Progressive Deepening

□ A top-down, progressive deepening approach:

First mine high-level frequent items: milk (15%), bread (10%)

Then mine their lower-level "weaker" frequent itemsets: 2% milk (5%), wheat bread (4%)

Different min_support threshold across multi-levels lead to different algorithms:

- If adopting the same min_support across multi-levels then toss t if any of t's ancestors is infrequent.
- If adopting reduced min_support at lower levels then examine only those descendents whose ancestor's support is frequent/non-negligible.

Mining Multi-Dimensional Associations

Single-dimensional rules (e.g., items are all in "product" dimension)
 buys(X, "milk") ⇒ buys(X, "bread")

Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)

Inter-dimension association rules (no repeated predicates)

■ age(X, "18-25") \land occupation(X, "student") \Rightarrow buys(X, "coke")

Hybrid-dimension association rules (repeated predicates)

■ age(X, "18-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")

Mining Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items

Mining Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based min-support thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a Ford Expedition and buying a Ford Fusion are likely negatively correlated patterns
 - How to define negative patterns?

- □ A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)
 - Then A and B are negatively correlated

- A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)
 - Then A and B are negatively correlated

Does this remind you the definition of *lift*?

□ Is this a good definition for large transaction datasets?

- A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)
 - Then A and B are negatively correlated
- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have

■ $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$

 \square But when there are 10^5 transactions, we have

■ $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$

Does this remind you the definition of *lift*?

- A (relative) support-based definition
 - If itemsets A and B are both frequent but rarely occur together, i.e., sup(A U B) << sup (A) × sup(B)
 - Then A and B are negatively correlated
- □ Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have

■ $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$

\square But when there are 10^5 transactions, we have

■ $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$

What is the problem?—Null transactions: The support-based definition is not nullinvariant!

Does this remind you the definition of *lift*?

Defining Negative Correlation: Need Null-Invariance in Definition

□ A good definition on negative correlation should take care of the null-invariance problem

Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

Which measure should we use? Recall last lectures....

Defining Negative Correlation: Need Null-Invariance in Definition

□ A good definition on negative correlation should take care of the null-invariance problem

Whether two itemsets A and B are negatively correlated should not be influenced by the number of null-transactions

A Kulczynski measure-based definition

If itemsets A and B are frequent but

 $(s(A \cup B)/s(A) + s(A \cup B)/s(B))/2 < \epsilon$,

where ϵ is a negative pattern threshold, then A and B are negatively correlated

- □ For the same needle package problem:
 - No matter there are in total 200 or 10⁵ transactions

If $\epsilon = 0.02$, we have

 $(s(A \cup B)/s(A) + s(A \cup B)/s(B))/2 = (0.01 + 0.01)/2 < \epsilon$

Chapter 7 : Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- 🗆 Constraint-Based Frequent Pattern Mining🦊
- Sequential Pattern Mining
- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- 🗆 Summary

Constraint-based Data Mining

□ Finding all the patterns in a database autonomously? — unrealistic!

The patterns could be too many but not focused!

Constraint-based Data Mining

□ Finding all the patterns in a database autonomously? — unrealistic!

The patterns could be too many but not focused!

Data mining should be an interactive process

User directs what to be mined using a data mining query language (or a graphical user interface)

Constraint-based Data Mining

□ Finding all the patterns in a database autonomously? — unrealistic!

The patterns could be too many but not focused!

Data mining should be an interactive process

User directs what to be mined using a data mining query language (or a graphical user interface)

Constraint-based mining

- User flexibility: provides constraints on what to be mined
- System optimization: explores such constraints for efficient mining—constraintbased mining

Categories of Constraints

CONSTRAINT 1 (ITEM CONSTRAINT). An item constraint specifies what are the particular individual or groups of items that should or should not be present in the pattern. \Box

For example, a dairy company may be interested in patterns containing only dairy products, when it mines transactions in a grocery store.

> CONSTRAINT 2 (LENGTH CONSTRAINT). A length constraint specifies the requirement on the length of the patterns, i.e., the number of items in the patterns. \Box

> For example, when mining classification rules for documents, a user may be interested in only frequent patterns with at least 5 keywords, a typical length constraint.

Categories of Constraints

CONSTRAINT 3 (MODEL-BASED CONSTRAINT). A modelbased constraint looks for patterns which are sub- or superpatterns of some given patterns (models). \Box

For example, a travel agent may be interested in what other cities that a visitor is likely to travel if s/he visits both Washington and New York city. That is, they want to find frequent patterns which are super-patterns of {Washington, New York city}.

CONSTRAINT 4 (AGGREGATE CONSTRAINT). An aggregate constraint is on an aggregate of items in a pattern, where the aggregate function can be SUM, AVG, MAX, MIN, etc. \Box

For example, a marketing analyst may like to find frequent patterns where the average price of all items in each pattern is over \$100.

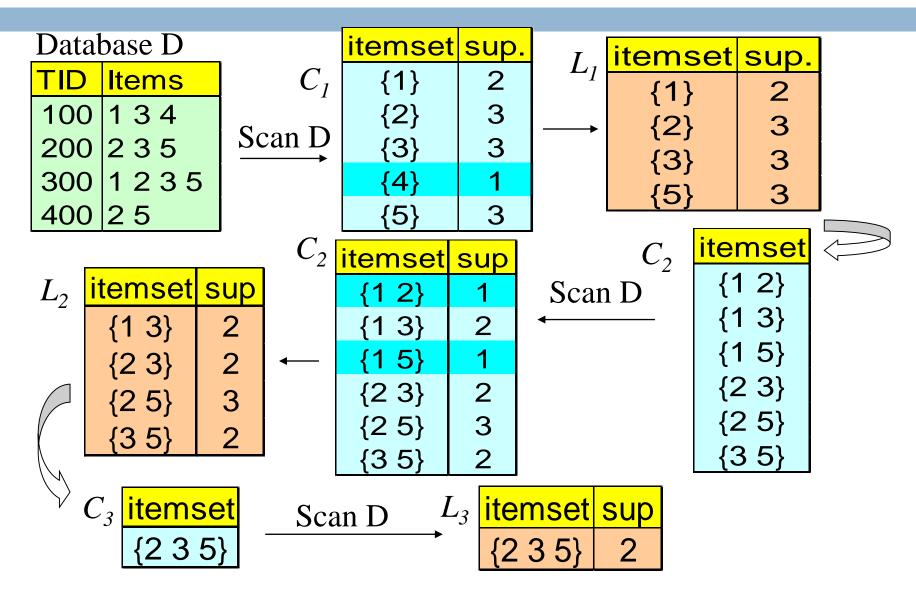
Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found

