Notes

- Reminder: HW3 Due Today by 11:59PM
- □ TA's comments in Carmen
 - Enroll in auto notification
- □ HW4 is out (no programming this time)

CSE 5243 INTRO. TO DATA MINING

Mining Frequent Patterns and Associations: Basic Concepts (Chapter 6) Huan Sun, CSE@The Ohio State University 10/24/2017

Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan Parthasarathy @OSU

Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

🗌 Summary

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
- □ **k-itemset**: $X = \{x_1, ..., x_k\}$
 - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}:
 Frequency or the number of occurrences of an itemset X
 - Ex. sup{Beer} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought					
10 Beer, Nuts, Diaper						
20	20 Beer, Coffee, Diaper					
30	Beer, Diaper, Eggs					
40 Nuts, Eggs, Milk						
50 Nuts, Coffee, Diaper, Eggs, Milk						

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
 - **Ex.** s{Beer} = 3/5 = 60%
 - **Ex.** s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let σ = 50% (σ: minsup threshold)
 For the given 5-transaction dataset
 - All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - [Beer, Diaper]: 3/5 (60%)
 - All the frequent 3-itemsets?
 - None

Tid Items bought						
10	Beer, Nuts, Diaper					
20	20 Beer, Coffee, Diaper					
30	Beer, Diaper, Eggs					
40	Nuts, Eggs, Milk					
50	Nuts, Coffee, Diaper, Eggs, Milk					

We may also use minsup = 3 to represent the threshold.

Mining Frequent Itemsets and Association Rules

Association rule mining

- Given two thresholds: *minsup, minconf*
- **•** Find all of the rules, $X \rightarrow Y$ (s, c)
 - such that, $s \ge minsup$ and $c \ge minconf$
- \Box Let minsup = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3, Diaper: 4, Eggs: 3
 - □ Freq. 2-itemsets: {Beer, Diaper}: 3
- $\Box \quad \text{Let minconf} = 50\%$
 - $\square \quad Beer \rightarrow Diaper (60\%, 100\%)$
 - $\Box \quad \text{Diaper} \rightarrow \text{Beer} \quad (60\%, 75\%)$

Tid	Items bought					
10	LO Beer, Nuts, Diaper					
20	Beer, Coffee, Diaper					
30	Beer, Diaper, Eggs					
40	Nuts, Eggs, Milk					
50 Nuts, Coffee, Diaper, Eggs, Milk						

Association Rule Mining: two-step process

In general, association rule mining can be viewed as a two-step process:

- Find all frequent itemsets: By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, min_sup.
- 2. Generate strong association rules from the frequent itemsets: By definition, these rules must satisfy minimum support and minimum confidence.

Because the second step is much less costly than the first, the overall performance of mining association rules is determined by the first step.

Relationship: Frequent, Closed, Max

Closed and maximal frequent itemsets. Suppose that a transaction database has only two transactions: $\{\langle a_1, a_2, \ldots, a_{100} \rangle; \langle a_1, a_2, \ldots, a_{50} \rangle\}$. Let the minimum support count threshold be $min_sup = 1$. We find two closed frequent itemsets and their support counts, that is, $C = \{\{a_1, a_2, \ldots, a_{100}\} : 1; \{a_1, a_2, \ldots, a_{50}\} : 2\}$. There is only one maximal frequent itemset: $\mathcal{M} = \{\{a_1, a_2, \ldots, a_{100}\} : 1\}$. Notice that we cannot include $\{a_1, a_2, \ldots, a_{50}\}$ as a maximal frequent itemset because it has a frequent super-set, $\{a_1, a_2, \ldots, a_{100}\}$. Compare this to the above, where we determined that there are $2^{100} - 1$ frequent itemsets, which is too huge a set to be enumerated!

{all frequent patterns} >= {closed frequent patterns} >= {max frequent patterns}

Closed and maximal frequent itemsets. Suppose that a transaction database has only two transactions: $\{\langle a_1, a_2, \ldots, a_{100} \rangle; \langle a_1, a_2, \ldots, a_{50} \rangle\}$. Let the minimum support count threshold be $min_sup = 1$. We find two closed frequent itemsets and their support counts, that is, $C = \{\{a_1, a_2, \ldots, a_{100}\} : 1; \{a_1, a_2, \ldots, a_{50}\} : 2\}$. There is only one maximal frequent itemset: $\mathcal{M} = \{\{a_1, a_2, \ldots, a_{100}\} : 1\}$. Notice that we cannot include $\{a_1, a_2, \ldots, a_{50}\}$ as a maximal frequent itemset because it has a frequent super-set, $\{a_1, a_2, \ldots, a_{100}\}$. Compare this to the above, where we determined that there are $2^{100} - 1$ frequent itemsets, which is too huge a set to be enumerated!

