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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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Mining Diverse Patterns

 Mining Multiple-Level Associations

 Mining Multi-Dimensional Associations

 Mining Negative Correlations

 Mining Compressed and Redundancy-Aware Patterns
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Mining Multiple-Level Frequent Patterns

 Items often form hierarchies

 Ex.:  Dairyland 2% milk; 
Wonder wheat bread

 How to set min-support 
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Milk

[support = 10%]

2% Milk 

[support = 6%]

Skim Milk 

[support = 2%]

 Uniform min-support across multiple levels (reasonable?)
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Mining Multiple-Level Frequent Patterns

 Items often form hierarchies

 Ex.:  Dairyland 2% milk; 
Wonder wheat bread

 How to set min-support 
thresholds?

Uniform support

Level 1
min_sup = 5%

Level 2
min_sup = 5%

Level 1
min_sup = 5%

Level 2
min_sup = 1%

Reduced support
Milk

[support = 10%]

2% Milk 

[support = 6%]

Skim Milk 

[support = 2%]

 Uniform min-support across multiple levels (reasonable?)

 Level-reduced min-support:  Items at the lower level are expected to 
have lower support
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ML/MD Associations with Flexible Support Constraints

 Why flexible support constraints?

 Real life occurrence frequencies vary greatly

 Diamond, watch, pens in a shopping basket

 Uniform support may not be an interesting model

 A flexible model

 The lower-level, the more dimension combination, and the long pattern length, usually the 

smaller support

 General rules should be easy to specify and understand

 Special items and special group of items may be specified individually and have higher 

priority
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Multi-level Association: Redundancy Filtering

 Some rules may be redundant due to “ancestor” relationships between 

items.

 Example

 milk  wheat bread    [support = 8%, confidence = 70%]

 2% milk  wheat bread [support = 2%, confidence = 72%]

 Suppose the 2% milk sold is about ¼ of milk sold

 We say the first rule is an ancestor of the second rule.

 A rule is redundant if its support is close to the “expected” value, based 

on the rule’s ancestor.
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Multi-Level Mining: Progressive Deepening

 A top-down, progressive deepening approach:
 First mine high-level frequent items:

milk (15%), bread (10%)

 Then mine their lower-level “weaker” frequent itemsets:
2% milk (5%), wheat bread (4%)

 Different min_support threshold across multi-levels lead to different algorithms:

 If adopting the same min_support across multi-levels

then toss t if any of t’s ancestors is infrequent.

 If adopting reduced min_support at lower levels

then examine only those descendents whose ancestor’s support is frequent/non-negligible.
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Multi-Level Mining: Progressive Deepening

 A top-down, progressive deepening approach:
 First mine high-level frequent items:

milk (15%), bread (10%)

 Then mine their lower-level “weaker” frequent itemsets:
2% milk (5%), wheat bread (4%)

 Different min_support threshold across multi-levels lead to different algorithms:

 If adopting the same min_support across multi-levels

then toss t if any of t’s ancestors is infrequent.

 If adopting reduced min_support at lower levels

then examine only those descendents whose ancestor’s support is frequent/non-negligible.
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Mining Multi-Dimensional Associations

 Single-dimensional rules (e.g., items are all in “product” dimension)

 buys(X, “milk”)  buys(X, “bread”)

 Multi-dimensional rules (i.e., items in  2 dimensions or predicates)

 Inter-dimension association rules (no repeated predicates)

 age(X, “18-25”)  occupation(X, “student”)  buys(X, “coke”)

 Hybrid-dimension association rules (repeated predicates)

 age(X, “18-25”)  buys(X, “popcorn”)  buys(X, “coke”)
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Mining Rare Patterns vs. Negative Patterns

 Rare patterns

 Very low support but interesting (e.g., buying Rolex watches)

 How to mine them? Setting individualized, group-based min-support 

thresholds for different groups of items
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Mining Rare Patterns vs. Negative Patterns

 Rare patterns

 Very low support but interesting (e.g., buying Rolex watches)

 How to mine them? Setting individualized, group-based min-support 

thresholds for different groups of items

 Negative patterns

 Negatively correlated: Unlikely to happen together

 Ex.:  Since it is unlikely that the same customer buys both a Ford 

Expedition (an SUV car) and a Ford Fusion (a hybrid car), buying a 

Ford Expedition and buying a Ford Fusion are likely negatively 

correlated patterns

 How to define negative patterns?
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Defining Negative Correlated Patterns

 A (relative) support-based definition 

 If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 

(A) × sup(B)

 Then A and B are negatively correlated
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Defining Negative Correlated Patterns

 A (relative) support-based definition 

 If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 

(A) × sup(B)

 Then A and B are negatively correlated

 Is this a good definition for large transaction datasets? 
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Defining Negative Correlated Patterns

 A (relative) support-based definition 

 If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 

(A) × sup(B)

 Then A and B are negatively correlated

 Is this a good definition for large transaction datasets? 