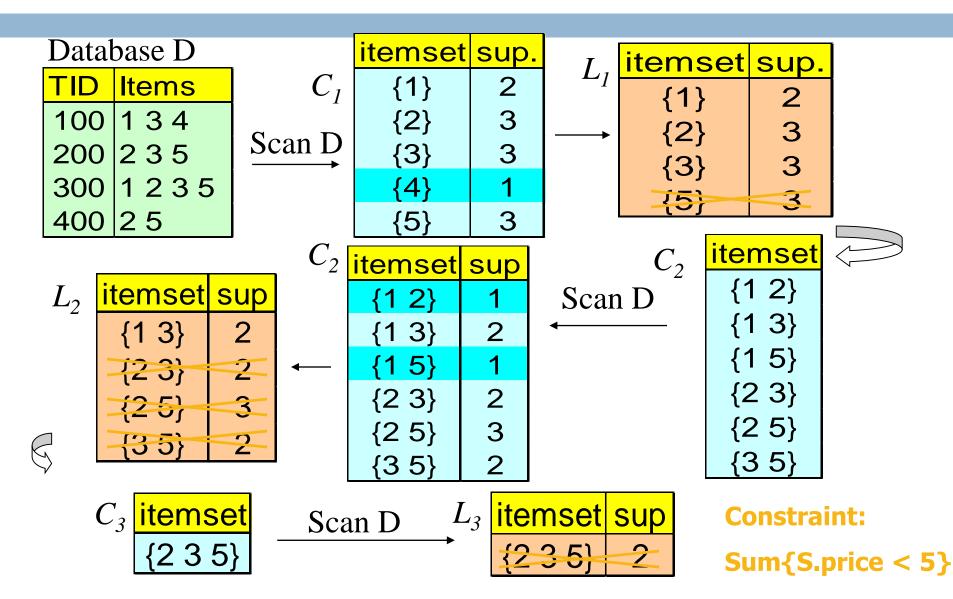
Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

- Given a frequent pattern mining query with a set of constraints C, the algorithm should be
 - sound: it only finds frequent sets that satisfy the given constraints C
 - complete: all frequent sets satisfying the given constraints C are found
- □ A naïve solution
 - **□** First find all frequent sets, and then test them for constraint satisfaction

The Apriori Algorithm — Example



Naïve Algorithm: Apriori + Constraint (Naïve Solution)



Constrained Frequent Pattern Mining: A Mining Query Optimization Problem

Given a frequent pattern mining query with a set of constraints C, the algorithm should be

sound: it only finds frequent sets that satisfy the given constraints C

- complete: all frequent sets satisfying the given constraints C are found
- □ A naïve solution
 - First find all frequent sets, and then test them for constraint satisfaction
- More efficient approaches:
 - Analyze the properties of constraints comprehensively
 - Push them as deeply as possible inside the frequent pattern computation.

Anti-Monotonicity in Constraint-Based Mining

□ Anti-monotonicity

When an itemset S violates the constraint, so does any of its superset

- **u** sum(S.Price) \leq v is anti-monotone?
- **u** sum(S.Price) \geq v is anti-monotone?

Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - **u** sum(S.Price) \leq v is anti-monotone
 - **u** sum(S.Price) \geq v is not anti-monotone

Anti-Monotonicity in Constraint-Based Mining

- Anti-monotonicity
 - When an itemset S violates the constraint, so does any of its superset
 - **u** sum(S.Price) \leq v is anti-monotone
 - **u** sum(S.Price) \geq v is not anti-monotone

- \Box Example. C: range(S.profit) ≤ 15 is anti-monotone
 - Itemset ab violates C
 - So does every superset of ab
 - **Define** range(S.profit) = max(S.A) min(S.A)

TDB (min_sup=2))
-----------------	---

Т	ĪD	Transaction
	10	a, b, c, d, f
2	20	b, c, d, f, g, h
	30	a, c, d, e, f
4	10	c, e, f, g

ltem	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Which Constraints Are Anti-Monotone?

Constraint	Antimonotone
v ∈ S	No
S ⊇ V	no
S⊆V	yes
min(S) ≤ v	no
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	no
count(S) ≤ v	yes
count(S) ≥ v	no
$sum(S) \le v (a \in S, a \ge 0)$	yes
$sum(S) \ge v (a \in S, a \ge 0)$	no
range(S) ≤ v	yes
range(S) ≥ v	no
avg(S) θ v, $\theta \in \{=, \leq, \geq\}$	convertible
support(S)≥ ξ	yes
support(S) ≤ ξ	no

Monotonicity in Constraint-Based Mining

Monotonicity

When an intemset S satisfies the constraint, so does any of its superset

- **u** sum(S.Price) \geq v is ?
- **min(S.Price)** $\leq v$ is ?

Monotonicity in Constraint-Based Mining

Monotonicity

When an intemset S satisfies the constraint,

so does any of its superset

- **u** sum(S.Price) \geq v is monotone
- **min(S.Price)** \leq v is monotone

Monotonicity in Constraint-Based Mining

Monotonicity

When an intemset S satisfies the constraint, so does any of its superset

- **u** sum(S.Price) \geq v is monotone
- **min(S.Price)** \leq v is monotone
- \square Example. C: range(S.profit) ≥ 15
 - Itemset ab satisfies C
 - So does every superset of ab

TDB (min_sup=2)	ГDВ	(min_	_sup=2)
-----------------	-----	-------	---------

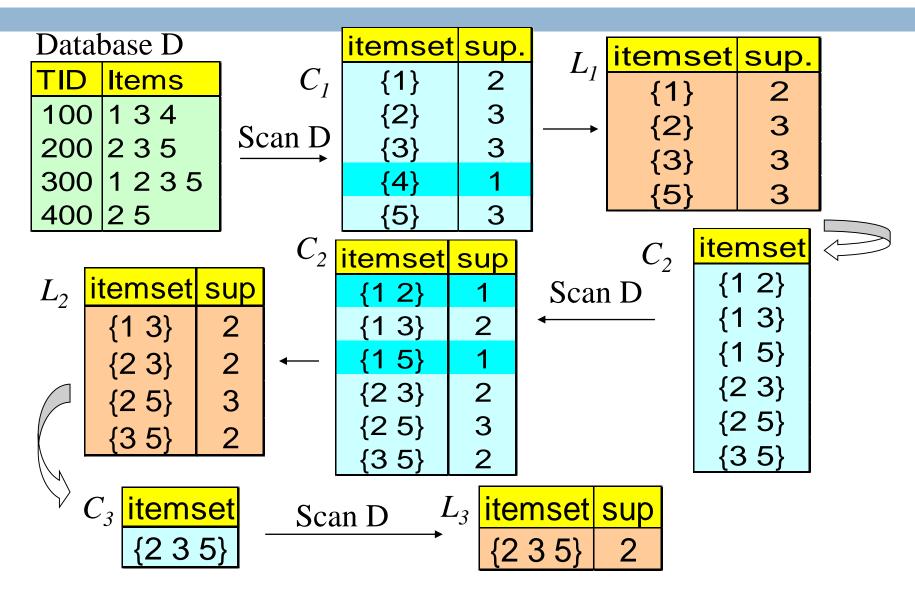
TID	Transaction	
10	a, b, c, d, f	
20	b, c, d, f, g, h	
30	a, c, d, e, f	
40	c, e, f, g	

