\square Reminder: HW3 Due Today by 11:59PM
\square TA's comments in Carmen
\square Enroll in auto notification
\square HW4 is out (no programming this time)

CSE 5243 INTRO. TO DATA MINING

Mining Frequent Patterns and Associations: Basic Concepts
(Chapter 6)
Huan Sun, CSE@The Ohio State University
10/24/2017

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods
\square Basic Concepts
\square Efficient Pattern Mining MethodsPattern Evaluation
\square Summary

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
\square k-itemset: $X=\left\{x_{1}, \ldots, x_{k}\right\}$
\square Ex. $\{$ Beer, Nuts, Diaper\} is a 3-itemset
\square (absolute) support (count) of $X, \sup \{X\}$: Frequency or the number of occurrences of an itemset X

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- (relative) support, $s\{X\}$: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- Ex. $s\{$ Beer $\}=3 / 5=60 \%$
- Ex. s\{Beer, Eggs $\}=1 / 5=20 \%$
\square Ex. $\sup \{$ Beer $\}=3$
\square Ex. $\sup \{$ Beer, Eggs $\}=1$

Basic Concepts: Frequent Itemsets (Patterns)

\square An itemset (or a pattern) X is frequent if the support of X is no less than a minsup threshold σ
\square Let $\sigma=50 \%$ (σ : minsup threshold) For the given 5-transaction dataset

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square All the frequent 1-itemsets:
■ Beer: $3 / 5$ (60\%); Nuts: 3/5 (60\%)

- Diaper: 4/5 (80\%); Eggs: 3/5 (60\%)
\square All the frequent 2-itemsets:
- \{Beer, Diaper\}: 3/5 (60\%)

We may also use minsup $=3$ to represent the threshold.
\square All the frequent 3-itemsets?
\square None

Mining Frequent Itemsets and Association Rules

\square Association rule mining

\square Given two thresholds: minsup, minconf
\square Find all of the rules, $X \rightarrow Y(s, c)$
\square such that, $s \geq$ minsup and $c \geq$ minconf
\square Let minsup $=50 \%$
\square Freq. 1 -itemsets: Beer: 3, Nuts: 3,

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

\square Freq. 2-itemsets: \{Beer, Diaper\}: 3

- Let minconf $=50 \%$
$\square \quad$ Beer \rightarrow Diaper (60\%, 100\%)Diaper \rightarrow Beer (60\%,75\%)

Association Rule Mining: two-step process

In general, association rule mining can be viewed as a two-step process:

1. Find all frequent itemsets: By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, min_sup.
2. Generate strong association rules from the frequent itemsets: By definition, these rules must satisfy minimum support and minimum confidence.

Because the second step is much less costly than the first, the overall performance of mining association rules is determined by the first step.

Relationship: Frequent, Closed, Max

Closed and maximal frequent itemsets. Suppose that a transaction database has only two transactions: $\left\{\left\langle a_{1}, a_{2}, \ldots, a_{100}\right\rangle ;\left\langle a_{1}, a_{2}, \ldots, a_{50}\right\rangle\right\}$. Let the minimum support count threshold be min_sup $=1$. We find two closed frequent itemsets and their support counts, that is, $\mathcal{C}=\left\{\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1\right.$; $\left.\left\{a_{1}, a_{2}, \ldots, a_{50}\right\}: 2\right\}$. There is only one maximal frequent itemset: $\mathcal{M}=$ $\left\{\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1\right\}$. Notice that we cannot include $\left\{a_{1}, a_{2}, \ldots, a_{50}\right\}$ as a maximal frequent itemset because it has a frequent super-set, $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$. Compare this to the above, where we determined that there are $2^{100}-1$ frequent itemsets, which is too huge a set to be enumerated!

$$
\text { \{all frequent patterns\} >= \{closed frequent patterns\} >= \{max frequent patterns }\}
$$

Example

Closed and maximal frequent itemsets. Suppose that a transaction database has only two transactions: $\left\{\left\langle a_{1}, a_{2}, \ldots, a_{100}\right\rangle ;\left\langle a_{1}, a_{2}, \ldots, a_{50}\right\rangle\right\}$. Let the minimum support count threshold be min_sup $=1$. We find two closed frequent itemsets and their support counts, that is, $\mathcal{C}=\left\{\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1\right.$; $\left.\left\{a_{1}, a_{2}, \ldots, a_{50}\right\}: 2\right\}$. There is only one maximal frequent itemset: $\mathcal{M}=$ $\left\{\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}: 1\right\}$. Notice that we cannot include $\left\{a_{1}, a_{2}, \ldots, a_{50}\right\}$ as a maximal frequent itemset because it has a frequent super-set, $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$. Compare this to the above, where we determined that there are $2^{100}-1$ frequent itemsets, which is too huge a set to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets.