 Ex.:   Suppose a store sold two needle packages A and B 100 times each, but only one 

transaction contained both A and B

 When there are in total 200 transactions, we have 

 s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

 But when there are 105 transactions, we have

 s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)
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Defining Negative Correlated Patterns

 A (relative) support-based definition 

 If itemsets A and B are both frequent but rarely occur together, i.e.,  sup(A U B) << sup 

(A) × sup(B)

 Then A and B are negatively correlated

 Is this a good definition for large transaction datasets? 

 Ex.:   Suppose a store sold two needle packages A and B 100 times each, but only one 

transaction contained both A and B

 When there are in total 200 transactions, we have 

 s(A U B) = 0.005, s(A) × s(B) = 0.25, s(A U B) << s(A) × s(B)

 But when there are 105 transactions, we have

 s(A U B) = 1/105, s(A) × s(B) = 1/103 × 1/103, s(A U B) > s(A) × s(B)

 What is the problem?—Null transactions: The support-based definition is not null-

invariant!
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Defining Negative Correlation:  

Need Null-Invariance in Definition

 A good definition on negative correlation should take care of the null-invariance problem

 Whether two itemsets A and B are negatively correlated should not be influenced by the 

number of null-transactions 

Which measure should we use? Recall last lectures….
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Defining Negative Correlation:  

Need Null-Invariance in Definition

 A good definition on negative correlation should take care of the null-invariance problem

 Whether two itemsets A and B are negatively correlated should not be influenced by the 

number of null-transactions 

 A Kulczynski measure-based definition  

 If itemsets A and B are frequent but 

(s(A U B)/s(A) + s(A U B)/s(B))/2 < є,

where є is a negative pattern threshold, then A and B are negatively correlated

 For the same needle package problem:

 No matter there are in total 200 or 105 transactions

 If є = 0.02, we have 

(s(A U B)/s(A) + s(A U B)/s(B))/2 = (0.01 + 0.01)/2 < є
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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Constraint-based Data Mining

 Finding all the patterns in a database autonomously? — unrealistic!

 The patterns could be too many but not focused!
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Constraint-based Data Mining

 Finding all the patterns in a database autonomously? — unrealistic!

 The patterns could be too many but not focused!

 Data mining should be an interactive process 

 User directs what to be mined using a data mining query language (or a 

graphical user interface)
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Constraint-based Data Mining

 Finding all the patterns in a database autonomously? — unrealistic!

 The patterns could be too many but not focused!

 Data mining should be an interactive process 

 User directs what to be mined using a data mining query language (or a 

graphical user interface)

 Constraint-based mining

 User flexibility: provides constraints on what to be mined

 System optimization: explores such constraints for efficient mining—constraint-

based mining
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Categories of Constraints
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Categories of Constraints
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Constrained Frequent Pattern Mining: A Mining Query 

Optimization Problem

 Given a frequent pattern mining query with a set of constraints C, the algorithm 
should be

 sound: it only finds frequent sets that satisfy the given constraints C

 complete: all frequent sets satisfying the given constraints C are found
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Constrained Frequent Pattern Mining: A Mining Query 

Optimization Problem

 Given a frequent pattern mining query with a set of constraints C, the algorithm 
should be

 sound: it only finds frequent sets that satisfy the given constraints C

 complete: all frequent sets satisfying the given constraints C are found

 A naïve solution

 First find all frequent sets, and then test them for constraint satisfaction
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The Apriori Algorithm — Example

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2
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Naïve Algorithm: Apriori + Constraint (Naïve Solution) 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint: 

Sum{S.price < 5}
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Constrained Frequent Pattern Mining: A Mining Query 

Optimization Problem

 Given a frequent pattern mining query with a set of constraints C, the algorithm 
should be

 sound: it only finds frequent sets that satisfy the given constraints C

 complete: all frequent sets satisfying the given constraints C are found

 A naïve solution

 First find all frequent sets, and then test them for constraint satisfaction

 More efficient approaches:

 Analyze the properties of constraints comprehensively 

 Push them as deeply as possible inside the frequent pattern computation.
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Anti-Monotonicity in Constraint-Based Mining

 Anti-monotonicity

 When an itemset S violates the constraint, so does any of 

its superset 

 sum(S.Price)  v is anti-monotone?

 sum(S.Price)  v is anti-monotone?
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Anti-Monotonicity in Constraint-Based Mining

 Anti-monotonicity

 When an itemset S violates the constraint, so does any of 

its superset 

 sum(S.Price)  v is anti-monotone

 sum(S.Price)  v is not anti-monotone
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Anti-Monotonicity in Constraint-Based Mining

 Anti-monotonicity

 When an itemset S violates the constraint, so does any of 

its superset 

 sum(S.Price)  v is anti-monotone

 sum(S.Price)  v is not anti-monotone

 Example. C: range(S.profit)  15 is anti-monotone

 Itemset ab violates C

 So does every superset of ab

 Define range(S.profit) = max(S.A) – min(S.A)

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Anti-Monotone?