ltem	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

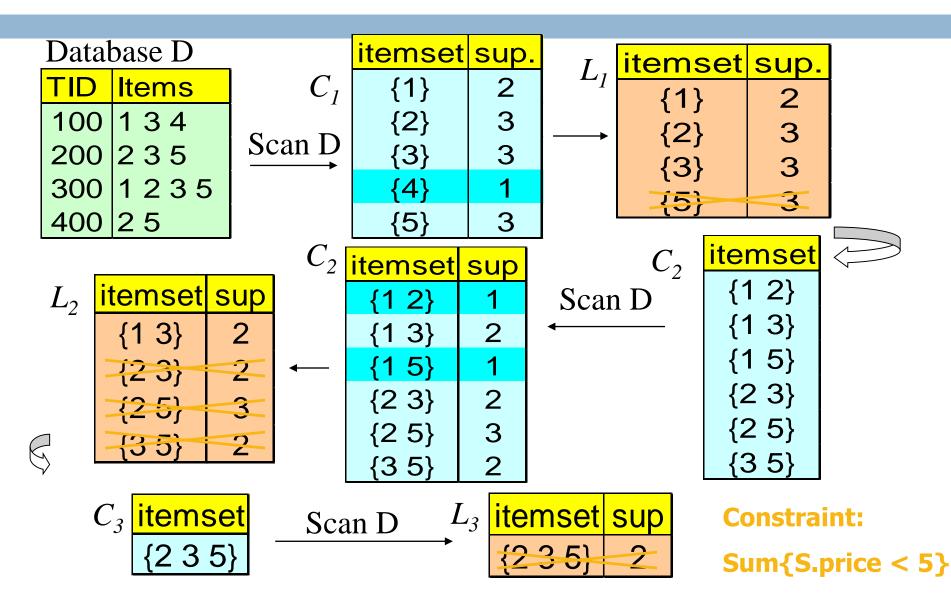
Which Constraints Are Monotone?

Constraint	Monotone
v ∈ S	yes
S ⊇ V	yes
S⊆V	no
min(S) ≤ v	yes
min(S) ≥ v	no
max(S) ≤ v	no
max(S) ≥ v	yes
count(S) ≤ v	no
count(S) ≥ v	yes
sum(S) ≤ v (a ∈ S, a ≥ 0)	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	yes
range(S) ≤ v no	
range(S) ≥ v yes	
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible
support(S)≥ ξ	no
support(S) ≤ ξ	yes

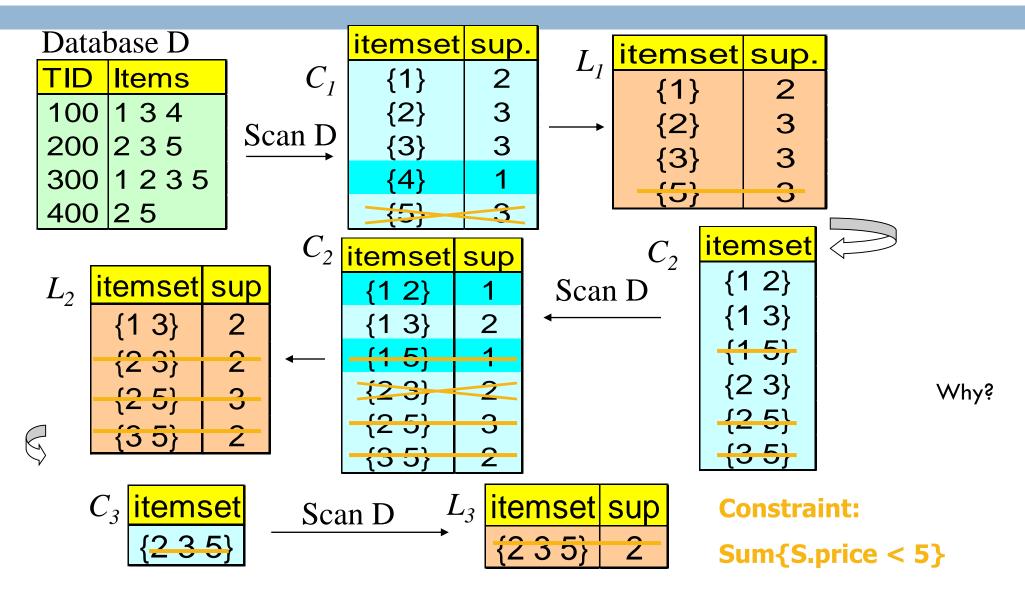
The Apriori Algorithm — Example



Naïve Algorithm: Apriori + Constraint



Pushing the constraint deep into the process



Converting "Tough" Constraints

Convert tough constraints into anti-monotone or monotone by properly ordering items

Converting "Tough" Constraints

Convert tough constraints into anti-monotone or monotone by properly ordering items

- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

Converting "Tough" Constraints

Convert tough constraints into anti-monotone or monotone by properly ordering items

- □ Examine C: $avg(S.profit) \ge 25$
 - Order items in value-descending order
 - <a, f, g, d, b, h, c, e>
 - If an itemset afb violates C
 - So does afbh, afb*
 - It becomes anti-monotone!

TDB	(min_	_sup=	=2)

TID	Transaction
10	a, b, c, d, f
20	b, c, d, f, g, h
30	a, c, d, e, f
40	c, e, f, g

ltem	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Convertible Constraints

□ Let R be an order of items

- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - Ex. $avg(S) \le v$ w.r.t. item value ascending order
 - Why?

Convertible Constraints

- □ Let R be an order of items
- Convertible anti-monotone
 - If an itemset S violates a constraint C, so does every itemset having S as a prefix w.r.t. R
 - **Ex.** $avg(S) \leq v$ w.r.t. item value ascending order
- Convertible monotone
 - If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t.
 R
 - **Ex.** $avg(S) \ge v$ w.r.t. item value ascending order

Strongly Convertible Constraints

- □ $avg(X) \ge 25$ is convertible anti-monotone w.r.t. item value descending order R: <a, f, g, d, b, h, c, e>
 - If an itemset af violates a constraint C, so does every itemset with af as prefix, such as afd
- □ $avg(X) \ge 25$ is convertible monotone w.r.t. item value ascending order R⁻¹: <e, c, h, b, d, g, f, a>
 - If an itemset d satisfies a constraint C, so does itemsets df and dfa, which having d as a prefix

 \Box Thus, $avg(X) \ge 25$ is strongly convertible

ltem	Profit
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

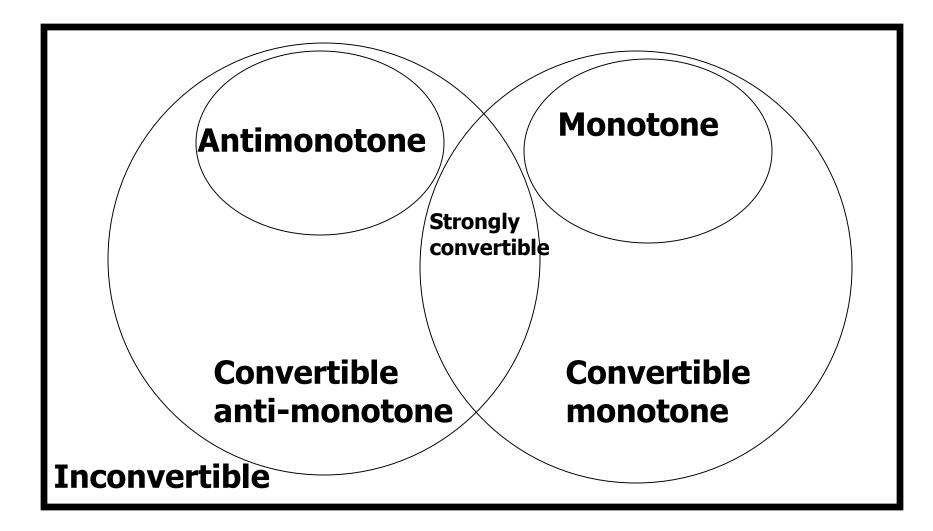
What Constraints Are Convertible?

