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Notes

 Reminder: HW3 Due Today by 11:59PM

 TA’s comments in Carmen 
 Enroll in auto notification

 HW4 is out (no programming this time)
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Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation 

 Summary

Review

This class
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Basic Concepts: k-Itemsets and Their Supports
 Itemset: A set of one or more items
 k-itemset: X = {x1, …, xk}

 Ex. {Beer, Nuts, Diaper} is a 3-itemset

 (absolute) support (count) of X, sup{X}: 
Frequency or the number of occurrences 
of an itemset X

 Ex.  sup{Beer} = 3
 Ex.  sup{Beer, Eggs} = 1

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

 (relative) support, s{X}:  The fraction of 
transactions that contains X (i.e., the 
probability that a transaction contains X)

 Ex.  s{Beer} = 3/5 = 60%
 Ex.  s{Beer, Eggs} = 1/5 = 20%
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Basic Concepts: Frequent Itemsets (Patterns)
 An itemset (or a pattern) X is frequent if 

the support of X is no less than a minsup
threshold σ

 Let σ = 50%  (σ: minsup threshold)
For the given 5-transaction dataset

 All the frequent 1-itemsets:  
 Beer: 3/5 (60%); Nuts: 3/5 (60%)
 Diaper: 4/5 (80%); Eggs: 3/5 (60%)

 All the frequent 2-itemsets:  
 {Beer, Diaper}: 3/5 (60%)

 All the frequent 3-itemsets?
None 

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

We may also use minsup = 3 to represent the threshold. 
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Mining Frequent Itemsets and Association Rules
 Association rule mining

 Given two thresholds: minsup, minconf
 Find all of the rules, X  Y (s, c)
 such that, s ≥ minsup and c ≥ minconf

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

 Let minsup = 50% 
 Freq. 1-itemsets: Beer: 3, Nuts: 3, 

Diaper: 4, Eggs: 3
 Freq. 2-itemsets:  {Beer, Diaper}: 3

 Let minconf = 50%
 Beer  Diaper  (60%, 100%)
 Diaper  Beer  (60%, 75%)
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Association Rule Mining: two-step process
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Relationship: Frequent, Closed , Max 

{all frequent patterns} >= {closed frequent patterns} >= {max frequent patterns}
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Example

The set of closed frequent itemsets contains complete information regarding the frequent itemsets. 
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Example (Cont’d)

 Given closed frequent itemsets: 

C = { {a1, a2, …, a100}: 1;    {a1, a2, …, a50}: 2 }
maximal frequent itemset:

M = {{a1, a2, …, a100}: 1}

Based on C, we can derive all frequent itemsets and their support counts.

Is {a2, a45} frequent? Can we know its support? 

Yes, 2
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Example (Cont’d)

 Given closed frequent itemsets: 

C = { {a1, a2, …, a100}: 1;    {a1, a2, …, a50}: 2 }
maximal frequent itemset:

M = {{a1, a2, …, a100}: 1}

Based on M, we only know frequent itemsets, but not their support counts. 

Is {a2, a45} or {a8, a55} frequent? Can we know their support? 
Yes, but their support is unknown
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Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 The Apriori Algorithm

 Application in Classification

 Pattern Evaluation 

 Summary
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Apriori: A Candidate Generation & Test Approach

 Outline of Apriori (level-wise, candidate generation and test) 

 Initially, scan DB once to get frequent 1-itemset

 Repeat

Generate length-(k+1) candidate itemsets from length-k frequent itemsets

 Test the candidates against DB to find frequent (k+1)-itemsets

 Set k := k +1

 Until no frequent or candidate set can be generated

 Return all the frequent itemsets derived

Apriori:  Any subset of a frequent itemset must be frequent



14

The Apriori Algorithm—An Example 

Database TDB

1st scan

C1 F1

F2

C2 C2

2nd scan

C3 F33rd scan

Tid Items
10 A, C, D
20 B, C, E
30 A, B, C, E
40 B, E

Itemset sup
{A} 2
{B} 3
{C} 3
{D} 1
{E} 3

Itemset sup
{A} 2
{B} 3
{C} 3
{E} 3

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

Itemset sup
{A, B} 1
{A, C} 2
{A, E} 1
{B, C} 2
{B, E} 3
{C, E} 2

Itemset sup
{A, C} 2
{B, C} 2
{B, E} 3
{C, E} 2

Itemset
{B, C, E}

Itemset sup
{B, C, E} 2

minsup = 2

Another example 
6.3 in Chapter 6
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Generating Association Rules from Frequent Patterns