Constraint Antimonotone

v  S No

S  V no

S  V yes

min(S)  v no

min(S)  v yes

max(S)  v yes

max(S)  v no

count(S)  v yes 

count(S)  v no

sum(S)  v ( a   S, a  0 ) yes

sum(S)  v ( a   S, a  0 ) no

range(S)  v yes

range(S)  v no

avg(S)  v,   { ,  ,   } convertible

support(S)   yes

support(S)   no
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Monotonicity in Constraint-Based Mining

 Monotonicity

 When an intemset S satisfies the constraint, 

so does any of its superset 

 sum(S.Price)  v is ?

 min(S.Price)  v  is ?
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Monotonicity in Constraint-Based Mining

 Monotonicity

 When an intemset S satisfies the constraint, 

so does any of its superset 

 sum(S.Price)  v is monotone

 min(S.Price)  v  is monotone
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Monotonicity in Constraint-Based Mining

 Monotonicity

 When an intemset S satisfies the constraint, 

so does any of its superset 

 sum(S.Price)  v is monotone

 min(S.Price)  v  is monotone

 Example. C: range(S.profit)  15

 Itemset ab satisfies C

 So does every superset of ab

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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Which Constraints Are Monotone?

Constraint Monotone

v  S yes

S  V yes

S  V no

min(S)  v yes

min(S)  v no

max(S)  v no

max(S)  v yes

count(S)  v no

count(S)  v yes

sum(S)  v ( a   S, a  0 ) no

sum(S)  v ( a   S, a  0 ) yes

range(S)  v no

range(S)  v yes

avg(S)  v,   { ,  ,   } convertible

support(S)   no

support(S)   yes
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The Apriori Algorithm — Example

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2
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Naïve Algorithm: Apriori + Constraint 

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint: 

Sum{S.price < 5}
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Pushing the constraint deep into the process

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint: 

Sum{S.price < 5}

Why?
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Converting “Tough” Constraints

 Convert tough constraints into anti-monotone or monotone by properly 

ordering items
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Converting “Tough” Constraints

 Convert tough constraints into anti-monotone or monotone by properly 

ordering items

 Examine C: avg(S.profit)  25

 Order items in value-descending order

 <a, f, g, d, b, h, c, e>

 If an itemset afb violates C

 So does afbh, afb*

 It becomes anti-monotone!
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Converting “Tough” Constraints

 Convert tough constraints into anti-monotone 

or monotone by properly ordering items

 Examine C: avg(S.profit)  25

 Order items in value-descending order

 <a, f, g, d, b, h, c, e>

 If an itemset afb violates C

 So does afbh, afb*

 It becomes anti-monotone!

TID Transaction

10 a, b, c, d, f

20 b, c, d, f, g, h

30 a, c, d, e, f

40 c, e, f, g

TDB (min_sup=2)

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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Convertible Constraints

 Let R be an order of items

 Convertible anti-monotone

 If an itemset S violates a constraint C, so does every itemset having S as a 

prefix w.r.t. R

 Ex. avg(S)  v w.r.t. item value ascending order

Why? 
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Convertible Constraints

 Let R be an order of items

 Convertible anti-monotone

 If an itemset S violates a constraint C, so does every itemset having S as a prefix 

w.r.t. R

 Ex. avg(S)  v w.r.t. item value ascending order

 Convertible monotone

 If an itemset S satisfies constraint C, so does every itemset having S as a prefix w.r.t. 

R

 Ex. avg(S)  v w.r.t. item value ascending order



46

Strongly Convertible Constraints

 avg(X)  25 is convertible anti-monotone w.r.t. item 
value descending order R: <a, f, g, d, b, h, c, e>

 If an itemset af violates a constraint C, so does every 
itemset with af as prefix, such as afd

 avg(X)  25 is convertible monotone w.r.t. item value 
ascending order R-1: <e, c, h, b, d, g, f, a>

 If an itemset d satisfies a constraint C, so does itemsets df
and dfa, which having d as a prefix

 Thus, avg(X)  25 is strongly convertible

Item Profit

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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What Constraints Are Convertible?