The set of closed frequent itemsets contains complete information regarding the frequent itemsets.

Example (Cont'd)

□ Given closed frequent itemsets:

$$C = \left\{ \{a1, a2, ..., a100\}: 1; \{a1, a2, ..., a50\}: 2 \right\}$$

maximal frequent itemset:

$$M = \{\{a1, a2, ..., a100\}: 1\}$$

Based on C, we can derive all frequent itemsets and their support counts.

Is {a2, a45} frequent? Can we know its support?

Example (Cont'd)

□ Given closed frequent itemsets:

$$C = \{ \{a1, a2, ..., a100\}: 1; \{a1, a2, ..., a50\}: 2 \}$$

maximal frequent itemset:

$$M = \{\{a1, a2, ..., a100\}: 1\}$$

Based on M, we only know frequent itemsets, but not their support counts.

Is {a2, a45} or {a8, a55} frequent? Can we know their support? Yes, but their support is unknown Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

The Apriori Algorithm

Application in Classification

Pattern Evaluation

Apriori: A Candidate Generation & Test Approach

Outline of Apriori (level-wise, candidate generation and test)

Initially, scan DB once to get frequent 1-itemset

Repeat

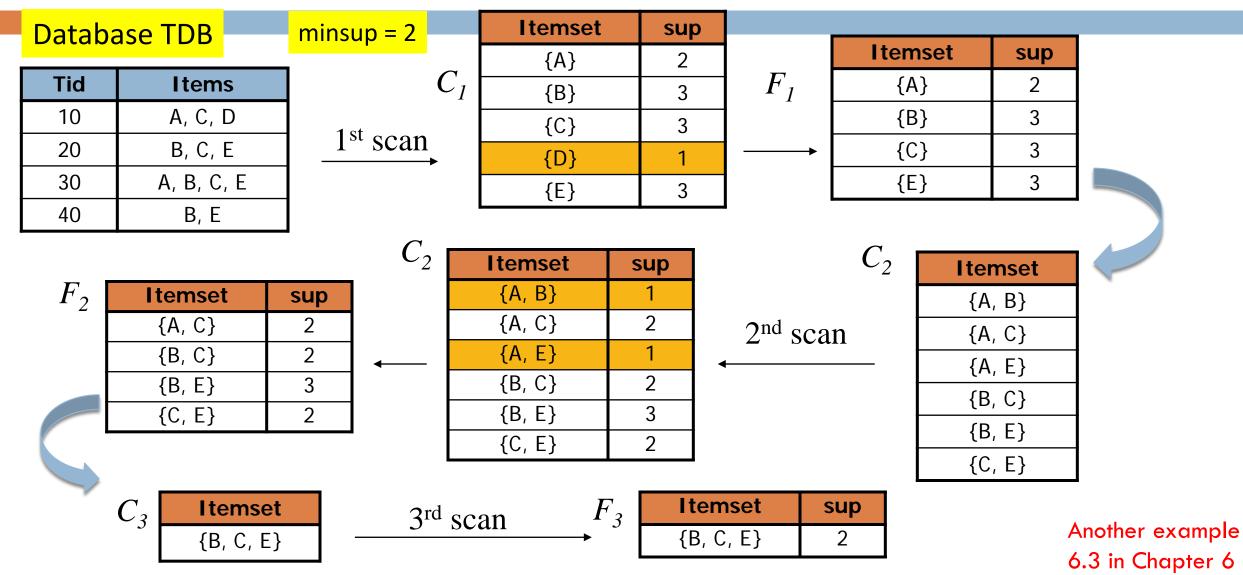
- Generate length-(k+1) candidate itemsets from length-k frequent itemsets
- Test the candidates against DB to find frequent (k+1)-itemsets
- Set k := k +1

Until no frequent or candidate set can be generated

Return all the frequent itemsets derived

Apriori: Any subset of a frequent itemset must be frequent

The Apriori Algorithm—An Example



Generating Association Rules from Frequent Patterns

Recall that:

 $confidence(A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}$

Once we mined frequent patterns, association rules can be generated as follows:

- For each frequent itemset l, generate all nonempty subsets of l.
- For every nonempty subset s of l, output the rule " $s \Rightarrow (l s)$ " if $\frac{support_count(l)}{support_count(s)} \ge min_conf$, where min_conf is the minimum confidence threshold.