 Recall that:

 Once we mined frequent patterns, association rules can be generated as follows: 

Because l is a frequent itemset, each rule automatically satisfies the minimum support requirement.  
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Example: Generating Association Rules
Example 
from 
Chapter 6

If minimum confidence threshold: 70%, what will be output?
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Apriori: Improvements and Alternatives
<1> Reduce passes of transaction database scans

 Partitioning (e.g., Savasere, et al., 1995)

<2> Shrink the number of candidates
 Hashing (e.g., DHP: Park, et al., 1995)

<3> Exploring Vertical Data Format: ECLAT (Zaki et al. @KDD’97)
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<1> Partitioning: Scan Database Only Twice
 Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of 

the partitions of TDB   

TDB1
TDB2 TDBk+ =       TDB++

sup1(X) < σ|TDB1| sup2(X) < σ|TDB2| supk(X) < σ|TDBk| sup(X) < σ|TDB|
. . .
. . .

 Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB’95)
 Scan 1: Partition database so that each partition can fit in main memory 
 Mine local frequent patterns in this partition
 Scan 2: Consolidate global frequent patterns
 Find global frequent itemset candidates (those frequent in at least one partition)
 Find the true frequency of those candidates, by scanning TDBi one more time

σ is the minsup
threshold, e.g., 30%
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<2> Direct Hashing and Pruning (DHP)

 DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD’95)
 Hashing: Different itemsets may have the same hash value:  v = hash(itemset)
 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
 Observation:   A k-itemset cannot be frequent if its corresponding hashing bucket 

count is below the minsup threshold
 Example: At the 1st scan of TDB, count 1-itemset, and

 Hash 2-itemsets in the transaction to its bucket
 {ab, ad, ce}
 {bd, be, de} 
…

 At the end of the first scan,
 if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80

Hash Table

Itemsets Count

{ab, ad, ce} 35

{bd, be, de} 298

…… …
{yz, qs, wt} 58
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<3> Exploring Vertical Data Format: ECLAT

 ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set 
intersection [Zaki et al. @KDD’97] 

 Tid-List: List of transaction-ids containing an itemset

 Vertical format: t(e) = {T10, T20, T30}; t(a) = {T10, T20}; t(ae) = {T10, T20}

 Properties of Tid-Lists

 t(X) = t(Y): X and Y always happen together (e.g., t(ac} = t(d}) 

 t(X) ⊂ t(Y): transaction having X always has Y (e.g., t(ac) ⊂ t(ce))

 Deriving frequent patterns based on vertical intersections

 Using diffset to accelerate mining

 Only keep track of differences of tids

 t(e) = {T10, T20, T30}, t(ce) = {T10, T30} → Diffset (ce, e) = {T20}

A transaction DB in 
Horizontal Data Format

Item TidList

a 10, 20

b 20, 30

c 10, 30

d 10

e 10, 20, 30

The transaction DB in 
Vertical Data Format

Tid Itemset

10 a, c, d, e

20 a, b, e

30 b, c, e
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<4> Mining Frequent Patterns by Pattern Growth

 Apriori:  A breadth-first search mining algorithm

 First find the complete set of frequent k-itemsets

 Then derive frequent (k+1)-itemset candidates

 Scan DB again to find true frequent (k+1)-itemsets

Two nontrivial costs:
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<4> Mining Frequent Patterns by Pattern Growth

 Apriori:  A breadth-first search mining algorithm

 First find the complete set of frequent k-itemsets

 Then derive frequent (k+1)-itemset candidates

 Scan DB again to find true frequent (k+1)-itemsets

 Motivation for a different mining methodology

 Can we mine the complete set of frequent patterns without such a costly generation process?

 For a frequent itemset ρ, can subsequent search be confined to only those 
transactions that contain ρ?

 A depth-first search mining algorithm?