Constraint
Convertible 

anti-monotone

Convertible 

monotone

Strongly 

convertible

avg(S)  ,  v Yes Yes Yes

median(S)  ,  v Yes Yes Yes

sum(S)  v (items could be of any 

value, v  0)
Yes No No

sum(S)  v (items could be of any 

value, v  0)
No Yes No

sum(S)  v (items could be of any 

value, v  0)
No Yes No

sum(S)  v (items could be of any 

value, v  0)
Yes No No

……
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Combing Them Together—A General Picture

Constraint Antimonotone Monotone Succinct

v  S no yes yes

S  V no yes yes

S  V yes no yes

min(S)  v no yes yes

min(S)  v yes no yes

max(S)  v yes no yes

max(S)  v no yes yes

count(S)  v yes no weakly

count(S)  v no yes weakly

sum(S)  v ( a   S, a  0 ) yes no no

sum(S)  v ( a   S, a  0 ) no yes no

range(S)  v yes no no

range(S)  v no yes no

avg(S)  v,   { ,  ,   } convertible convertible no

support(S)   yes no no

support(S)   no yes no
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Classification of Constraints

Convertible
anti-monotone

Convertible
monotone

Strongly
convertible

Inconvertible

Antimonotone
Monotone
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Mining With Convertible Constraints

 C: avg(S.profit)  25

 Scan transaction DB once

 remove infrequent items

 Item h in transaction 40 is dropped

 Itemsets a and f are good

TID Transaction

10 a, f, d, b, c

20 f, g, d, b, c

30 a, f, d, c, e

40 f, g, h, c, e

TDB (min_sup=2)

Item Profit

a 40

f 30

g 20

d 10

b 0

h -10

c -20

e -30
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Can Apriori Handle Convertible Constraint?

 A convertible, not monotone nor anti-monotone cannot be pushed 

deep into the an Apriori mining algorithm

 Within the level wise framework, no direct pruning based on the constraint 

can be made

 Itemset df violates constraint C: avg(X)>=25

Can we prune df afterwards? 

Item Value

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10



52

Can Apriori Handle Convertible Constraint?

 A convertible, not monotone nor anti-monotone cannot be pushed 

deep into the an Apriori mining algorithm

 Within the level wise framework, no direct pruning based on the constraint 

can be made

 Itemset df violates constraint C: avg(X)>=25

 Since adf satisfies C, Apriori needs df to assemble adf, df

cannot be pruned

 But it can be pushed into frequent-pattern growth framework!

Item Value

a 40

b 0

c -20

d 10

e -30

f 30

g 20

h -10
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Mining With Convertible Constraints in FP-Growth Framework

 C: avg(X)>=25, min_sup=2

 List items in every transaction in value descending 

order R: <a, f, g, d, b, h, c, e>

 C is convertible anti-monotone w.r.t. R

 Scan TDB once

 remove infrequent items

 Item h is dropped

 Itemsets a and f are good, …

 Projection-based mining

 Imposing an appropriate order on item projection

 Many tough constraints can be converted into (anti)-

monotone

TID Transaction

10 a, f, d, b, c

20 f, g, d, b, c

30 a, f, d, c, e

40 f, g, h, c, e

TDB (min_sup=2)

Item Value

a 40

f 30

g 20

d 10

b 0

h -10

c -20

e -30
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Mining With Convertible Constraints in FP-Growth Framework

Constrained Frequent Pattern Mining: A 

Pattern-Growth View

Jian Pei, Jiawei Han, SIGKDD 2002
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Handling Multiple Constraints

 Different constraints may require different or even conflicting item-

ordering

 If there exists an order R s.t. both C1 and C2 are convertible w.r.t. R, 

then there is no conflict between the two convertible constraints

 If there exists conflict on order of items

 Try to satisfy one constraint first

 Then using the order for the other constraint to mine frequent itemsets in the 

corresponding projected database
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Constraint-Based Frequent Pattern Mining

 Sequential Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary
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Sequence Databases & Sequential Patterns

 Sequential pattern mining has broad applications

 Customer shopping sequences

 Purchase a laptop first, then a digital camera, and then a smartphone, within 
6 months

 Medical treatments, natural disasters (e.g., earthquakes), science & 
engineering processes, stocks and markets, ...

 Weblog click streams, calling patterns, …

 Software engineering: Program execution sequences, …

 Biological sequences: DNA, protein, …

 Transaction DB, sequence DB vs. time-series DB

 Gapped vs. non-gapped sequential patterns

 Shopping sequences, clicking streams vs. biological sequences
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Sequence Mining: Description

 Input

 A database D of sequences called data-sequences, in which:

 I={i1, i2,…,in} is the set of items

 each sequence is a list of transactions ordered by transaction-time  

 each transaction consists of fields: sequence-id, transaction-id, transaction-time and 
a set of items.