Example (Cont'd)

\square Given closed frequent itemsets:

$$
C=\{\{a 1, a 2, \ldots, a 100\}: 1 ; \quad\{a 1, a 2, \ldots, a 50\}: 2\}
$$

maximal frequent itemset:

$$
M=\{\{a 1, a 2, \ldots, a 100\}: 1\}
$$

Based on C, we can derive all frequent itemsets and their support counts.

Is $\{a 2, a 45\}$ frequent? Can we know its support?
Yes, 2

Example (Cont'd)

\square Given closed frequent itemsets:

$$
C=\{\{a 1, a 2, \ldots, a 100\}: 1 ; \quad\{a 1, a 2, \ldots, a 50\}: 2\}
$$

maximal frequent itemset:

$$
M=\{\{a 1, a 2, \ldots, a 100\}: 1\}
$$

Based on M, we only know frequent itemsets, but not their support counts. Is $\{a 2, a 45\}$ or $\{a 8, a 55\}$ frequent? Can we know their support?

Yes, but their support is unknown

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

\square Basic ConceptsEfficient Pattern Mining Methods
\square The Apriori Algorithm

- Application in Classification
\square Pattern EvaluationSummary

Apriori: A Candidate Generation \& Test Approach

\square Outline of Apriori (level-wise, candidate generation and test)
\square Initially, scan DB once to get frequent 1 -itemset

- Repeat
- Generate length-($k+1$) candidate itemsets from length-k frequent itemsets
- Test the candidates against DB to find frequent ($k+1$)-itemsets
- Set $\mathrm{k}:=\mathrm{k}+1$
- Until no frequent or candidate set can be generated
\square Return all the frequent itemsets derived

The Apriori Algorithm—An Example

C_{3}	Itemset	$3^{\text {rd }}$ scan	F_{3}	Itemset	sup
	\{B, C, E\}			\{B, C, E\}	2

Another example 6.3 in Chapter 6

Generating Association Rules from Frequent Patterns

Recall that:

$$
\text { confidence }(A \Rightarrow B)=P(B \mid A)=\frac{\text { support_count }(A \cup B)}{\text { support_count }(A)}
$$

\square Once we mined frequent patterns, association rules can be generated as follows:

- For each frequent itemset l, generate all nonempty subsets of l.
- For every nonempty subset s of l, output the rule " $s \Rightarrow(l-s)$ " if $\frac{\text { support_count }(l)}{\text { support_count }(s)} \geq$ min_conf, where min_conf is the minimum confidence threshold.

Because l is a frequent itemset, each rule automatically satisfies the minimum support requirement.

Example: Generating Association Rules

Generating association rules. Let's try an example based on the transactional data for AllElectronics shown in Table 6.1. The data contain frequent itemset $X=\{\mathrm{I} 1, \mathrm{I} 2, \mathrm{I} 5\}$. What are the association rules that can be generated

Example

from
Chapter 6 from X ? The nonempty subsets of X are $\{\mathrm{I} 1, \mathrm{I} 2\},\{\mathrm{I} 1, \mathrm{I} 5\},\{\mathrm{I} 2, \mathrm{I} 5\},\{\mathrm{II}\},\{\mathrm{I} 2\}$, and $\{I 5\}$. The resulting association rules are as shown below, each listed with its confidence:

$$
\begin{array}{ll}
\{I 1, I 2\} \Rightarrow I 5, & \text { confidence }=2 / 4=50 \% \\
\{I 1, I 5\} \Rightarrow I 2, & \text { confidence }=2 / 2=100 \% \\
\{I 2, I 5\} \Rightarrow I 1, & \text { confidence }=2 / 2=100 \% \\
I 1 \Rightarrow\{I 2, I 5\}, & \text { confidence }=2 / 6=33 \% \\
I 2 \Rightarrow\{I 1, I 5\}, & \text { confidence }=2 / 7=29 \% \\
I 5 \Rightarrow\{I 1, I 2\}, & \text { confidence }=2 / 2=100 \%
\end{array}
$$

Apriori: Improvements and Alternatives

<1> Reduce passes of transaction database scans
\square Partitioning (e.g., Savasere, et al., 1995)
$<2>$ Shrink the number of candidates
\square Hashing (e.g., DHP: Park, et al., 1995)
$<3>$ Exploring Vertical Data Format: ECLAT (Zaki et al. @KDD'97)

$<1>$ Partitioning: Scan Database Only Twice

\square Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB

- Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
- Scan 1: Partition database so that each partition can fit in main memory
- Mine local frequent patterns in this partition
- Scan 2: Consolidate global frequent patterns
- Find global frequent itemset candidates (those frequent in at least one partition)
- Find the true frequency of those candidates, by scanning TDB_{i} one more time