 Such thinking leads to a frequent pattern (FP) growth approach: 
 FPGrowth (J. Han, J. Pei, Y. Yin, “Mining Frequent Patterns without Candidate Generation,” SIGMOD 2000)
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<4> High-level Idea of FP-growth Method
 Essence of frequent pattern growth (FPGrowth) methodology

 Find frequent single items and partition the database based on each such 
single item pattern 

 Recursively grow frequent patterns by doing the above for each partitioned 
database (also called the pattern’s conditional database) 

 To facilitate efficient processing, an efficient data structure, FP-tree, can be 
constructed

 Mining becomes 

 Recursively construct and mine (conditional) FP-trees 

 Until the resulting FP-tree is empty, or until it contains only one path—single 
path will generate all the combinations of its sub-paths, each of which is a 
frequent pattern
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Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Let min_support = 3
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Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, F-list

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Let min_support = 3



26

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3
Let min_support = 3
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

{}

f:1

c:1

a:1

m:1

p:1

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
The frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 1st frequent 
Itemlist: “f, c, a, m, p”
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
The frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting the 2nd frequent 
itemlist “f, c, a, b, m”

{} 

f:2

c:2

a:2

b:1m:1

p:1 m:1
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Item Frequency header

f 4

c 4

a 3

b 3

m 3

p 3

Example: Construct FP-tree from a Transaction DB

1. Scan DB once, find single item frequent pattern: 

2. Sort frequent items in frequency descending 
order, f-list

3. Scan DB again, construct FP-tree
The frequent itemlist of each transaction is 

inserted as a branch, with shared sub-
branches merged, counts accumulated

F-list = f-c-a-b-m-p

TID Items in the Transaction Ordered, frequent itemlist
100 {f, a, c, d, g, i, m, p} f, c, a, m, p
200 {a, b, c, f, l, m, o} f, c, a, b, m
300 {b, f, h, j, o, w} f, b
400 {b, c, k, s, p} c, b, p
500 {a, f, c, e, l, p, m, n} f, c, a, m, p

f:4, a:3, c:4, b:3, m:3, p:3

Header Table
Let min_support = 3

After inserting all the 
frequent itemlists

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1
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Mining FP-Tree: Divide and Conquer Based on Patterns and Data
 Pattern mining can be partitioned according to current patterns

 Patterns containing p: p’s conditional database: fcam:2, cb:1
 p’s conditional database (i.e., the database under the condition that p exists): 

 transformed prefix paths of item p
 Patterns having m but no p: m’s conditional database: fca:2, fcab:1
 …… ……

Item Frequency Header

f 4

c 4

a 3

b 3

m 3

p 3

{}

f:4 c:1

b:1

p:1

b:1c:3

a:3

b:1m:2

p:2 m:1

Item Conditional database
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional database of each patternmin_support = 3
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f:3

Mine Each Conditional Database Recursively
 For each conditional database

 Mine single-item patterns
 Construct its FP-tree & mine it

{}

f:3

c:3

a:3

item cond. data base
c f:3
a fc:3
b fca:1, f:1, c:1
m fca:2, fcab:1
p fcam:2, cb:1

Conditional Data Bases

p’s conditional DB: fcam:2, cb:1 → c: 3
m’s conditional DB: fca:2, fcab:1 → fca: 3

b’s conditional DB: fca:1, f:1, c:1 → ɸ
{}

f:3

c:3
am’s FP-tree

m’s FP-tree

{}

f:3

cm’s FP-tree

{}

cam’s FP-tree

m: 3
fm: 3, cm: 3, am: 3 
fcm: 3, fam:3, cam: 3 
fcam: 3

Actually, for single branch FP-tree, all the 
frequent patterns can be generated in one shot

min_support = 3

Then, mining m’s FP-tree: fca:3



32

A Special Case: Single Prefix Path in FP-tree
 Suppose a (conditional) FP-tree T has a shared single prefix-path P

 Mining can be decomposed into two parts

 Reduction of the single prefix path into one node

 Concatenation of the mining results of the two parts



a2:n2

a3:n3

a1:n1

{}

b1:m1
c1:k1

c2:k2 c3:k3

b1:m1
c1:k1

c2:k2 c3:k3

r1

+
a2:n2

a3:n3

a1:n1

{}

r1 =
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FPGrowth: Mining Frequent Patterns by Pattern Growth

 Essence of frequent pattern growth (FPGrowth) methodology

 Find frequent single items and partition the database based on each such 
single item pattern 

 Recursively grow frequent patterns by doing the above for each partitioned 
database (also called the pattern’s conditional database) 

 To facilitate efficient processing, an efficient data structure, FP-tree, can be 
constructed