 Problem

 To discover all the sequential patterns with a user-specified minimum support
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Input Database: example

45% of customers who bought Foundation will buy Foundation and Empire within the next 
month.
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Sequential Pattern and Sequential Pattern Mining 

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent 
subsequences (i.e., satisfying the min_sup threshold)

A sequence database A sequence: < (ef) (ab)  (df) c b >

 An element may contain a set of items (also called 
events)

 Items within an element are unordered and we list 
them alphabetically

<a(bc)dc> is a subsequence of <a(abc)(ac)d(cf)>

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

 Given support threshold min_sup = 2, <(ab)c> is a sequential pattern
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A Basic Property of Sequential Patterns: Apriori

 A basic property: Apriori (Agrawal & Sirkant’94) 

 If a sequence S is not frequent 

 Then none of the super-sequences of S is frequent

 E.g, <hb> is infrequent  so do <hab> and <(ah)b>

<a(bd)bcb(ade)>50

<(be)(ce)d>40

<(ah)(bf)abf>30

<(bf)(ce)b(fg)>20

<(bd)cb(ac)>10

SequenceSeq. ID

Given support threshold
min_sup =2 
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GSP: Apriori-Based Sequential Pattern Mining

 Initial candidates: All 8-singleton sequences

 <a>, <b>, <c>, <d>, <e>, <f>, <g>, <h>

 Scan DB once, count support for each candidate

 Generate length-2 candidate sequences

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>
min_sup = 2

Cand. sup

<a> 3

<b> 5

<c> 4

<d> 3

<e> 3

<f> 2

<g> 1

<h> 1

<a> <b> <c> <d> <e> <f>

<a> <aa> <ab> <ac> <ad> <ae> <af>

<b> <ba> <bb> <bc> <bd> <be> <bf>

<c> <ca> <cb> <cc> <cd> <ce> <cf>

<d> <da> <db> <dc> <dd> <de> <df>

<e> <ea> <eb> <ec> <ed> <ee> <ef>

<f> <fa> <fb> <fc> <fd> <fe> <ff>

<a> <b> <c> <d> <e> <f>

<a> <(ab)> <(ac)> <(ad)> <(ae)> <(af)>

<b> <(bc)> <(bd)> <(be)> <(bf)>

<c> <(cd)> <(ce)> <(cf)>

<d> <(de)> <(df)>

<e> <(ef)>

<f>

 Without Apriori pruning:

(8 singletons) 8*8+8*7/2 = 92 
length-2 candidates

 With pruning, length-2 
candidates: 36 + 15= 51

GSP (Generalized Sequential 
Patterns): Srikant & Agrawal 
@ EDBT’96)
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GSP Mining and Pruning

<a> <b> <c> <d> <e> <f> <g> <h>

<aa> <ab> … <af> <ba> <bb> … <ff> <(ab)> … <(ef)>

<abb> <aab> <aba> <baa> <bab> …

<abba> <(bd)bc> …

<(bd)cba>

1st scan: 8 cand. 6 length-1 seq. pat.

2nd scan: 51 cand. 19 length-2 seq. pat. 
10 cand. not in DB at all

3rd scan: 46 cand. 20 length-3 seq. pat. 20 
cand. not in DB at all

4th scan: 8 cand. 7 length-4 seq. pat. 

5th scan: 1 cand. 1 length-5 seq. pat. Candidates cannot pass min_sup
threshold

Candidates not in DB

SID   Sequence

10 <(bd)cb(ac)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

40 <(be)(ce)d>

50 <a(bd)bcb(ade)>

min_sup = 2

 Repeat (for each level (i.e., length-k))

 Scan DB to find length-k frequent sequences

 Generate length-(k+1) candidate sequences from length-k frequent 
sequences using Apriori

 set k = k+1

 Until no frequent sequence or no candidate can be found
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GSP: Algorithm

 Phase 1:

 Scan over the database to identify all the frequent items, i.e., 1-

element sequences

 Phase 2: 
 Iteratively scan over the database to discover all frequent 

sequences. Each iteration discovers all the sequences with the same 
length.

 In the iteration to generate all k-sequences 

 Generate the set of all candidate k-sequences, Ck,  by joining two (k-1)-
sequences if only their first and last items are different

 Prune the candidate sequence if any of its k-1 contiguous subsequence is 
not frequent 

 Scan over the database to determine the support of the remaining 
candidate sequences

 Terminate when no more frequent sequences can be found
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GSP: Candidate Generation

The sequence < (1,2) (3) (5) > is dropped in the pruning phase, since its contiguous subsequence 

< (1) (3) (5) > is not frequent.
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GSP: Optimization Techniques

 Applied to phase 2: computation-intensive

 Technique 1: the hash-tree data structure

 Used for counting candidates to reduce the number of candidates 

that need to be checked

 Leaf: a list of sequences

 Interior node: a hash table

 Technique 2: data-representation transformation

 From horizontal format to vertical format
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Sequential Pattern Mining in Vertical Data Format: 