Because l is a frequent itemset, each rule automatically satisfies the minimum support requirement.

Example: Generating Association Rules

Generating association rules. Let's try an example based on the transactional data for *AllElectronics* shown in Table 6.1. The data contain frequent itemset $X = \{I1, I2, I5\}$. What are the association rules that can be generated from X? The nonempty subsets of X are $\{I1, I2\}, \{I1, I5\}, \{I2, I5\}, \{I1\}, \{I2\},$ and $\{I5\}$. The resulting association rules are as shown below, each listed with its confidence: Example from Chapter 6

$\{I1, I2\} \Rightarrow I5,$	
$\{I1, I5\} \Rightarrow I2,$	
$\{I2, I5\} \Rightarrow I1,$	
$I1 \Rightarrow \{I2, I5\},$	
$I2 \Rightarrow \{I1, I5\},$	
$I5 \Rightarrow \{I1, I2\},$	

confidence = 2/4 = 50% confidence = 2/2 = 100% confidence = 2/2 = 100% confidence = 2/6 = 33% confidence = 2/7 = 29%confidence = 2/2 = 100%

If minimum confidence threshold: 70%, what will be output?

Apriori: Improvements and Alternatives

<1> Reduce passes of transaction database scans

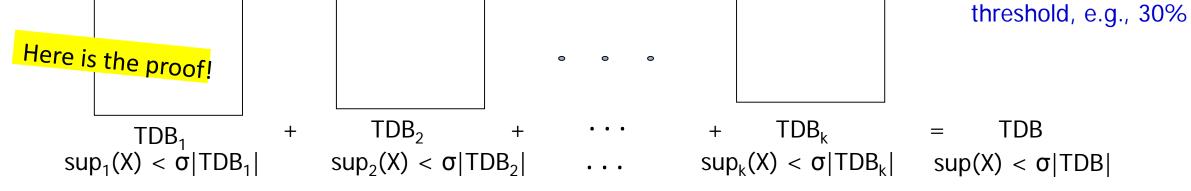
Partitioning (e.g., Savasere, et al., 1995)

<2> Shrink the number of candidates
I Hashing (e.g., DHP: Park, et al., 1995)

<3> Exploring Vertical Data Format: ECLAT (Zaki et al. @KDD'97)

<1> Partitioning: Scan Database Only Twice

Theorem: Any itemset that is potentially frequent in TDB must be frequent in at least one of the partitions of TDB
σ is the minsup



- □ Method: Scan DB twice (A. Savasere, E. Omiecinski and S. Navathe, VLDB'95)
 - Scan 1: Partition database so that each partition can fit in main memory
 - Mine local frequent patterns in this partition
 - Scan 2: Consolidate global frequent patterns
 - Find global frequent itemset candidates (those frequent in at least one partition)
 - Find the true frequency of those candidates, by scanning TDB_i one more time

<2> Direct Hashing and Pruning (DHP)

- DHP (Direct Hashing and Pruning): (J. Park, M. Chen, and P. Yu, SIGMOD'95)
- □ Hashing: Different itemsets may have the same hash value: v = hash(itemset)
- □ 1st scan: When counting the 1-itemset, hash 2-itemset to calculate the bucket count
- Observation: A k-itemset cannot be frequent if its corresponding hashing bucket count is below the minsup threshold
- □ Example: At the 1st scan of TDB, count 1-itemset, and
 - Hash 2-itemsets in the transaction to its bucket
 - {ab, ad, ce}
 - {bd, be, de}

•••

- At the end of the first scan,
 - if minsup = 80, remove ab, ad, ce, since count{ab, ad, ce} < 80</p>

Itemsets	Count
{ab, ad, ce}	35
{ <i>bd, be, de</i> }	298
{ <i>yz, qs, wt</i> }	58