<2> Direct Hashing and Pruning (DHP)

\square DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
\square Hashing: Different itemsets may have the same hash value: v = hash(itemset)
$\square 1^{\text {st }}$ scan: When counting the 1 -itemset, hash 2 -itemset to calculate the bucket count
\square Observation: A k-itemset cannot be frequent if its corresponding hashing bucket count is below the minsup threshold
\square Example: At the $1^{\text {st }}$ scan of TDB, count 1 -itemset, and
\square Hash 2 -itemsets in the transaction to its bucket
$\square\{a b, a d, c e\}$
$-\{b d, b e, d e\}$
\qquad

Itemsets	Count
$\{a b, a d, c e\}$	35
$\{b d, b e, d e\}$	298
$\ldots .$.	\ldots
$\{y z, q s, w t\}$	58
Hash Table	

\square At the end of the first scan,
\square if minsup $=80$, remove $a b, a d$, ce, since $\operatorname{count}\{a b, a d, c e\}<80$

$<3>$ Exploring Vertical Data Format: ECLAT

\square ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
\square Tid-List: List of transaction-ids containing an itemset
\square Vertical format: $\dagger(e)=\left\{T_{10}, T_{20}, T_{30}\right\} ; \dagger(a)=\left\{T_{10}, T_{20}\right\} ; \dagger(a e)=\left\{T_{10}, T_{20}\right\}$
\square Properties of Tid-Lists
$\square t(X)=t(Y): X$ and Y always happen together (e.g., $t(a c\}=t(d\})$
$\square t(X) \subset t(Y)$: transaction having X always has $Y(e . g ., t(a c) \subset \dagger(c e))$
\square Deriving frequent patterns based on vertical intersections
\square Using diffset to accelerate mining

- Only keep track of differences of tids
$\square \mathrm{t}(\mathrm{e})=\left\{\mathrm{T}_{10}, \mathrm{~T}_{20}, \mathrm{~T}_{30}\right\}, \mathrm{t}(\mathrm{ce})=\left\{\mathrm{T}_{10}, \mathrm{~T}_{30}\right\} \rightarrow$ Diffset $(\mathrm{ce}, \mathrm{e})=\left\{\mathrm{T}_{20}\right\}$

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList
a	10,20
b	20,30
c	10,30
d	10
e	$10,20,30$

<4> Mining Frequent Patterns by Pattern Growth

\square Apriori: A breadth-first search mining algorithm

- First find the complete set of frequent k-itemsets
- Then derive frequent ($k+1$)-itemset candidates
- Scan DB again to find true frequent ($k+1$)-itemsets

Two nontrivial costs:

- It may still need to generate a huge number of candidate sets. For example, if there are 10^{4} frequent 1-itemsets, the Apriori algorithm will need to generate more than 10^{7} candidate 2 -itemsets.
- It may need to repeatedly scan the whole database and check a large set of candidates by pattern matching. It is costly to go over each transaction in the database to determine the support of the candidate itemsets.

<4> Mining Frequent Patterns by Pattern Growth

\square Apriori: A breadth-first search mining algorithm

- First find the complete set of frequent k-itemsets
- Then derive frequent ($k+1$)-itemset candidates
- Scan DB again to find true frequent ($k+1$)-itemsets
\square Motivation for a different mining methodology
- Can we mine the complete set of frequent patterns without such a costly generation process?
\square For a frequent itemset ρ, can subsequent search be confined to only those transactions that contain ρ ?
- A depth-first search mining algorithm?
\square Such thinking leads to a frequent pattern (FP) growth approach:
- FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)

<4> High-level Idea of FP-growth Method

- Essence of frequent pattern growth (FPGrowth) methodology
\square Find frequent single items and partition the database based on each such single item pattern
\square Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
\square To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
\square Mining becomes
\square Recursively construct and mine (conditional) FP-trees
\square Until the resulting FP-tree is empty, or until it contains only one path-single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{\boldsymbol{f}, \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{i}, \boldsymbol{m}, \boldsymbol{p}\}$	
200	$\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{o}\}$	
300	$\{\boldsymbol{b}, \boldsymbol{f}, \boldsymbol{b}, \boldsymbol{j}, \boldsymbol{c}, \boldsymbol{w} \boldsymbol{\}}$	
400	$\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{k}, \boldsymbol{s}, \boldsymbol{p}\}$	
500	$\{\boldsymbol{a}, \boldsymbol{f}, \boldsymbol{c}, \boldsymbol{e}, \boldsymbol{l}, \boldsymbol{p}, \boldsymbol{m}, \boldsymbol{n}\}$	