 Mining becomes 

 Recursively construct and mine (conditional) FP-trees 

 Until the resulting FP-tree is empty, or until it contains only one path—single 
path will generate all the combinations of its sub-paths, each of which is a 
frequent pattern
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Chapter 6: Mining Frequent Patterns, Association and 
Correlations: Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation 

 Summary
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Pattern Evaluation

 Limitation of the Support-Confidence Framework

 Interestingness Measures: Lift and χ2

 Null-Invariant Measures

 Comparison of Interestingness Measures
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 Pattern mining will generate a large set of patterns/rules

 Not all the generated patterns/rules are interesting
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How to Judge if a Rule/Pattern Is Interesting?
 Pattern-mining will generate a large set of patterns/rules

 Not all the generated patterns/rules are interesting

 Interestingness measures: Objective vs. subjective
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How to Judge if a Rule/Pattern Is Interesting?
 Pattern-mining will generate a large set of patterns/rules

 Not all the generated patterns/rules are interesting

 Interestingness measures: Objective vs. subjective
 Objective interestingness measures
 Support, confidence, correlation, …

 Subjective interestingness measures: 
 Different users may judge interestingness differently
 Let a user specify

 Query-based:  Relevant to a user’s particular request

 Judge against one’s knowledge base
 unexpected, freshness, timeliness
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Limitation of the Support-Confidence Framework

 Are s and c interesting in association rules: “A ⇒ B” [s, c]? 
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Limitation of the Support-Confidence Framework

 Are s and c interesting in association rules: “A ⇒ B” [s, c]? 
 Example:  Suppose one school may have the following statistics on # of students who 

may play basketball and/or eat cereal:
play-basketball not play-basketball sum (row)

eat-cereal 400 350 750
not eat-cereal 200 50 250

sum(col.) 600 400 1000
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Limitation of the Support-Confidence Framework

 Are s and c interesting in association rules: “A ⇒ B” [s, c]? 
 Example:  Suppose one school may have the following statistics on # of students 

who may play basketball and/or eat cereal:

 Association rule mining may generate the following:

 play-basketball ⇒ eat-cereal [40%, 66.7%]  (higher s & c)
 But this strong association rule is misleading: The overall % of students eating 

cereal is 75% > 66.7%, a more telling rule:
 ¬ play-basketball ⇒ eat-cereal [35%, 87.5%] (high s & c)

play-basketball not play-basketball sum (row)
eat-cereal 400 350 750
not eat-cereal 200 50 250

sum(col.) 600 400 1000
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Interestingness Measure: Lift
 Measure of dependent/correlated events: lift

)()(
)(

)(
)(),(

CsBs
CBs

Cs
CBcCBlift

×
∪

=
→

=
B ¬B ∑row

C 400 350 750
¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c
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Interestingness Measure: Lift
 Measure of dependent/correlated events: lift

)()(
)(

)(
)(),(

CPBP
CBP

Cs
CBcCBlift

×
∪

=
→

=
B ¬B ∑row

C 400 350 750
¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

 Lift(B, C) may tell how B and C are correlated

 Lift(B, C) = 1: B and C are independent

 > 1:  positively correlated

 < 1: negatively correlated
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Interestingness Measure: Lift
 Measure of dependent/correlated events: lift

33.1
1000/2501000/600

1000/200),( =
×

=¬CBlift

89.0
1000/7501000/600

1000/400),( =
×

=CBlift

)()(
)(

)(
)(),(

CsBs
CBs

Cs
CBcCBlift

×
∪

=
→

=
B ¬B ∑row

C 400 350 750
¬C 200 50 250
∑col. 600 400 1000

Lift is more telling than s & c

 Lift(B, C) may tell how B and C are correlated

 Lift(B, C) = 1: B and C are independent

 > 1:  positively correlated

 < 1: negatively correlated

 In our example,

 Thus, B and C are negatively correlated since lift(B, C) < 1; 

 B and ¬C are positively correlated since lift(B, ¬C) > 1
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Interestingness Measure: χ2

 Another measure to test correlated events: χ2
B ¬B ∑row

C 400 (450) 350 (300) 750
¬C 200 (150) 50 (100) 250
∑col 600 400 1000∑ −

=
Expected

ExpectedObserved 2
2 )(χ

Expected value

Observed value
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Interestingness Measure: χ2

 Another measure to test correlated events: χ2
B ¬B ∑row

C 400 (450) 350 (300) 750
¬C 200 (150) 50 (100) 250
∑col 600 400 1000∑ −

=
Expected

ExpectedObserved 2
2 )(χ

 For the table on the right,

 By consulting a table of critical values of the χ2 distribution, one can conclude 
that the chance for B and C  to be independent is very low (< 0.01)

 χ2-test shows B and C are negatively correlated since the expected value is 
450 but the observed is only 400

 Thus, χ2 is also more telling than the support-confidence framework

Expected value

Observed value
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Lift and χ2 : Are They Always Good Measures?