Hash Table

<3> Exploring Vertical Data Format: ECLAT

- ECLAT (Equivalence Class Transformation): A depth-first search algorithm using set intersection [Zaki et al. @KDD'97]
- □ Tid-List: List of transaction-ids containing an itemset
- □ Vertical format: $t(e) = \{T_{10}, T_{20}, T_{30}\}; t(a) = \{T_{10}, T_{20}\}; t(ae) = \{T_{10}, T_{20}\}$
- Properties of Tid-Lists
 - t(X) = t(Y): X and Y always happen together (e.g., t(ac} = t(d))
 - □ $t(X) \subset t(Y)$: transaction having X always has Y (e.g., $t(ac) \subset t(ce)$)
- Deriving frequent patterns based on vertical intersections
- Using diffset to accelerate mining
 - Only keep track of differences of tids

□ t(e) = { T_{10} , T_{20} , T_{30} }, t(ce) = { T_{10} , T_{30} } → Diffset (ce, e) = { T_{20} }

A transaction DB in Horizontal Data Format

Tid	Itemset
10	a, c, d, e
20	a, b, e
30	b, c, e

The transaction DB in Vertical Data Format

Item	TidList				
а	10, 20				
b	20, 30				
С	10, 30				
d	10				
е	10, 20, 30				

<4> Mining Frequent Patterns by Pattern Growth

□ Apriori: A breadth-first search mining algorithm

- First find the complete set of frequent k-itemsets
- Then derive frequent (k+1)-itemset candidates
- Scan DB again to find true frequent (k+1)-itemsets

Two nontrivial costs:

- It may still need to generate a huge number of candidate sets. For example, if there are 10⁴ frequent 1-itemsets, the Apriori algorithm will need to generate more than 10⁷ candidate 2-itemsets.
- It may need to repeatedly scan the whole database and check a large set of candidates by pattern matching. It is costly to go over each transaction in the database to determine the support of the candidate itemsets.

<4> Mining Frequent Patterns by Pattern Growth

□ Apriori: A breadth-first search mining algorithm

- First find the complete set of frequent k-itemsets
- Then derive frequent (k+1)-itemset candidates
- Scan DB again to find true frequent (k+1)-itemsets
- Motivation for a different mining methodology
 - Can we mine the complete set of frequent patterns without such a costly generation process?
 - For a frequent itemset ρ, can subsequent search be confined to only those transactions that contain ρ?
 - A depth-first search mining algorithm?
- □ Such thinking leads to a frequent pattern (FP) growth approach:
 - **FPGrowth (J. Han, J. Pei, Y. Yin, "Mining Frequent Patterns without Candidate Generation," SIGMOD 2000)**

<4> High-level Idea of FP-growth Method

- Essence of frequent pattern growth (FPGrowth) methodology
 - Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- □ Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	
300	$\{b, f, h, j, o, w\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

2. Sort frequent items in frequency descending order, F-list

F-list = f-c-a-b-m-p

TID	Items in the Transaction	Ordered, frequent itemlist
100	$\{f, a, c, d, g, i, m, p\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>
200	$\{a, b, c, f, l, m, o\}$	f, c, a, b, m
300	$\{b, f, h, j, o, w\}$	<i>f</i> , <i>b</i>
400	$\{b, c, k, s, p\}$	<i>c</i> , <i>b</i> , <i>p</i>
500	$\{a, f, c, e, l, p, m, n\}$	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i>

1. Scan DB once, find single item frequent pattern:

Let min_support = 3

f:4, a:3, c:4, b:3, m:3, p:3

2. Sort frequent items in frequency descending

order, f-list **F-list** = f-c-a-b-m-p

	TID	lte	ms in the Transaction	Ordere	rdered, frequent itemlist		nlist	
	100		$\{f, a, c, d, g, i, m, p\}$		f, c, a, m, p			
	200		$\{a, b, c, f, l, m, o\}$		f, c, a, b, m			
	300	0 $\{b, f, h, j, o, w\}$			<i>f, b</i>			After inserting the 1 st frequent Itemlist: "f, c, a, m, p"
	400		$\{b, c, k, s, p\}$		с,	<i>b</i> , <i>p</i>		
	500	500 $\{a, f, c, e, l, p, m, n\}$			<i>f</i> , <i>c</i> , <i>a</i>	a, m, p		
1.	Scan		, find single item frequent <pre>Let min_support = 3</pre>	pattern:	H	leader Tak Frequency	ble header	f:1
		T:4	1, a:3, c:4, b:3, m:3, p:3		ſ	4		c:1
2.	Sort	frequent	items in frequency desce	nding	f	4		$- \rightarrow \boxed{C.1}$
	orde	r, f-list	F-list = f-c-a-b-m-p		С	4		$a= \Rightarrow a:1$
3.	Scan		n, construct FP-tree		a	3		<i>u.1</i>
		U	<i>,</i> nt itemlist of each transac	rtion is	b	3		$\longrightarrow m:1$
		•	a branch, with shared sul		m	3		
			nerged, counts accumulate		р	3		p:1