1. Scan DB once, find single item frequent pattern:

$$
\text { Let min_support = } 3
$$

$$
f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
$$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{i}, \boldsymbol{m}, \boldsymbol{p}\}$	
200	$\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{o}\}$	
300	$\{\boldsymbol{b}, \boldsymbol{f}, \boldsymbol{b}, \boldsymbol{j}, \boldsymbol{c}, \boldsymbol{w} \boldsymbol{\}}$	
400	$\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{k}, \boldsymbol{s}, \boldsymbol{p}\}$	
500	$\{\boldsymbol{a}, \boldsymbol{f}, \boldsymbol{c}, \boldsymbol{e}, \boldsymbol{l}, \boldsymbol{p}, \boldsymbol{m}, \boldsymbol{n}\}$	

1. Scan DB once, find single item frequent pattern:

$$
\text { Let min_support = } 3
$$

$$
f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
$$

2. Sort frequent items in frequency descending order, F-list

F-list $=f-c-a-b-m-p$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{\boldsymbol{f}, \boldsymbol{a} \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{i}, \boldsymbol{m}, \boldsymbol{p}\}$	$\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{m}, \boldsymbol{p}$
200	$\{a, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{o}\}$	$f, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$
300	$\{\boldsymbol{b}, \boldsymbol{f}, \boldsymbol{h}, \boldsymbol{j}, \boldsymbol{o}, \boldsymbol{w}\}$	$\boldsymbol{f}, \boldsymbol{b}$
400	$\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{k}, \boldsymbol{s}, \boldsymbol{p}\}$	$\boldsymbol{c}, \boldsymbol{b}, \boldsymbol{p}$
500	$\{a, \boldsymbol{f}, \boldsymbol{c}, \boldsymbol{e}, \boldsymbol{l}, \boldsymbol{p}, \boldsymbol{m}, \boldsymbol{n}\}$	$\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{m}, \boldsymbol{p}$

1. Scan DB once, find single item frequent pattern:

$$
\text { Let min_support = } 3
$$

$$
\mathrm{f}: 4, \mathrm{a}: 3, \mathrm{c}: 4, \mathrm{~b}: 3, \mathrm{~m}: 3, \mathrm{p}: 3
$$

2. Sort frequent items in frequency descending order, f-list F-list $=f-c-a-b-m-p$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{\boldsymbol{f}, \boldsymbol{a}, \boldsymbol{c}, \boldsymbol{d}, \boldsymbol{g}, \boldsymbol{i}, \boldsymbol{m}, \boldsymbol{p}\}$	$\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{m}, \boldsymbol{p}$
200	$\{a, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{f}, \boldsymbol{l}, \boldsymbol{m}, \boldsymbol{o}\}$	$\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$
300	$\{\boldsymbol{b}, \boldsymbol{f}, \boldsymbol{h}, \boldsymbol{j}, \boldsymbol{o}, \boldsymbol{w}\}$	$\boldsymbol{f}, \boldsymbol{b}$
400	$\{\boldsymbol{b}, \boldsymbol{c}, \boldsymbol{k}, \boldsymbol{s}, \boldsymbol{p}\}$	$\boldsymbol{c} \boldsymbol{b}, \boldsymbol{p}$
500	$\{\boldsymbol{a}, \boldsymbol{f}, \boldsymbol{c}, \boldsymbol{e}, \boldsymbol{l}, \boldsymbol{p}, \boldsymbol{m}, \boldsymbol{n}\}$	$\boldsymbol{f}, \boldsymbol{c}, \boldsymbol{a}, \boldsymbol{m}, \boldsymbol{p}$

After inserting the $1^{\text {st }}$ frequent Itemlist: "f, c, a, m, p"

1. Scan DB once, find single item frequent pattern:

$$
\text { Let min_support = } 3
$$

$$
f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
$$

2. Sort frequent items in frequency descending order, f-list

F-list $=f-c-a-b-m-p$
3. Scan DB again, construct FP-tree
\square The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

f, c, a, m, p			\{\}
Header Table			
Item	Frequency	header	
f	4		1
c	4		
a	3		
b	3		
m	3		
p	3		p:1

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist			
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p			
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m			
300	$\{b, f, h, j, o, w\}$	f, b			After inserting the $2^{\text {nd }}$ frequent
400	$\{b, c, k, s, p\}$	c, b, p			itemlist " f, c, a, b, m "
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p			\{\}
Scan DB once, find single item frequent pattern: Header Table Let min_support = 3					
$\mathrm{f}: 4, \mathrm{a}: 3, \mathrm{c}: 4, \mathrm{~b}: 3, \mathrm{~m}: 3, \mathrm{p}: 3$			Frequency	header	$, \cdots f: 2$
Sort frequent items in frequency descending order, f-list$\text { F-list }=f-c-a-b-m-p$			4		c:
			4		$- \rightarrow \longdiv { a : 2 }$
Scan DB again, construct FP-tree		a	3		a.2
\square The frequent itemlist of each transaction is			3		$\bar{m}=1-\geqslant b: 1$
inserted as a branch, with shared sub-			3		-1,
branches merged, counts accumulated			3		$\rightarrow p: 1 \quad m: 1$