 Null transactions:  Transactions that contain 
neither B nor C

 Let’s examine the new dataset D

 BC (100) is much rarer than B¬C (1000) and ¬BC (1000), 
but there are many ¬B¬C (100000)

 Unlikely B & C will happen together!

 But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly 
positively correlated!)

 χ2 = 670: Observed(BC) >> expected value (11.85)

 Too many null transactions may “spoil the soup”!

B ¬B ∑row

C 100 1000 1100
¬C 1000 100000 101000
∑col. 1100 101000 102100

B ¬B ∑row

C 100 (11.85) 1000 1100
¬C 1000 (988.15) 100000 101000
∑col. 1100 101000 102100

null transactions

Contingency table with expected values added
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Interestingness Measures & Null-Invariance
 Null invariance: Value does not change with the # of null-transactions
 A few interestingness measures:  Some are null invariant

Χ2 and lift are not 
null-invariant

Jaccard, consine, 
AllConf, MaxConf, 
and Kulczynski are 
null-invariant 
measures
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Null Invariance: An Important Property
 Why is null invariance crucial for the analysis of massive transaction data? 

 Many transactions may contain neither milk nor coffee!

 Lift and χ2 are not null-invariant: not good to evaluate 
data that contain too many or too few null transactions!

 Many measures are not null-invariant! 

Null-transactions 
w.r.t. m and c

milk vs. coffee contingency table
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Comparison of Null-Invariant Measures
 Not all null-invariant measures are created equal
 Which one is better?

 D4—D6 differentiate the null-invariant measures
 Kulc (Kulczynski 1927) holds firm and is in balance of both 

directional implications

All 5 are null-invariant

Subtle: They disagree on those cases

2-variable contingency table
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Imbalance Ratio with Kulczynski Measure

 IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:

 Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three 
datasets D4 through D6

 D4  is neutral & balanced;  D5  is neutral but imbalanced 

 D6  is neutral but very imbalanced 
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What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets 
 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the 

papers; ……

 Null-invariance is an important property

 Lift, χ2 and cosine are good measures if null transactions are not predominant
 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern 
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Chapter 6: Mining Frequent Patterns, Association and Correlations: 
Basic Concepts and Methods

 Basic Concepts

 Efficient Pattern Mining Methods

 Pattern Evaluation 

 Summary
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Summary
 Basic Concepts

 What Is Pattern Discovery?   Why Is It Important?
 Basic Concepts: Frequent Patterns and Association Rules
 Compressed Representation: Closed Patterns and Max-Patterns

 Efficient Pattern Mining Methods
 The Downward Closure Property of Frequent Patterns
 The Apriori Algorithm
 Extensions or Improvements of Apriori
 FPGrowth:  A Frequent Pattern-Growth Approach

 Pattern Evaluation
 Interestingness Measures in Pattern Mining 
 Interestingness Measures: Lift and χ2

 Null-Invariant Measures
 Comparison of Interestingness Measures
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Recommended Readings (Basic Concepts)
 R. Agrawal, T. Imielinski, and A. Swami, “Mining association rules between sets of 

items in large databases”,  in Proc. of SIGMOD'93

 R. J. Bayardo, “Efficiently mining long patterns from databases”, in Proc. of 
SIGMOD'98

 N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, “Discovering frequent closed itemsets
for association rules”, in Proc. of ICDT'99

 J. Han, H. Cheng, D. Xin, and X. Yan, “Frequent Pattern Mining: Current Status and 
Future Directions”, Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
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Recommended Readings (Efficient Pattern Mining Methods)

 R. Agrawal and R. Srikant, “Fast algorithms for mining association rules”, VLDB'94

 A. Savasere, E. Omiecinski, and S. Navathe, “An efficient algorithm for mining association rules in large databases”, 
VLDB'95

 J. S. Park, M. S. Chen, and P. S. Yu, “An effective hash-based algorithm for mining association rules”, SIGMOD'95

 S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating association rule mining with relational database systems: 
Alternatives and implications”, SIGMOD'98