	TID	lte	ms in the Transaction	Order	Ordered, frequent itemlist		nlist	
	100		$\{f, a, c, d, g, i, m, p\}$		f, c, a, m, p			
	200		$\{a, b, c, f, l, m, o\}$		f, c, a, b, m			
	300	$\{b, f, h, j, o, w\}$			<i>f</i> , <i>b</i>			After inserting the 2 nd frequent
	400		$\{b, c, k, s, p\}$		с,	<i>b</i> , <i>p</i>		itemlist "f, c, a, b, m"
	500		$\{a, f, c, e, l, p, m, n\}$		<i>f</i> , <i>c</i> , <i>a</i>	a, m, p		{ }
1.	Scan		, find single item frequer <mark>Let min_support = 3</mark>	nt pattern:	H Item	leader Tak Frequency	ble header	<i>f:2</i>
		f:4	1, a:3, c:4, b:3, m:3, p:3					
2	Sort	frequent	items in frequency desc	ending	f	4		$\rightarrow c:2$
		· ·	F-list = f-c-a-b-m-p	C	С	4		
3			n, construct FP-tree		а	3		a:2
		•	nt itemlist of each transa	oction is	b	3		$-\overline{m:I} - b:I$
		•	a branch, with shared su		m	3		
			nerged, counts accumula		р	3		$- \rightarrow p:1 \rightarrow m:1$

	TID	Items in the Transaction		Order	Ordered, frequent itemlist			
	100			f, c, a, m, p				
	200	$\{a, b, c, f, l, m, o\}$			f, c, a, b, m			
	300			<i>f</i> , <i>b</i>			After inserting all the	
	400			<i>c</i> , <i>b</i> , <i>p</i>			frequent itemlists	
	500	500 $\{a, f, c, e, l, p, m, n\}$				a, m, p	{}	
1.	Scan	Scan DB once, find single item frequent p Let min_support = 3				leader Tal		
		f:4, a:3, c:4, b:3, m:3, p:3			Item	Frequency	header	$f:4 \longrightarrow c:1$
2.	Sort	Sort frequent items in frequency descen			f	4		c:3 b:1 b:1
2.				с	4	/		
3.			F-list = f-c-a-b-m-p , construct FP-tree		a	3		a:3 $p:1$
0.		The frequent itemlist of each transact			b	3		$-\overline{m\cdot 2} - \overline{b\cdot 1}$

3

3

p:2

m:

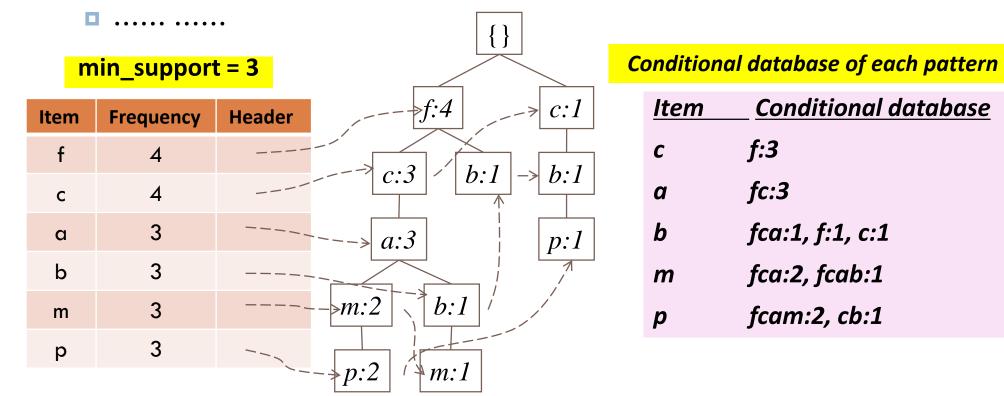
m

р

The frequent itemlist of each transaction is inserted as a branch, with shared subbranches merged, counts accumulated