Example: Construct FP-tree from a Transaction DB

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	f, c, a, m, p
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	f, b
400	$\{\boldsymbol{b}, \mathrm{c}, \mathrm{k}, \mathrm{s}, \mathrm{p}\}$	c, b, p
500	$\{a, f, c, e, l, p, m, n\}$	f, c, a, m, p

After inserting all the frequent itemlists

1. Scan DB once, find single item frequent pattern:

$$
\text { Let min_support = } 3
$$

$$
f: 4, a: 3, c: 4, b: 3, m: 3, p: 3
$$

2. Sort frequent items in frequency descending order, f-list

F-list $=f-c-a-b-m-p$
3. Scan DB again, construct FP-tree
\square The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Header Table

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

\square Pattern mining can be partitioned according to current patterns

- Patterns containing p: p's conditional database: fcam:2, cb: 1
- p 's conditional database (i.e., the database under the condition that p exists):
- transformed prefix paths of item p
- Patterns having m but no p : m's conditional database: fca:2, fcab: 1
-
min_support $=3$
Conditional database of each pattern
Item Conditional database
c $\quad f: 3$
$a \quad f c: 3$
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Mine Each Conditional Database Recursively

min_support = 3

Conditional Data Bases
item cond. data base
c $f: 3$
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1
\square For each conditional database
\square Mine single-item patterns
\square Construct its FP-tree \& mine it
p's conditional DB: fcam:2, cb:1 $\rightarrow c: 3$
m 's conditional DB: fca:2, fcab:1 \rightarrow fca: 3
b's conditional DB: fca:1, f:1, c:1 $\rightarrow \boldsymbol{\phi}$
\{\} Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot
m: 3
fm: 3, cm: 3, am: 3
fcm: 3, fam:3, cam: 3
fcam: 3

A Special Case: Single Prefix Path in FP-tree

\square Suppose a (conditional) FP-tree T has a shared single prefix-path P

- Mining can be decomposed into two parts

FPGrowth: Mining Frequent Patterns by Pattern Growth

\square Essence of frequent pattern growth (FPGrowth) methodology
\square Find frequent single items and partition the database based on each such single item pattern
\square Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
\square To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
\square Mining becomes
\square Recursively construct and mine (conditional) FP-trees
\square Until the resulting FP-tree is empty, or until it contains only one path-single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods
\square Basic Concepts
\square Efficient Pattern Mining Methods
\square Pattern Evaluation
\square Summary

Pattern Evaluation

\square Limitation of the Support-Confidence Framework
\square Interestingness Measures: Lift and χ^{2}
\square Null-Invariant Measures
\square Comparison of Interestingness Measures
\square Pattern mining will generate a large set of patterns/rules
\square Not all the generated patterns/rules are interesting

How to Judge if a Rule/Pattern Is Interesting?

\square Pattern-mining will generate a large set of patterns/rules
\square Not all the generated patterns/rules are interesting
\square Interestingness measures: Objective vs. subjective

How to Judge if a Rule/Pattern Is Interesting?

\square Pattern-mining will generate a large set of patterns/rules
\square Not all the generated patterns/rules are interesting
\square Interestingness measures: Objective vs. subjective
\square Objective interestingness measures

- Support, confidence, correlation, ...
\square Subjective interestingness measures:
- Different users may judge interestingness differently
- Let a user specify
- Query-based: Relevant to a user's particular request
- Judge against one's knowledge base
- unexpected, freshness, timeliness

Limitation of the Support-Confidence Framework

\square Are s and c interesting in association rules: " $A \Rightarrow B$ " $[s, c]$?

Limitation of the Support-Confidence Framework

\square Are s and c interesting in association rules: " $A \Rightarrow B$ " $[s, c]$?
\square Example: Suppose one school may have the following statistics on \# of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

2-way contingency table

Limitation of the Support-Confidence Framework

\square Are s and c interesting in association rules: " $A \Rightarrow B$ " $[s, c]$?
\square Example: Suppose one school may have the following statistics on \# of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

2-way contingency table
\square Association rule mining may generate the following:

- play-basketball \Rightarrow eat-cereal [40\%, 66.7\%] (higher s \& c)
\square But this strong association rule is misleading: The overall \% of students eating cereal is $75 \%>66.7 \%$, a more telling rule:
- \neg play-basketball \Rightarrow eat-cereal [35\%, 87.5\%] (high s \& c)