Constraint	Convertible anti-monotone	Convertible monotone	Strongly convertible
$avg(S) \le , \ge v$	Yes	Yes	Yes
$median(S) \le , \ge v$	Yes	Yes	Yes
$sum(S) \le v$ (items could be of any value, $v \ge 0$)	Yes	No	No
$sum(S) \le v$ (items could be of any value, $v \le 0$)	No	Yes	No
$sum(S) \ge v$ (items could be of any value, $v \ge 0$)	No	Yes	No
sum(S) ≥ v (items could be of any value, v ≤ 0)	Yes	No	No

Combing Them Together—A General Picture

Constraint	Antimonotone	Monotone
v ∈ S	no	yes
S ⊇ V	no	yes
S⊆V	yes	no
min(S) ≤ v	no	yes
min(S) ≥ v	yes	no
max(S) ≤ v	yes	no
max(S) ≥ v	no	yes
count(S) ≤ v	yes	no
count(S) ≥ v	no	yes
sum(S) ≤ v (a ∈ S, a ≥ 0)	yes	no
$sum(S) \ge v (a \in S, a \ge 0)$	no	yes
range(S) ≤ v	yes	no
range(S) ≥ v	no	yes
$avg(S) \theta v, \theta \in \{=, \leq, \geq\}$	convertible	convertible
support(S)≥ ξ	yes	no
support(S) ≤ ξ	no	yes

Classification of Constraints



Mining With Convertible Constraints

□ C: $avg(S.profit) \ge 25$

TDB (min_sup=2)	TID	Transaction
	10	a, f, d, b, c
	20	f, g, d, b, c
	30	a, f, d, c, e
	40	f, g, h, c, e

- Scan transaction DB once
 - **remove infrequent items**
 - Item h in transaction 40 is dropped

Itemsets a and f are good

Item	Profit
а	40
f	30
g	20
d	10
b	0
h	-10
С	-20
е	-30

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - □ Itemset df violates constraint C: avg(X) > = 25

Can we prune df afterwards?

ltem	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Can Apriori Handle Convertible Constraint?

- A convertible, not monotone nor anti-monotone cannot be pushed deep into the an Apriori mining algorithm
 - Within the level wise framework, no direct pruning based on the constraint can be made
 - Itemset df violates constraint C: avg(X)>=25

Since adf satisfies C, Apriori needs df to assemble adf, df cannot be pruned

But it can be pushed into frequent-pattern growth framework!

ltem	Value
а	40
b	0
С	-20
d	10
е	-30
f	30
g	20
h	-10

Mining With Convertible Constraints in FP-Growth Framework

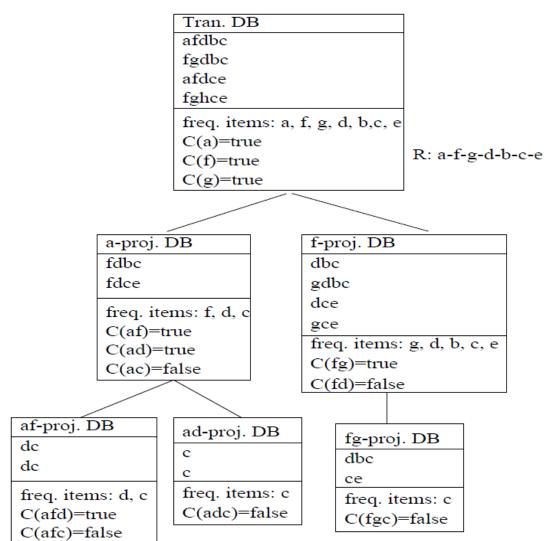
- C: avg(X) > = 25, min_sup=2 ltem Value 40 а List items in every transaction in value descending f 30 order R: $\langle a, f, g, d, b, h, c, e \rangle$ 20 g C is convertible anti-monotone w.r.t. R 10 d Scan TDB once b 0 -10 h remove infrequent items -20 С Item h is dropped -30 е Itemsets a and f are good, ... TDB (min_sup=2) **Projection-based mining**
 - Imposing an appropriate order on item projection
 - Many tough constraints can be converted into (anti)monotone

TID	Transaction
10	a, f, d, b, c
20	f, g, d, b, c
30	a, f, d, c, e

40

f, g, h, c, e

Mining With Convertible Constraints in FP-Growth Framework



Constrained Frequent Pattern Mining: A Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002

Figure 1: Mining frequent itemsets satisfying constraint $avg(S) \ge 25$.

Handling Multiple Constraints

 Different constraints may require different or even conflicting itemordering

□ If there exists an order R s.t. both C_1 and C_2 are convertible w.r.t. R, then there is no conflict between the two convertible constraints

□ If there exists conflict on order of items

- Try to satisfy one constraint first
- Then using the order for the other constraint to mine frequent itemsets in the corresponding projected database

Chapter 7 : Advanced Frequent Pattern Mining

- **Mining Diverse Patterns**
- **Constraint-Based Frequent Pattern Mining**
- Sequential Pattern Mining 🦊

- **Graph Pattern Mining**
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- Summary

Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- □ Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequence Mining: Description

Input

A database D of sequences called data-sequences, in which:

- $I = \{i_1, i_2, \dots, i_n\}$ is the set of items
- each sequence is a list of transactions ordered by transaction-time
- each transaction consists of fields: sequence-id, transaction-id, transaction-time and a set of items.

Problem

To discover all the sequential patterns with a user-specified minimum support

Input Database: example

Database \mathcal{D}

Sequence-Id	Transaction	Items
	Time	
C1	1	Ringworld
C1	2	Foundation
C1	15	Ringworld Engineers, Second Foundation
C2	1	Foundation, Ringworld
C2	20	Foundation and Empire
C2	50	Ringworld Engineers

45% of customers who bought *Foundation* will buy *Foundation and Empire* within the next month.