Mining FP-Tree: Divide and Conquer Based on Patterns and Data

- Pattern mining can be partitioned according to current patterns
 - Patterns containing p: p's conditional database: fcam:2, cb:1
 - p's conditional database (i.e., the database under the condition that p exists):
 - transformed prefix paths of item p
 - Patterns having m but no p: m's conditional database: fca:2, fcab:1



Mine Each Conditional Database Recursively

min_support = 3

Conditional Data Bases

item cond. data base

- c f:3
- a fc:3

31

- b fca:1, f:1, c:1
- m fca:2, fcab:1
- p fcam:2, cb:1

Mine single-item patterns

m: 3

fcam: 3

Construct its FP-tree & mine it

p's conditional DB: *fcam:2, cb:1 → c: 3*

m's conditional DB: *fca:2, fcab:1 → fca: 3*

b's conditional DB: *fca:1, f:1, c:1* $\rightarrow \phi$

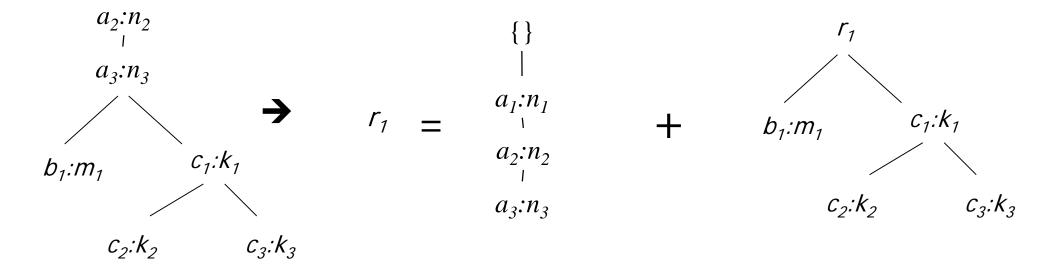
fm: 3, cm: 3, am: 3

fcm: 3, fam:3, cam: 3

Actually, for single branch FP-tree, all the frequent patterns can be generated in one shot

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts
 - Reduction of the single prefix path into one node
 - Concatenation of the mining results of the two parts



{ }

 $a_1:n_1$

FPGrowth: Mining Frequent Patterns by Pattern Growth

- Essence of frequent pattern growth (FPGrowth) methodology
 - Find frequent single items and partition the database based on each such single item pattern
 - Recursively grow frequent patterns by doing the above for each partitioned database (also called the pattern's conditional database)
 - To facilitate efficient processing, an efficient data structure, FP-tree, can be constructed
- □ Mining becomes
 - Recursively construct and mine (conditional) FP-trees
 - Until the resulting FP-tree is empty, or until it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Pattern Evaluation

Limitation of the Support-Confidence Framework

 \square Interestingness Measures: Lift and χ^2

Null-Invariant Measures

Comparison of Interestingness Measures

- Pattern mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting

How to Judge if a Rule/Pattern Is Interesting?

Pattern-mining will generate a large set of patterns/rules

Not all the generated patterns/rules are interesting

□ Interestingness measures: Objective vs. subjective

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - Support, confidence, correlation, ...
 - Subjective interestingness measures:
 - Different users may judge interestingness differently
 - Let a user specify
 - Query-based: Relevant to a user's particular request
 - Judge against one's knowledge base
 - unexpected, freshness, timeliness

Limitation of the Support-Confidence Framework

□ Are *s* and *c* interesting in association rules: "A \Rightarrow B" [*s*, *c*]?

Limitation of the Support-Confidence Framework

- □ Are *s* and *c* interesting in association rules: "A \Rightarrow B" [*s*, *c*]?
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

Limitation of the Support-Confidence Framework

- □ Are *s* and *c* interesting in association rules: "A \Rightarrow B" [*s*, *c*]?
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)
eat-cereal	400	350	750
not eat-cereal	200	50	250
sum(col.)	600	400	1000

□ Association rule mining may generate the following:

\square play-basketball \Rightarrow eat-cereal [40%, 66.7%] (higher s & c)

- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - \neg play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

Lift is more telling than s & c

	В	¬Β	Σ _{row}
С	400	350	750
¬C	200	50	250
Σ _{col.}	600	400	1000

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{P(B \cup C)}{P(B) \times P(C)}$$