Interestingness Measure: Lift

\square Measure of dependent/correlated events: lift

$$
\operatorname{lift}(B, C)=\frac{c(B \rightarrow C)}{s(C)}=\frac{s(B \cup C)}{s(B) \times s(C)}
$$

Lift is more telling than s \& c

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	400	350	750
$\neg \mathrm{C}$	200	50	250
$\Sigma_{\text {col. }}$	600	400	1000

Interestingness Measure: Lift

\square Measure of dependent/correlated events: lift

$$
\operatorname{lift}(B, C)=\frac{c(B \rightarrow C)}{s(C)}=\frac{P(B \cup C)}{P(B) \times P(C)}
$$

- Lift (B, C) may tell how B and C are correlated

Lift is more telling than s \& c

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	400	350	750
$\neg \mathrm{C}$	200	50	250
$\Sigma_{\text {col. }}$	600	400	1000

$\square \operatorname{Lift}(B, C)=1: B$ and C are independent

- > 1: positively correlated
$\square<1$: negatively correlated

Interestingness Measure: Lift

\square Measure of dependent/correlated events: lift

$$
\operatorname{lift}(B, C)=\frac{c(B \rightarrow C)}{s(C)}=\frac{s(B \cup C)}{s(B) \times s(C)}
$$

- Lift (B, C) may tell how B and C are correlated

Lift is more telling than s \& c

	B	$\neg \mathrm{~B}$	$\Sigma_{\text {row }}$
C	400	350	750
$\neg \mathrm{C}$	200	50	250
$\Sigma_{\text {col }}$	600	400	1000

- Lift $(B, C)=1: B$ and C are independent
$\square>1$: positively correlated
- < 1: negatively correlated
- In our example,

$$
\begin{gathered}
\operatorname{lift}(B, C)=\frac{400 / 1000}{600 / 1000 \times 750 / 1000}=0.89 \\
\operatorname{lift}(B, \neg C)=\frac{200 / 1000}{600 / 1000 \times 250 / 1000}=1.33
\end{gathered}
$$

- Thus, B and C are negatively correlated since lift $(B, C)<1$;
$\square \quad B$ and $\neg C$ are positively correlated since $\operatorname{lift}(B, \neg C)>1$

Interestingness Measure: χ^{2}

\square Another measure to test correlated events: $\boldsymbol{\chi}^{2}$

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	$400(450)$	$350(300)$	750
$\neg \mathrm{C}$	$(200$	(150)	$50(100)$
$\Sigma_{\text {col }}$	600	400	1000
Expected value			

Observed value

Interestingness Measure: χ^{2}

\square Another measure to test correlated events: $\boldsymbol{\chi}^{2}$

$$
\chi^{2}=\sum \frac{(\text { Observed }- \text { Expected })^{2}}{\text { Expected }}
$$

- For the table on the right,

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	$400(450)$	$350(300)$	750
$\neg \mathrm{C}$	200	(150)	$50(100)$
$\Sigma_{\text {col }}$	600	400	1000
Expected value			

$$
\chi^{2}=\frac{(400-450)^{2}}{450}+\frac{(350-300)^{2}}{300}+\frac{(200-150)^{2}}{150}+\frac{(50-100)^{2}}{100}=55.56
$$

- By consulting a table of critical values of the $\boldsymbol{\chi}^{2}$ distribution, one can conclude that the chance for B and C to be independent is very low (<0.01)
- χ^{2}-test shows B and C are negatively correlated since the expected value is 450 but the observed is only 400
- Thus, χ^{2} is also more telling than the support-confidence framework

Lift and χ^{2} : Are They Always Good Measures?

\square Null transactions: Transactions that contain neither B nor C
\square Let's examine the new dataset D
$\square B C(100)$ is much rarer than $B \neg C(1000)$ and $\neg B C(1000)$,

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	100	1000	1100
$\neg \mathrm{C}$	1000	100000	101000
$\Sigma_{\text {col. }}$	1100	101000	102100

- Unlikely B \& C will happen together!
\square But, Lift(B, C) $=8.44 \gg 1$ (Lift shows B and C are strongly positively correlated!)

Contingency table with expected values added

	B	$\neg \mathrm{B}$	$\Sigma_{\text {row }}$
C	$100(11.85)$	1000	1100
$\neg \mathrm{C}$	$1000(988.15)$	100000	101000
$\Sigma_{\text {col. }}$	1100	101000	102100

$\square \chi^{\mathbf{2}}=670:$ Observed $(B C) \gg$ expected value (11.85)

- Too many null transactions may "spoil the soup"!