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>		<u>quence database_</u>	A <u>sequence:</u> < (ef) (ab) (df) c b >			
S	ID	Sequence				
1	.0	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>	An <u>element</u> may contain a set of <i>items</i> (also called			
2	20	<(ad)c(bc)(ae)>	events)			
3	0	<(ef)(<u>ab</u>)(df) <u>c</u> b>	Items within an element are unordered and we list them alphabetically			
4	40 <eg(af)cbc></eg(af)cbc>					
			<a(bc)dc> is a <u>subsequence</u> of <<u>a</u>(a<u>bc</u>)(ac)<u>d(c</u>f)></a(bc)dc>			

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

A Basic Property of Sequential Patterns: Apriori

□ A basic property: Apriori (Agrawal & Sirkant'94)

- If a sequence S is not frequent
- □ Then none of the super-sequences of S is frequent
- **\square** E.g, <hb> is infrequent \rightarrow so do <hab> and <(ah)b>

Seq. ID	Sequence	
10	<(bd)cb(ac)>	
20	<(bf)(ce)b(fg)>	
30	<(ah)(bf)abf>	
40	<(be)(ce)d>	
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>	

Given <u>support threshold</u> min_sup =2

GSP: Apriori-Based Sequential Pattern Mining

- Initial candidates: All 8-singleton sequences
 - a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

Oener <u>die lengin-z canaladie sequences</u>											
min_sup = 2			<a< td=""><td>></td><td><b:< td=""><td>></td><td><c></c></td><td></td><td><d></d></td><td><e></e></td><td><f></f></td></b:<></td></a<>	>	<b:< td=""><td>></td><td><c></c></td><td></td><td><d></d></td><td><e></e></td><td><f></f></td></b:<>	>	<c></c>		<d></d>	<e></e>	<f></f>
	up z	<a>	<aa< td=""><td>a></td><td><ab< td=""><td>< </td><td><ac></ac></td><td><</td><td><ad></ad></td><td><ae></ae></td><td><af></af></td></ab<></td></aa<>	a>	<ab< td=""><td>< </td><td><ac></ac></td><td><</td><td><ad></ad></td><td><ae></ae></td><td><af></af></td></ab<>	< 	<ac></ac>	<	<ad></ad>	<ae></ae>	<af></af>
\checkmark	_		<basic< td=""><td>a></td><td><bb< td=""><td><</td><td>cbc</td><td>></td><td><bd></bd></td><td><be></be></td><td><bf></bf></td></bb<></td></basic<>	a>	<bb< td=""><td><</td><td>cbc</td><td>></td><td><bd></bd></td><td><be></be></td><td><bf></bf></td></bb<>	<	cbc	>	<bd></bd>	<be></be>	<bf></bf>
Cand.	sup	<c></c>	<ca< td=""><td>1></td><td><cb< td=""><td>></td><td><cc></cc></td><td>></td><td><cd></cd></td><td><ce></ce></td><td><cf></cf></td></cb<></td></ca<>	1>	<cb< td=""><td>></td><td><cc></cc></td><td>></td><td><cd></cd></td><td><ce></ce></td><td><cf></cf></td></cb<>	>	<cc></cc>	>	<cd></cd>	<ce></ce>	<cf></cf>
<a>	3	<d></d>	<da< td=""><td>a></td><td><db< td=""><td>></td><td><dc></dc></td><td>></td><td><dd></dd></td><td><de></de></td><td><df></df></td></db<></td></da<>	a>	<db< td=""><td>></td><td><dc></dc></td><td>></td><td><dd></dd></td><td><de></de></td><td><df></df></td></db<>	>	<dc></dc>	>	<dd></dd>	<de></de>	<df></df>
	5	<e></e>	<ea></ea>		<eb< td=""><td>></td><td><ec></ec></td><td>></td><td><ed></ed></td><td><ee></ee></td><td><ef></ef></td></eb<>	>	<ec></ec>	>	<ed></ed>	<ee></ee>	<ef></ef>
<c></c>	4	<f></f>	<fa< td=""><td>></td><td><fb< td=""><td>></td><td><fc></fc></td><td>`</td><td><fd></fd></td><td><fe></fe></td><td><ff></ff></td></fb<></td></fa<>	>	<fb< td=""><td>></td><td><fc></fc></td><td>`</td><td><fd></fd></td><td><fe></fe></td><td><ff></ff></td></fb<>	>	<fc></fc>	`	<fd></fd>	<fe></fe>	<ff></ff>
<d></d>	3		<a>	<	b>	<	<c></c>		<d></d>	<e></e>	<f></f>
<e></e>	3	<a>		<(a	ab)>	<(ac)>	<	<(ad)>	<(ae)>	<(af)>
<f></f>	2					<(bc)>	<	<(bd)>	<(be)>	<(bf)>
< _	\sim	<c></c>						<	<(cd)>	<(ce)>	<(cf)>
		<d></d>								<(de)>	<(df)>
		<e></e>									<(ef)>
		<f></f>									

Sequence
<(bd)cb(ac)>
<(bf)(ce)b(fg)>
<(ah)(bf)abf>
<(be)(ce)d>
<a(bd)bcb(ade)></a(bd)bcb(ade)>

- Without Apriori pruning: (8 singletons) 8*8+8*7/2 = 92 length-2 candidates
- With pruning, length-2 candidates: 36 + 15= 51

GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

GSP Mining and Pruning

Candidates cannot pass min_sup <(bd)cba> 5th scan: 1 cand. 1 length-5 seq. pat. threshold 4th scan: 8 cand. 7 length-4 seq. pat. Candidates not in DB <abba> <(bd)bc> ... 3rd scan: 46 cand. 20 length-3 seq. pat. 20 <abb> <aab> <aba> <bab> ... cand. not in DB at all 2nd scan: 51 cand. 19 length-2 seq. pat. <aa> <ab> ... <af> <ba> <bb> ... <ff> <(ab)> ... <(ef)> 10 cand. not in DB at all <a> <c> <d> <e> <f> <g> <h> 1st scan: 8 cand. 6 length-1 seq. pat. $min_{sup} = 2$

- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - Generate length-(k+1) candidate sequences from length-k frequent sequences using Apriori
 - □ set k = k+1
- Until no frequent sequence or no candidate can be found

 SID
 Sequence

 10
 <(bd)cb(ac)>

 20
 <(bf)(ce)b(fg)>

 30
 <(ah)(bf)abf>

 40
 <(be)(ce)d>

 50
 <a(bd)bcb(ade)>

GSP: Algorithm

Phase 1:

 Scan over the database to identify all the frequent items, i.e., 1element sequences

Phase 2:

- Iteratively scan over the database to discover all frequent sequences. Each iteration discovers all the sequences with the same length.
- \square In the iteration to generate all *k*-sequences
 - Generate the set of all candidate k-sequences, C_k , by joining two (k-1)-sequences if only their first and last items are different
 - Prune the candidate sequence if any of its k-1 contiguous subsequence is not frequent
 - Scan over the database to determine the support of the remaining candidate sequences
- Terminate when no more frequent sequences can be found

GSP: Candidate Generation

Frequent	Candidate 4-Sequences					
3-Sequences	after join	after pruning				
$\langle (1,2) (3) \rangle$	$\langle (1,2) (3,4) \rangle$	$\langle (1,2) (3,4) \rangle$				
$\langle (1,2) (4) \rangle$	$\langle (1, 2) (3) (5) \rangle$					
$\langle (1) (3, 4) \rangle$						
$\langle (1,3) (5) \rangle$						
$\langle (2) (3,4) \rangle$						
\langle (2) (3) (5) \rangle						

Figure 3: Candidate Generation: Example

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence < (1) (3) (5) > is not frequent.