- Lift(B, C) may tell how B and C are correlated
 - \Box Lift(B, C) = 1: B and C are independent
 - \square > 1: positively correlated
 - \Box < 1: negatively correlated

Lift is more telling than s & c

	В	¬Β	Σ _{row}
С	400	350	750
¬C	200	50	250
Σ _{col.}	600	400	1000

Interestingness Measure: Lift

Measure of dependent/correlated events: lift

$$lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$$

- Lift(B, C) may tell how B and C are correlated
 - \Box Lift(B, C) = 1: B and C are independent
 - \square > 1: positively correlated
 - □ < 1: negatively correlated

In our example,

$$lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$$

$$lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$$

□ Thus, B and C are negatively correlated since lift(B, C) < 1;

□ B and \neg C are positively correlated since lift(B, \neg C) > 1

Lift is more telling than s & c

	В	¬Β	Σ _{row}
С	400	350	750
¬С	200	50	250
Σ _{col.}	600	400	1000

Interestingness Measure: χ^2

 $\hfill\square$ Another measure to test correlated events: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

	В		¬Β		Σ _{row}	
С	400 (450)		400 (450) 350 (300)		750	
¬C	20((150)		50 (100)		250	
Σ_{col}	600		400		1000	

Expected value

Observed value

Interestingness Measure: χ^2

 \square Another measure to test correlated events: χ^2

$$\chi^{2} = \sum \frac{(Observed - Expected)^{2}}{Expected}$$

□ For the table on the right,

$$\chi^{2} = \frac{(400 - 450)^{2}}{450} + \frac{(350 - 300)^{2}}{300} + \frac{(200 - 150)^{2}}{150} + \frac{(50 - 100)^{2}}{100} = 55.56$$

Observed value

Expected value

¬Β

350 (300)

50 (100)

400

В

400 (450)

20((150)

600

С

¬С

 Σ_{col}

 Σ_{row}

750

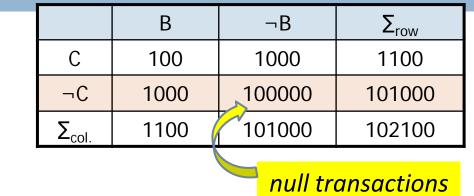
250

1000

- □ By consulting a table of critical values of the χ^2 distribution, one can conclude that the chance for B and C to be independent is very low (< 0.01)
- χ²-test shows B and C are negatively correlated since the expected value is
 450 but the observed is only 400
- $\hfill \hfill \hfill$

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the new dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- \square $\chi^2 = 670$: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!



Contingency table with expected values added

	В	¬Β	Σ _{row}	
С	100 (11.85)	1000	1100	
¬C	1000 (988.15)	100000	101000	
Σ _{col.} 1100		101000	102100	

Interestingness Measures & Null-Invariance

- Null invariance: Value does not change with the # of null-transactions
- □ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant?]
$\chi^2(A,B)$	$\sum_{i,j} \frac{(e(a_i,b_j) - o(a_i,b_j))^2}{e(a_i,b_j)}$	$[0,\infty]$	No	X ² and lift are not null-invariant
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	
Allconf(A, B)	$\frac{s(A \cup B)}{max\{s(A), s(B)\}}$	[0,1]	Yes	
Jaccard(A, B)	$\frac{s(A \cup B)}{s(A) + s(B) - s(A \cup B)}$	[0,1]	Yes	Jaccard, consine,
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	AllConf, MaxConf, and Kulczynski are
Kulczynski(A, B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes	null-invariant measures
MaxConf(A, B)	$max\{\frac{s(A\cup B)}{s(A)}, \frac{s(A\cup B)}{s(B)}\}$	[0, 1]	Yes	

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

		Ŭ	•
	milk	$\neg milk$	Σ_{row}
$co\!f\!fee$	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

milk vs. coffee contingency table

- Lift and χ² are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
 - Many measures are not null-invariant!