Interestingness Measures \& Null-Invariance

\square Null invariance: Value does not change with the \# of null-transactions
\square A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant?
$\chi^{2}(A, B)$	$\sum_{i, j} \frac{\left(e\left(a_{i}, b_{j}\right)-o\left(a_{i}, b_{j}\right)\right)^{2}}{e\left(a_{i}, b_{j}\right)}$	$[0, \infty]$	No
Lift (A, B)	$\frac{s(A \cup B)}{s(A) s(B)}$	$[0, \infty]$	No
Allconf (A, B)	$\frac{s(A \cup B)}{\max \{s(A), s(B)\}}$	$[0,1]$	Yes
Jaccard (A, B)	$\frac{s(A \cup B)}{s(A)+s(B)-s(A \cup B)}$	$[0,1]$	Yes
$\operatorname{Cosine}(A, B)$	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	$[0,1]$	Yes
$\operatorname{Kulczynski~}(A, B)$	$\frac{1}{2}\left(\frac{s(A \cup B)}{s(A)}+\frac{s(A \cup B)}{s(B)}\right)$	$[0,1]$	Yes
MaxConf (A, B)	$\max \left\{\frac{s(A \cup B)}{s(A)}, \frac{s(A \cup B)}{s(B)}\right\}$	$[0,1]$	Yes

\mathbf{X}^{2} and lift are not null-invariant

Jaccard, consine, AllConf, MaxConf, and Kulczynski are null-invariant measures

Null Invariance: An Important Property

\square Why is null invariance crucial for the analysis of massive transaction data?

- Many transactions may contain neither milk nor coffee!
milk vs. coffee contingency table

	milk	\neg milk	$\Sigma_{\text {row }}$
coffee	$m c$	$\neg m c$	c
\neg coffee	$m \neg c$	$\neg m \neg c$	$\neg c$
$\Sigma_{\text {col }}$	m	$\neg m$	Σ

[. Lift and χ^{2} are not null-invariant: not good to evaluate data that contain too many or too few null transactions!

- Many measures are not null-invariant!

Data set	$m c$	$\neg m c$	$m \neg c$	$\sqrt{n \neg c}$	χ^{2}	Lift
D_{1}	10,000	1,000	1,000	100,000	90557	9.26
D_{2}	10,000	1,000	1,000	100	0	1
D_{3}	100	1,000	1,000	100,000	670	8.44
D_{4}	1,000	1,000	1,000	100,000	24740	25.75
D_{5}	1,000	100	10,000	100,000	8173	9.18
D_{6}	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

\square Not all null-invariant measures are created equal
\square Which one is better?
2-variable contingency table

- $D_{4}-D_{6}$ differentiate the null-invariant measures
- Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

Imbalance Ratio with Kulczynski Measure

\square IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:

$$
I R(A, B)=\frac{|s(A)-s(B)|}{s(A)+s(B)-s(A \cup B)}
$$

\square Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D_{4} through D_{6}
$\square D_{4}$ is neutral \& balanced; D_{5} is neutral but imbalanced
$\square D_{6}$ is neutral but very imbalanced

Data set	$m c$	$\neg m c$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_{1}	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_{2}	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_{3}	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_{4}	1,000	1,000	1,000	100,000	0.33	0.5	0.5	0
D_{5}	1,000	100	10,000	100,000	0.09	0.29	0.5	0.89
D_{6}	1,000	10	100,000	100,000	0.01	0.10	0.5	0.99

What Measures to Choose for Effective Pattern Evaluation?

\square Null value cases are predominant in many large datasets
\square Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
\square Null-invariance is an important property
\square Lift, $\boldsymbol{\chi}^{\mathbf{2}}$ and cosine are good measures if null transactions are not predominant
\square Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods
\square Basic ConceptsEfficient Pattern Mining Methods
\square Pattern Evaluation
\square Summary

Summary

Basic Concepts

- What Is Pattern Discovery? Why Is It Important?
- Basic Concepts: Frequent Patterns and Association Rules
- Compressed Representation: Closed Patterns and Max-Patterns
$\square \quad$ Efficient Pattern Mining Methods
- The Downward Closure Property of Frequent Patterns
- The Apriori Algorithm
- Extensions or Improvements of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
\square Pattern Evaluation
- Interestingness Measures in Pattern Mining
- Interestingness Measures: Lift and χ^{2}
- Null-Invariant Measures
- Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

\square R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
\square R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
\square N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
\square J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings (Efficient Pattern Mining Methods)

\square R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
\square A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
\square J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
\square S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
\square M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
\square J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
\square M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
\square J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
\square C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
$\square \quad$ S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
$\square \quad$ M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
\square E. Omiecinski. Alternative Interest Measures for Mining Associations. TKDE’03
\square P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
$\square \quad$ T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010

Expressing Patterns in Compressed Form: Closed Patterns

\square How to handle such a challenge?
\square Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern $Y \supset X$, with the same support as X
\square Let Transaction DB TDB $1_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many closed patterns does TDB ${ }_{1}$ contain?