The SPADE Algorithm

SID Sequence

1 <a(abc)(ac)d(cf)>

2 <(ad)c(bc)(ae)>

3 <(ef)(ab)(df)cb>

4 <eg(af)cbc>

Ref: SPADE (Sequential 

PAttern Discovery using 

Equivalent Class) [M. Zaki

2001]

min_sup = 2

 A sequence database is mapped to: <SID, EID>
 Grow the subsequences (patterns) one item at a time by Apriori candidate generation
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PrefixSpan: A Pattern-Growth Approach

 PrefixSpan Mining: Prefix Projections

 Step 1: Find length-1 sequential patterns

 <a>, <b>, <c>, <d>, <e>, <f>

 Step 2: Divide search space and mine each projected DB

 <a>-projected DB,

 <b>-projected DB,

 …

 <f>-projected DB, …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

Prefix Suffix (Projection)

<a> <(abc)(ac)d(cf)>

<aa> <(_bc)(ac)d(cf)>

<ab> <(_c)(ac)d(cf)>

 Prefix and suffix

 Given <a(abc)(ac)d(cf)>

 Prefixes: <a>, <aa>, 
<a(ab)>, <a(abc)>, …

 Suffix: Prefixes-based 
projection

PrefixSpan (Prefix-projected 
Sequential pattern mining) 
Pei, et al. @TKDE’04

min_sup = 2
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prefix <a>

PrefixSpan: Mining Prefix-Projected DBs

Length-1 sequential patterns
<a>, <b>, <c>, <d>, <e>, <f>

Length-2 sequential
patterns
<aa>, <ab>, <(ab)>,
<ac>, <ad>, <af>

prefix <aa>

…

prefix <af>

…

prefix <b> prefix <c>, …, <f>

… …

SID Sequence

10 <a(abc)(ac)d(cf)>

20 <(ad)c(bc)(ae)>

30 <(ef)(ab)(df)cb>

40 <eg(af)cbc>

<a>-projected DB

<(abc)(ac)d(cf)>

<(_d)c(bc)(ae)>

<(_b)(df)cb>

<(_f)cbc>

<b>-projected DB

<aa>-projected DB <af>-projected DB

Major strength of PrefixSpan:

 No candidate subseqs. to be generated

 Projected DBs keep shrinking

min_sup = 2



71

Consideration: 

Pseudo-Projection vs. Physical PrImplementation ojection

 Major cost of PrefixSpan: Constructing projected DBs

 Suffixes largely repeating in recursive projected DBs 

 When DB can be held in main memory, use pseudo projection 

s = <a(abc)(ac)d(cf)>

<(abc)(ac)d(cf)>

<(_c)(ac)d(cf)>

<a>

<ab>

s|<a>: ( , 2)

s|<ab>: ( , 5)

 No physically copying suffixes

 Pointer to the sequence

 Offset of the suffix

 But if it does not fit in memory

 Physical projection

 Suggested approach:

 Integration of physical and pseudo-projection

 Swapping to pseudo-projection when the data fits in memory
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CloSpan: Mining Closed Sequential Patterns

 A closed sequential pattern s:  There exists no superpattern s’ such that s’ כ s, and s’ and 

s have the same support 

 Which ones are closed?  <abc>: 20, <abcd>:20, <abcde>: 15 

 Why directly mine closed sequential patterns?

 Reduce # of (redundant) patterns

 Attain the same expressive power

 Property P1: If s כ s1, s is closed iff two project DBs have the same 
size

 Explore Backward Subpattern and Backward Superpattern
pruning to prune redundant search space

 Greatly enhances efficiency (Yan, et al., SDM’03)
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<efbcg>

<fegb(ac)>

<(_f)ea>

<e><a>

CloSpan: When Two Projected DBs Have the Same Size

<af>

<b>

ID Sequence

1 <aefbcg>

2 <afegb(ac)>

3 <(af)ea>

<bcg>

<egb(ac)>

<ea>

<cg>

<(ac)>

<fbcg>

<gb(ac)>

<a>

<b>

<cg>

<(ac)>

<f>

<bcg>

<egb(ac)>

<ea>

 If s כ s1, s is closed iff two project DBs have the same size

 When two projected sequence DBs have the same size?

 Here is one example: 

Only need to keep 
size = 12 (including 
parentheses)

size = 6)

Backward subpattern pruning

Backward superpattern pruning

min_sup = 2
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Chapter 7 : Advanced Frequent Pattern Mining

 Mining Diverse Patterns

 Sequential Pattern Mining

 Constraint-Based Frequent Pattern Mining

 Graph Pattern Mining

 Pattern Mining Application: Mining Software Copy-and-Paste Bugs

 Summary



75

Constraint-Based Pattern Mining

 Why Constraint-Based Mining? 

 Different Kinds of Constraints: Different Pruning Strategies

 Constrained Mining with Pattern Anti-Monotonicity

 Constrained Mining with Pattern Monotonicity

 Constrained Mining with Data Anti-Monotonicity

 Constrained Mining with Succinct Constraints

 Constrained Mining with Convertible Constraints

 Handling Multiple Constraints

 Constraint-Based Sequential-Pattern Mining
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Why Constraint-Based Mining?