GSP: Optimization Techniques

- □ Applied to phase 2: computation-intensive
- □ Technique 1: the hash-tree data structure
 - Used for counting candidates to reduce the number of candidates that need to be checked
 - Leaf: a list of sequences
 - Interior node: a hash table
- Technique 2: data-representation transformation
 - From horizontal format to vertical format

Transaction-Time	Items	
10	1, 2	
25	4, 6	
45	3	
50	1, 2	
65	3	
90	2, 4 6	
95	6	

Iten	n Times
1	$ ightarrow 10 ightarrow 50 ightarrow \mathrm{NULL}$
2	ightarrow 10 $ ightarrow$ 50 $ ightarrow$ 90 $ ightarrow$ NULL
3	$ ightarrow 45 ightarrow 65 ightarrow \mathrm{NULL}$
4	$ ightarrow 25 ightarrow 90 ightarrow \mathrm{NULL}$
5	ightarrow NULL
6	$ ightarrow 25 ightarrow 95 ightarrow \mathrm{NULL}$
7	ightarrow NULL

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

- A sequence database is mapped to: <SID, EID>
- Grow the subsequences (patterns) one item at a time by Apriori candidate generation

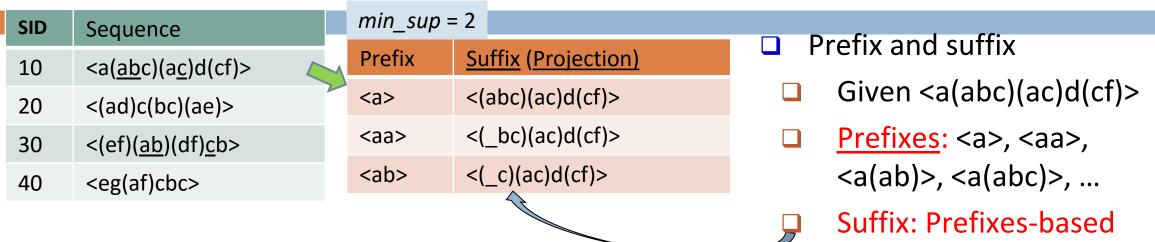
SID	Sequence			
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>			
2	<(ad)c(bc)(ae)>			
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>			
4	<eg(af)cbc></eg(af)cbc>			
min_sup = 2				

Ref: SPADE (<u>S</u>equential <u>PA</u>ttern <u>D</u>iscovery using <u>E</u>quivalent Class) [M. Zaki 2001]

SID	EID	Items
1	1	a
$ \begin{array}{c} 1\\ 1\\ 1\\ 2\\ 2\\ 2\\ 2\\ 2 \end{array} $	2	$^{\rm abc}$
1	3	ac
1	4	d
1	5	\mathbf{cf}
2	1	ad
2	2	\mathbf{c}
2	3	\mathbf{bc}
2	4	ae
3	1	$\mathbf{e}\mathbf{f}$
3	2	$^{\rm ab}$
3	3	df
3	4	\mathbf{c}
3	5	b
4	1	e
4	2	g
4	3	af
4	4	с
4	5	þ
4	6	\mathbf{c}

		a		k)			
		SID	EID	SID	EID			
		1	1	1	2			
		1	2	2	3			
		1	3	3	2		_	
		2	1	3	5			
		2	4	4	5			
		3	2				_	
		4	3				_	
							_	
		$^{\mathrm{ab}}$			1	ba		
SID	EII	D (a)	$\operatorname{EID}(\mathbf{b})$	SID	EID	(b)	EID(a)	• • •
1		1	2	1	2		3	
2		1	3	2	3		4	
3		2	5					
4		3	5					
			aba	ι				
SID		EID	(a) E	ID(b)	\mathbf{EII}	D(a)		
1		1		2	e e	3		
2		1		3	4	1		

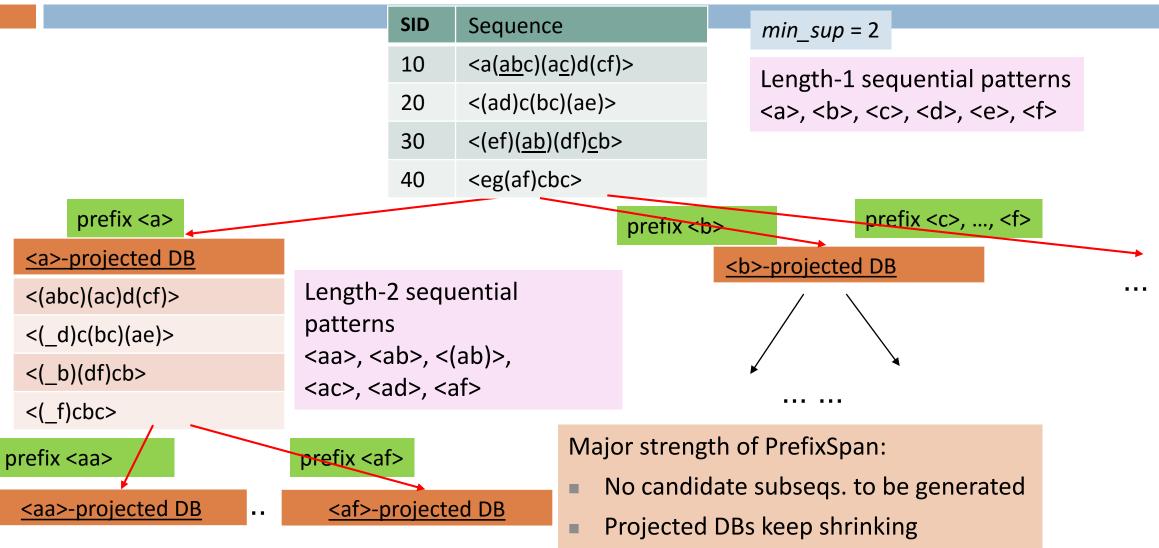
PrefixSpan: A Pattern-Growth Approach



- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - ••••
 - <f>-projected DB, ...