 M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, “Parallel algorithm for discovery of association rules”, Data 
Mining and Knowledge Discovery, 1997

 J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation”, SIGMOD’00

 M. J. Zaki and Hsiao, “CHARM: An Efficient Algorithm for Closed Itemset Mining”, SDM'02

 J. Wang, J. Han, and J. Pei, “CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets”, 
KDD'03

 C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, “Frequent Pattern Mining Algorithms: A Survey”, in Aggarwal and Han 
(eds.): Frequent Pattern Mining, Springer, 2014 
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Recommended Readings (Pattern Evaluation)

 C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS’98

 S. Brin, R. Motwani, and C. Silverstein.   Beyond market basket: Generalizing association rules to 
correlations.  SIGMOD'97

 M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo.   Finding interesting rules 
from large sets of discovered association rules.  CIKM'94

 E. Omiecinski.   Alternative Interest Measures for Mining Associations.  TKDE’03

 P.-N. Tan, V. Kumar, and J. Srivastava.   Selecting the Right Interestingness Measure for Association 
Patterns.  KDD'02

 T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified 
Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010
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Expressing Patterns in Compressed Form: Closed Patterns

 How to handle such a challenge?

 Solution 1: Closed patterns:  A pattern (itemset) X is closed if X is frequent, and 
there exists no super-pattern Y כ X, with the same support as X 

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many closed patterns does TDB1 contain? 

 Two:  P1: “{a1, …, a50}: 2”;  P2: “{a1, …, a100}: 1” 

 Closed pattern is a lossless compression of frequent patterns

 Reduces the # of patterns but does not lose the support information!

 You will still be able to say: “{a2, …, a40}: 2”, “{a5, a51}: 1”
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Expressing Patterns in Compressed Form: Max-Patterns

 Solution 2: Max-patterns:  A pattern X is a maximal frequent pattern or max-pattern 
if X is frequent and there exists no frequent super-pattern Y כ X 

 Difference from close-patterns?

 Do not care the real support of the sub-patterns of a max-pattern

 Let Transaction DB TDB1: T1: {a1, …, a50};  T2: {a1, …, a100} 

 Suppose minsup = 1. How many max-patterns does TDB1 contain? 

 One:  P: “{a1, …, a100}: 1” 

 Max-pattern is a lossy compression! 
 We only know {a1, …, a40} is frequent
 But we do not know the real support of {a1, …, a40}, …, any more!
 Thus in many applications, close-patterns are more desirable than max-patterns
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Assume only f’s are 
frequent & the 
frequent item 
ordering is: f1-f2-f3-f4

Scaling FP-growth by Item-Based Data Projection
 What if FP-tree cannot fit in memory?—Do not construct FP-tree

 “Project” the database based on frequent single items
 Construct & mine FP-tree for each projected DB

 Parallel projection vs. partition projection 
 Parallel projection: Project the DB on each frequent item
 Space costly, all partitions can be processed in parallel

 Partition projection: Partition the DB in order
 Passing the unprocessed parts to subsequent partitions

f2 f3 f4 g h
f3 f4 i j 
f2 f4 k 
f1 f3 h
…

Trans. DB Parallel projection

f2 f3
f3
f2
…

f4-proj. DB f3-proj. DB f4-proj. DB

f2
f1
…

Partition projection

f2 f3
f3
f2
…

f1
…

f3-proj. DB

f2 will be projected to f3-proj. 
DB only when processing f4-
proj. DB 
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Analysis of DBLP Coauthor Relationships

 Which pairs of authors are strongly related?

 Use Kulc to find Advisor-advisee, close collaborators

 DBLP: Computer science research publication bibliographic database
 > 3.8 million entries on authors, paper, venue, year, and other information

Advisor-advisee relation: Kulc: high, Jaccard: low, 
cosine: middle
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What Measures to Choose for Effective Pattern Evaluation?

 Null value cases are predominant in many large datasets 
 Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the 

papers; ……

 Null-invariance is an important property
 Lift, χ2 and cosine are good measures if null transactions are not predominant

 Otherwise, Kulczynski + Imbalance Ratio should be used to judge the interestingness of a pattern 

 Exercise: Mining research collaborations from research bibliographic data 
 Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 Can you find the likely advisor-advisee relationship and during which years such a relationship 

happened?
 Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee 

Relationships from Research Publication Networks", KDD'10
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