 Finding all the patterns in a dataset autonomously?—unrealistic!

 Too many patterns but not necessarily user-interested!

 Pattern mining in practice: Often a user-guided, interactive process 

 User directs what to be mined using a data mining query language (or a graphical user 

interface), specifying various kinds of constraints

 What is constraint-based mining?

 Mine together with user-provided constraints

 Why constraint-based mining?

 User flexibility: User provides constraints on what to be mined

 Optimization: System explores such constraints for mining efficiency

 E.g., Push constraints deeply into the mining process
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Various Kinds of User-Specified Constraints in Data Mining

 Knowledge type constraint—Specifying what kinds of knowledge to mine

 Ex.: Classification, association, clustering, outlier finding, …

 Data constraint—using SQL-like queries

 Ex.: Find products sold together in NY stores this year

 Dimension/level constraint—similar to projection in relational database 

 Ex.: In relevance to region, price, brand, customer category

 Interestingness constraint—various kinds of thresholds

 Ex.: Strong rules: min_sup  0.02, min_conf  0.6, min_correlation  0.7

 Rule (or pattern) constraint

 Ex.: Small sales (price < $10) triggers big sales (sum > $200) 

The focus of this study



78

Pattern Space Pruning with Pattern Anti-Monotonicity 

 A constraint c is anti-monotone

 If an itemset S violates constraint c, so does any of its superset 

 That is, mining on itemset S can be terminated

 Ex. 1:  c1: sum(S.price)  v is anti-monotone

 Ex. 2: c2: range(S.profit)  15 is anti-monotone

 Itemset ab violates c2 (range(ab) = 40)

 So does every superset of ab

 Ex. 3. c3: sum(S.Price)  v is not anti-monotone

 Ex. 4. Is c4: support(S)  σ anti-monotone?

 Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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Pattern Monotonicity and Its Roles
 A constraint c is monotone: If an itemset S satisfies the 

constraint c, so does any of its superset

 That is, we do not need to check c in subsequent mining

 Ex. 1: c1: sum(S.Price)  v is monotone

 Ex. 2: c2: min(S.Price)  v  is monotone

 Ex. 3: c3: range(S.profit)  15 is monotone

 Itemset ab satisfies c3

 So does every superset of ab

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5

Note: item.price > 0
Profit can be negative
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Data Space Pruning with Data Anti-Monotonicity

 A constraint c is data anti-monotone: In the mining process, if a data entry t

cannot satisfy a pattern p under c, t cannot satisfy p’s superset either

 Data space pruning: Data entry t can be pruned 

 Ex. 1: c1: sum(S.Profit)  v is data anti-monotone

 Let constraint c1 be: sum(S.Profit) ≥ 25

 T30: {b, c, d, f, g} can be removed since none of their combinations can 

make an S whose sum of the profit is ≥ 25

 Ex. 2: c2: min(S.Price)  v  is data anti-monotone

 Consider v = 5 but every item in a transaction, say T50 , has a price higher 

than 10

 Ex. 3: c3: range(S.Profit) > 25 is data anti-monotone

min_sup = 2

TID Transaction

10 a, b, c, d, f, h

20 b, c, d, f, g, h

30 b, c, d, f, g

40 a, c, e, f, g

Item Price Profit

a 100 40

b 40 0

c 150 −20

d 35 −15

e 55 −30

f 45 −10

g 80 20

h 10 5
Note: item.price > 0
Profit can be negative
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Expressing Patterns in Compressed Form: Closed Patterns

 How to handle such a challenge?

 Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is frequent, and 

there exists no super-pattern Y כ X, with the same support as X 

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many closed patterns does TDB1 contain? 

 Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

 Closed pattern is a lossless compression of frequent patterns

 Reduces the # of patterns but does not lose the support information!

 You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”
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Expressing Patterns in Compressed Form: Max-Patterns

 Solution 2: Max-patterns:  A pattern X is a maximal frequent pattern or max-pattern 

if X is frequent and there exists no frequent super-pattern Y כ X 

 Difference from close-patterns?

 Do not care the real support of the sub-patterns of a max-pattern

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many max-patterns does TDB1 contain? 

 One:  P: “{a1, …, a100}: 1” 

 Max-pattern is a lossy compression! 

 We only know {a1, …, a40} is frequent

 But we do not know the real support of {a1, …, a40}, …, any more!