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04 projection

PrefixSpan: Mining Prefix-Projected DBs



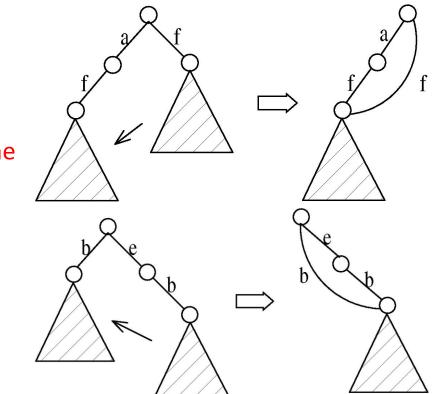
Consideration:

Pseudo-Projection vs. Physical PrImplementation ojection

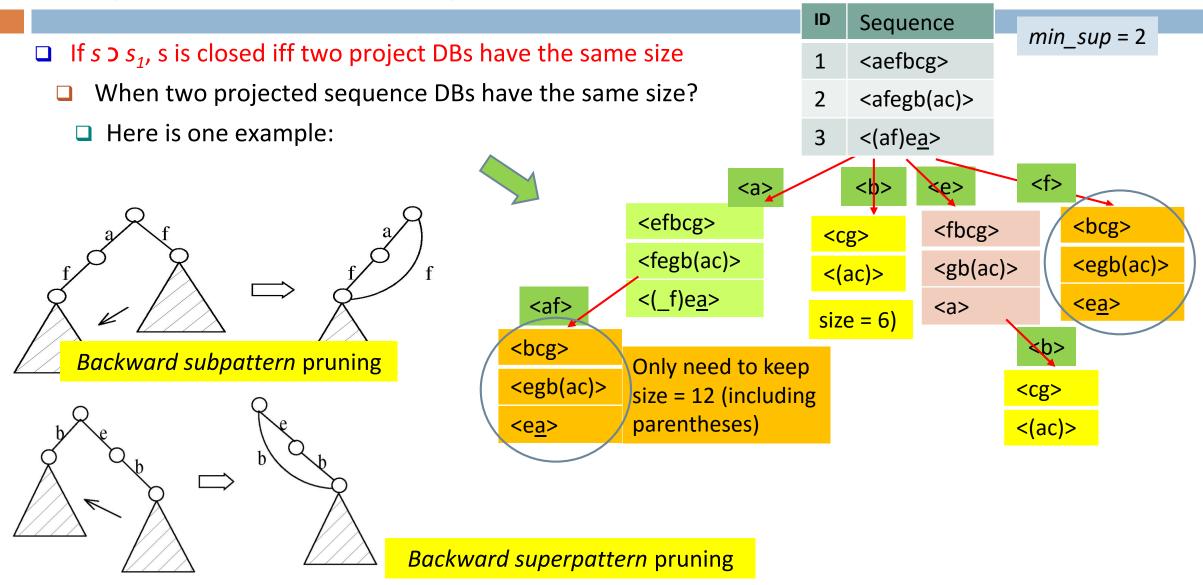
- Major cost of PrefixSpan: Constructing projected DBs
 - Suffixes largely repeating in recursive projected DBs
- When DB can be held in main memory, use pseudo projection
 - No physically copying suffixes
 - Pointer to the sequence
 - Offset of the suffix
- But if it does not fit in memory
 - Physical projection
- Suggested approach:
 - Integration of physical and pseudo-projection
 - Swapping to pseudo-projection when the data fits in memory

CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: There exists no superpattern s' such that s' > s, and s' and s have the same support
- □ Which ones are closed? <abc>: 20, <abcd>:20, <abcde>: 15
- □ Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power
- Property P₁: If s > s₁, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM'03)



CloSpan: When Two Projected DBs Have the Same Size



Chapter 7 : Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Sequential Pattern Mining
- Constraint-Based Frequent Pattern Mining

- Graph Pattern Mining
- Pattern Mining Application: Mining Software Copy-and-Paste Bugs
- 🗆 Summary

Constraint-Based Pattern Mining

- Why Constraint-Based Mining?
- Different Kinds of Constraints: Different Pruning Strategies
- Constrained Mining with Pattern Anti-Monotonicity
- Constrained Mining with Pattern Monotonicity
- Constrained Mining with Data Anti-Monotonicity
- Constrained Mining with Succinct Constraints
- Constrained Mining with Convertible Constraints
- Handling Multiple Constraints
- Constraint-Based Sequential-Pattern Mining

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously?—unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining in practice: Often a user-guided, interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface), specifying various kinds of constraints
- What is constraint-based mining?
 - Mine together with user-provided constraints
- Why constraint-based mining?
 - User flexibility: User provides constraints on what to be mined
 - Optimization: System explores such constraints for mining efficiency
 - E.g., Push constraints deeply into the mining process

Various Kinds of User-Specified Constraints in Data Mining

- **Knowledge type constraint**—Specifying what kinds of knowledge to mine
 - Ex.: Classification, association, clustering, outlier finding, ...
- Data constraint—using SQL-like queries
 - **Ex.:** Find products sold together in NY stores this year
- Dimension/level constraint—similar to projection in relational database
 - Ex.: In relevance to region, price, brand, customer category
- Interestingness constraint—various kinds of thresholds
 - Ex.: Strong rules: min_sup \geq 0.02, min_conf \geq 0.6, min_correlation \geq 0.7
- Rule (or pattern) constraint

The focus of this study

■ Ex.: Small sales (price < \$10) triggers big sales (sum > \$200)

Pattern Space Pruning with Pattern Anti-Monotonicity

	Transaction				
10	a, b, c, d, f, h				
20	b, c, d, f, g, h				
30	b, c, d, f	; g			
40	a, c, e, f	, g			
min_	sup = 2				
Item	Price	Profit			
а	100	40			
b	40	40 0			
С	150 -20				
d	35 -15				
е	55	-30			
f	45	-10			
g	80	20			
h	10	5			

Transaction

TID

- A constraint *c* is *anti-monotone*
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c_1 : sum(S.price) $\leq v$ is anti-monotone
- Ex. 2: c_2 : range(S.profit) \leq 15 is anti-monotone
- Itemset ab violates c₂ (range(ab) = 40)
- So does every superset of ab
- Ex. 3. c_3 : sum(S.Price) $\ge v$ is not anti-monotone
- Ex. 4. Is c_4 : *support*(*S*) $\geq \sigma$ anti-monotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

Note: item.price > 0 Profit can be negative

Pattern Monotonicity and Its Roles

TID	Transaction				
10	a, b, c, d, f, h				
20	b, c, d, f	, g, h			
30	b, c, d, f, g				
40	a, c, e, f, g				
min	_sup = 2				
	<u>-</u> sup – z				
ltem	Price	Profit			
_					
ltem	Price	Profit			
ltem a	Price 100	Profit 40			
ltem a b	Price 100 40	Profit 40 0			

55

45

80

10

е

f

g

h

-30

-10

20

5

- A constraint c is monotone: If an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c_1 : sum(S.Price) $\ge v$ is monotone
- Ex. 2: c_2 : min(S.Price) $\leq v$ is monotone
- Ex. 3: c_3 : range(S.profit) \geq 15 is monotone
 - Itemset *ab* satisfies c₃
 - So does every superset of *ab*

Note: item.price > 0 Profit can be negative

Data Space Pruning with Data Anti-Monotonicity

10	a, b, c, u, i, ii			
20	b, c, d, f, g, h			
30	b, c, d, f, g			
40	a, c, e, f, g			
min_s	sup = 2			
Item	Price	Profit		
а	100	40		
b	40	0		
С	150	-20		
d	35	-15		
е	55	-30		
f	45	-10		
g	80	20		
h	10	5		

Transaction

ahcdfh

TID

10

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- \Box Ex. 1: c₁: sum(S.Profit) \geq v is data anti-monotone
 - Let constraint c_1 be: $sum(S.Profit) \ge 25$
 - T₃₀: {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- □ Ex. 2: c_2 : min(S.Price) ≤ v is data anti-monotone
 - Consider v = 5 but every item in a transaction, say T₅₀, has a price higher than 10
- \Box Ex. 3: c₃: range(S.Profit) > 25 is data anti-monotone

Note: item.price > 0 Profit can be negative

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y > X, with the same support as X
 - Let Transaction DB TDB₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?