- Two: $P_{1}:$ " $\left\{a_{1}, \ldots, a_{50}\right\}: 2 " ; P_{2}$: " $\left\{a_{1}, \ldots, a_{100}\right\}: 1 "$
\square Closed pattern is a lossless compression of frequent patterns
- Reduces the \# of patterns but does not lose the support information!
- You will still be able to say: " $\left\{a_{2}, \ldots, a_{40}\right\}: 2 ", "\left\{a_{5}, a_{51}\right\}$: 1 "

Expressing Patterns in Compressed Form: Max-Patterns

\square Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern $Y \supset X$
\square Difference from close-patterns?
\square Do not care the real support of the sub-patterns of a max-pattern
\square Let Transaction DB TDB ${ }_{1}: T_{1}:\left\{a_{1}, \ldots, a_{50}\right\} ; T_{2}:\left\{a_{1}, \ldots, a_{100}\right\}$
\square Suppose minsup $=1$. How many max-patterns does TDB ${ }_{1}$ contain?

- One: P: " $\left\{\mathrm{a}_{1}, \ldots, \mathrm{a}_{100}\right\}: 1^{\prime \prime}$
\square Max-pattern is a lossy compression!
\square We only know $\left\{a_{1}, \ldots, a_{40}\right\}$ is frequent
\square But we do not know the real support of $\left\{a_{1}, \ldots, a_{40}\right\}$, ..., any more!
\square Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

\square What if FP-tree cannot fit in memory?-Do not construct FP-tree

- "Project" the database based on frequent single items
- Construct \& mine FP-tree for each projected DB
\square Parallel projection vs. partition projection
- Parallel projection: Project the DB on each frequent item
- Space costly, all partitions can be processed in parallel
\square Partition projection: Partition the DB in order
- Passing the unprocessed parts to subsequent partitions

Analysis of DBLP Coauthor Relationships

- DBLP: Computer science research publication bibliographic database
- >3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	$0.163(2)$	$0.315(7)$	$0.355(9)$
2	Michael Carey	Miron Livny	26	104	58	$0.191(1)$	$0.335(4)$	$0.349(10)$
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	$0.152(3)$	$0.331(5)$	$0.416(8)$
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	$0.119(7)$	$0.308(10)$	$0.446(7)$
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	$18)$	$0.123(6)$	$0.351(2)$	$0.562(2)$
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	$0.110(9)$	$0.314(8)$	$0.500(4)$
7	Divyakant Agrawal	Wang Hsiung	16	120	16	$0.133(5)$	$0.365(1)$	$0.567(1)$
8	Elke Rundensteiner	Murali Mani	16	104	20	$0.148(4)$	$0.351(3)$	$0.477(6)$
9	Divyakant Agrawal	Oliver Po	12	120	12	$0.100(10)$	$0.316(6)$	$0.550(3)$
10	Gerhard Weikum	Martin Theobald	12	106	14	$0.111(8)$	$0.312(9)$	$0.485(5)$

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle
\square Which pairs of authors are strongly related?
\square Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

\square DBLP: Computer science research publication bibliographic database
$\square \quad>3.8$ million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	$s(A)$	$s(B)$	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	$0.163(2)$	$0.315(7)$	$0.355(9)$
2	Michael Carey	Miron Livny	26	104	58	$0.191(1)$	$0.335(4)$	$0.349(10)$
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	$0.152(3)$	$0.331(5)$	$0.416(8)$
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	$0.119(7)$	$0.308(10)$	$0.446(7)$
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	$18)$	$0.123(6)$	$0.351(2)$	$0.562(2)$
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	$0.110(9)$	$0.314(8)$	$0.500(4)$
7	Divyakant Agrawal	Wang Hsiung	16	120	16	$0.133(5)$	$0.365(1)$	$0.567(1)$
8	Elke Rundensteiner	Murali Mani	16	104	20	$0.148(4)$	$0.351(3)$	$0.477(6)$
9	Divyakant Agrawal	Oliver Po	<12	120	12	$0.100(10)$	$0.316(6)$	$0.550(3)$
10	Gerhard Weikum	Martin Theobald	12	106	14	$0.111(8)$	$0.312(9)$	$0.485(5)$

\square Which pairs of authors are strongly related?
\square Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

\square Null value cases are predominant in many large datasets
\square Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
\square Null-invariance is an important property
\square Lift, $\boldsymbol{\chi}^{\mathbf{2}}$ and cosine are good measures if null transactions are not predominant

- Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern
\square Exercise: Mining research collaborations from research bibliographic data
\square Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
- Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
\square Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10