 Thus in many applications, close-patterns are more desirable than max-patterns
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Assume only f’s are 
frequent & the 
frequent item 
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection

 What if FP-tree cannot fit in memory?—Do not construct FP-tree

 “Project” the database based on frequent single items

 Construct & mine FP-tree for each projected DB

 Parallel projection vs. partition projection 

 Parallel projection: Project the DB on each frequent item

 Space costly, all partitions can be processed in parallel

 Partition projection: Partition the DB in order

 Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h

f3 f4 i j 

f2 f4 k 

f1 f3 h

…

Trans. DB Parallel projection

f2 f3

f3

f2

…

f4-proj. DB f3-proj. DB f4-proj. DB

f2

f1

…

Partition projection

f2 f3

f3

f2

…

f1

…

f3-proj. DB

f2 will be projected to f3-proj. 
DB only when processing f4-
proj. DB 



84

Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database

 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database

 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets 

 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the 
papers; ……

 Null-invariance is an important property

 Lift, χ2 and cosine are good measures if null transactions are not predominant

 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern 

 Exercise: Mining research collaborations from research bibliographic data 

 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)

 Can you find the likely advisor-advisee relationship and during which years such a relationship 
happened?

 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee 

Relationships from Research Publication Networks", KDD'10



87

Mining Compressed Patterns

 Why mining compressed patterns?

 Too many scattered patterns but not so meaningful

 Pattern distance measure

 δ-clustering: For each pattern P, find all patterns which can be 

expressed by P and whose distance to P is within δ (δ-cover)

 All patterns in the cluster can be represented by P

 Method for efficient, direct mining of compressed frequent 

patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On 

Compressing Frequent Patterns", Knowledge and Data 

Engineering, 60:5-29, 2007)

Pat-ID Item-Sets Support

P1 {38,16,18,12} 205227

P2 {38,16,18,12,17} 205211

P3 {39,38,16,18,12,17} 101758

P4 {39,16,18,12,17} 161563

P5 {39,16,18,12} 161576

 Closed patterns 
 P1, P2, P3, P4, P5
 Emphasizes too much on 

support
 There is no compression

 Max-patterns
 P3: information loss

 Desired output (a good balance):
 P2, P3, P4
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Redundancy-Aware Top-k Patterns

 Desired patterns: high significance & low redundancy

 Method:  Use MMS (Maximal Marginal Significance) for measuring the combined significance of a 
pattern set 

 Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD’06
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Redundancy Filtering at Mining Multi-Level Associations 

 Multi-level association mining may generate many redundant rules

 Redundancy filtering:  Some rules may be redundant due to “ancestor” 
relationships between items

 milk  wheat bread  [support = 8%, confidence = 70%]   (1)

 2% milk  wheat bread [support = 2%, confidence = 72%] (2)

 Suppose the “2% milk” sold is about “¼” of milk sold 

 Does (2) provide any novel information? 

 A rule is redundant if its support is close to the “expected” value, according to 
its “ancestor” rule, and it has a similar confidence as its “ancestor”

 Rule (1) is an ancestor of rule (2), which one to prune?
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Succinctness

 Succinctness:

 Given A1, the set of items satisfying a succinctness constraint C, then any set S 

satisfying C is based on A1 , i.e., S contains a subset belonging to A1

 Idea: Without looking at the transaction database, whether an itemset S 

satisfies constraint C can be determined based on the selection of items

 min(S.Price)  v is succinct

 sum(S.Price)  v is not succinct

 Optimization: If C is succinct, C is pre-counting pushable
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Which Constraints Are Succinct?

Constraint Succinct

v  S yes

S  V yes

S  V yes

min(S)  v yes

min(S)  v yes

max(S)  v yes

max(S)  v yes

sum(S)  v ( a   S, a  0 ) no

sum(S)  v ( a   S, a  0 ) no

range(S)  v no

range(S)  v no

avg(S)  v,   { ,  ,   } no

support(S)   no

support(S)   no



92

Push a Succinct Constraint Deep

TID Items

100 1 3 4

200 2 3 5

300 1 2 3 5

400 2 5

Database D itemset sup.

{1} 2

{2} 3

{3} 3

{4} 1

{5} 3

itemset sup.

{1} 2

{2} 3

{3} 3

{5} 3

Scan D

C1

L1

itemset

{1 2}

{1 3}

{1 5}

{2 3}

{2 5}

{3 5}

itemset sup

{1 2} 1

{1 3} 2

{1 5} 1

{2 3} 2

{2 5} 3

{3 5} 2

itemset sup

{1 3} 2

{2 3} 2

{2 5} 3

{3 5} 2

L2

C2 C2

Scan D

C3 L3itemset

{2 3 5}
Scan D itemset sup

{2 3 5} 2

Constraint: 

min{S.price <= 1 }
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Sequential Pattern Mining

 Sequential Pattern and Sequential Pattern Mining 

 GSP: Apriori-Based Sequential Pattern Mining

 SPADE: Sequential Pattern Mining in Vertical Data Format

 PrefixSpan: Sequential Pattern Mining by Pattern-Growth

 CloSpan: Mining Closed Sequential Patterns