• Two:
$$P_1$$
: "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

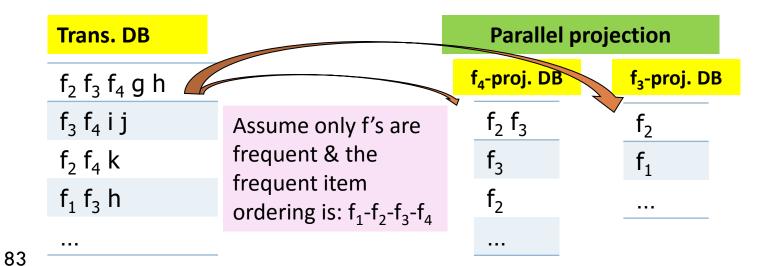
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

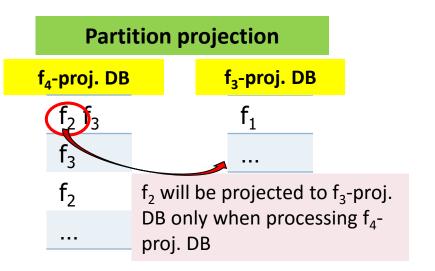
Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - **D** But we do not know the real support of $\{a_1, \ldots, a_{40}\}, \ldots, any more \}$
 - Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions





Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123~(6)	0.351(2)	0.562 (2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	$\bigcirc 6$	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	\checkmark 12	120	12	0.100(10)	0.316(6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

		/	1 1					
ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123~(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	4 6	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	<12	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- Lift, χ² and cosine are good measures if null transactions are not predominant
 - Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

Mining Compressed Patterns

Pat-ID	Item-Sets	Support
P1	{38,16,18,12}	205227
P2	{38,16,18,12,17}	205211
P3	{39,38,16,18,12,17}	101758
P4	{39,16,18,12,17}	161563
Р5	{39,16,18,12}	161576

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - □ There is no compression
- Max-patterns

P2, P3, P4

- P3: information loss
- Desired output (a good balance):

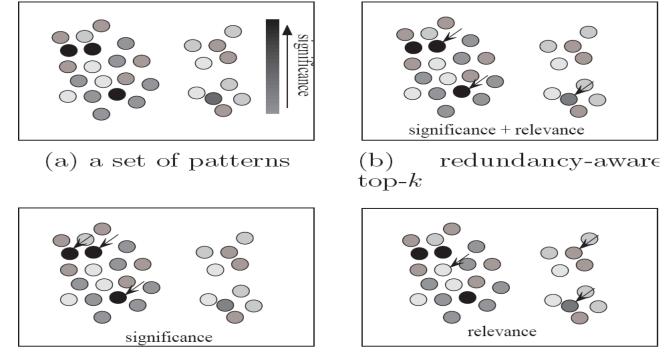
- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- δ-clustering: For each pattern P, find all patterns which can be expressed by P and whose distance to P is within δ (δ-cover)
- All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy



(c) traditional top-k

(d) summarization

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- □ Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'06

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items

 \square milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)

- 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
 - Suppose the "2% milk" sold is about "¼" of milk sold

Does (2) provide any novel information?

A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"

Rule (1) is an ancestor of rule (2), which one to prune?

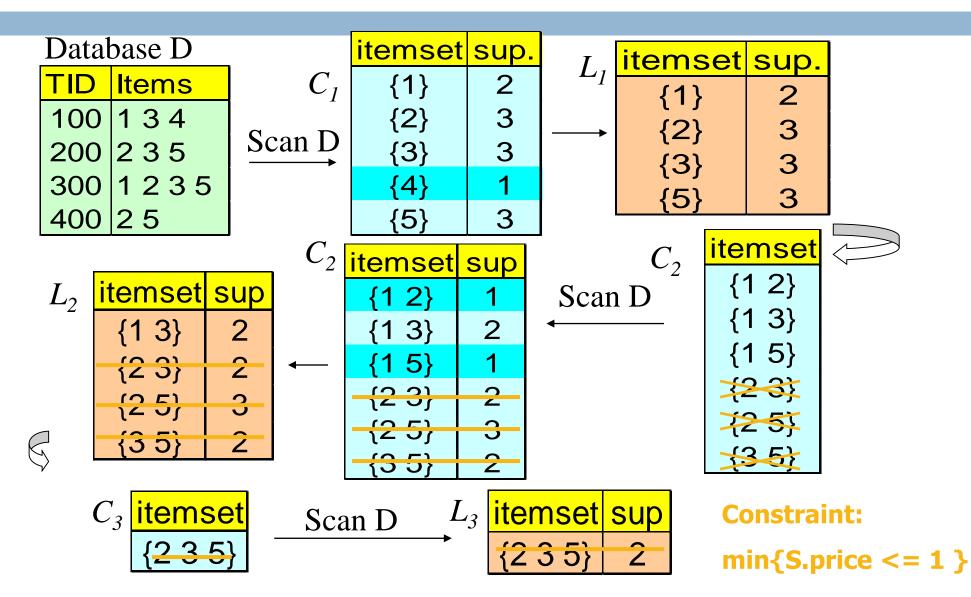
Succinctness

- Succinctness:
 - Given A₁, the set of items satisfying a succinctness constraint C, then any set S satisfying C is based on A₁, i.e., S contains a subset belonging to A₁
 - Idea: Without looking at the transaction database, whether an itemset S satisfies constraint C can be determined based on the selection of items
 - **min(S.Price)** \leq **v** is succinct
 - **u** sum(S.Price) $\geq v$ is not succinct
- □ Optimization: If C is succinct, C is pre-counting pushable

Which Constraints Are Succinct?

Constraint	Succinct
v ∈ S	yes
S ⊇ V	yes
S <u>⊂</u> V	yes
min(S) ≤ v	yes
min(S) ≥ v	yes
max(S) ≤ v	yes
max(S) ≥ v	yes
$sum(S) \le v (a \in S, a \ge 0)$	no
sum(S) ≥ v (a ∈ S, a ≥ 0)	no
range(S) ≤ v	no
range(S) ≥ v	no
avg(S) θ v, $\theta \in \{=, \leq, \geq\}$	no
support(S)≥ ξ	no
support(S) ≤ ξ	no

Push a Succinct Constraint Deep



Sequential Pattern Mining

Sequential Pattern and Sequential Pattern Mining

□ GSP: Apriori-Based Sequential Pattern Mining

SPADE: Sequential Pattern Mining in Vertical Data Format

PrefixSpan: Sequential Pattern Mining by Pattern-Growth

CloSpan: Mining Closed Sequential Patterns