Null-transactions

Σ_{col} m	$\neg m$	Σ	w.r.t. m	and c		
Data set	mc	$\neg mc$	$m \neg c$	$n\neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- □ Which one is better?
 - **D**₄ $-D_6$ differentiate the null-invariant measures
 - Kulc (Kulczynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
$co\!f\!fee$	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

				All 5 are nu	II-invariant			L	/
Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99

Subtle: They disagree on those cases

Imbalance Ratio with Kulczynski Measure

□ IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:

$$IR(A,B) = \frac{|s(A) - s(B)|}{s(A) + s(B) - s(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - \square D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - \square D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	0.5	$\bigcirc 0.5$	0
D_5	1,000	100	10,000	100,000	0.09	0.29	$\bigcirc 0.5$	0.89
D_6	1,000	10	100,000	100,000	0.01	0.10	$\bigcirc 0.5$	0.99

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- □ *Null-invariance* is an important property
- Lift, χ² and cosine are good measures if null transactions are not predominant
 Otherwise, *Kulczynski* + *Imbalance Ratio* should be used to judge the interestingness of a pattern

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Basic Concepts

Efficient Pattern Mining Methods

Pattern Evaluation

Summary

- Basic Concepts
 - What Is Pattern Discovery? Why Is It Important?
 - Basic Concepts: Frequent Patterns and Association Rules
 - Compressed Representation: Closed Patterns and Max-Patterns
- Efficient Pattern Mining Methods
 - The Downward Closure Property of Frequent Patterns
 - The Apriori Algorithm
 - Extensions or Improvements of Apriori
 - FPGrowth: A Frequent Pattern-Growth Approach
- Pattern Evaluation
 - Interestingness Measures in Pattern Mining
 - \blacksquare Interestingness Measures: Lift and χ^2
 - Null-Invariant Measures
 - Comparison of Interestingness Measures

Recommended Readings (Basic Concepts)

- R. Agrawal, T. Imielinski, and A. Swami, "Mining association rules between sets of items in large databases", in Proc. of SIGMOD'93
- R. J. Bayardo, "Efficiently mining long patterns from databases", in Proc. of SIGMOD'98
- N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, "Discovering frequent closed itemsets for association rules", in Proc. of ICDT'99
- □ J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007

Recommended Readings (Efficient Pattern Mining Methods)

- R. Agrawal and R. Srikant, "Fast algorithms for mining association rules", VLDB'94
- A. Savasere, E. Omiecinski, and S. Navathe, "An efficient algorithm for mining association rules in large databases", VLDB'95
- J. S. Park, M. S. Chen, and P. S. Yu, "An effective hash-based algorithm for mining association rules", SIGMOD'95
- S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating association rule mining with relational database systems: Alternatives and implications", SIGMOD'98
- M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, "Parallel algorithm for discovery of association rules", Data Mining and Knowledge Discovery, 1997
- J. Han, J. Pei, and Y. Yin, "Mining frequent patterns without candidate generation", SIGMOD'00
- □ M. J. Zaki and Hsiao, "CHARM: An Efficient Algorithm for Closed Itemset Mining", SDM'02
- J. Wang, J. Han, and J. Pei, "CLOSET+: Searching for the Best Strategies for Mining Frequent Closed Itemsets", KDD'03
- C. C. Aggarwal, M.A., Bhuiyan, M. A. Hasan, "Frequent Pattern Mining Algorithms: A Survey", in Aggarwal and Han (eds.): Frequent Pattern Mining, Springer, 2014

Recommended Readings (Pattern Evaluation)

- C. C. Aggarwal and P. S. Yu. A New Framework for Itemset Generation. PODS'98
- S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to correlations. SIGMOD'97
- M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A. I. Verkamo. Finding interesting rules from large sets of discovered association rules. CIKM'94
- **E.** Omiecinski. Alternative Interest Measures for Mining Associations. TKDE'03
- P.-N. Tan, V. Kumar, and J. Srivastava. Selecting the Right Interestingness Measure for Association Patterns. KDD'02
- T. Wu, Y. Chen and J. Han, Re-Examination of Interestingness Measures in Pattern Mining: A Unified Framework, Data Mining and Knowledge Discovery, 21(3):371-397, 2010

Expressing Patterns in Compressed Form: Closed Patterns

- □ How to handle such a challenge?
- Solution 1: Closed patterns: A pattern (itemset) X is closed if X is frequent, and there exists no super-pattern Y > X, with the same support as X
 - **Let Transaction DB TDB**₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many closed patterns does TDB₁ contain?

• Two:
$$P_1$$
: "{ a_1 , ..., a_{50} }: 2"; P_2 : "{ a_1 , ..., a_{100} }: 1"

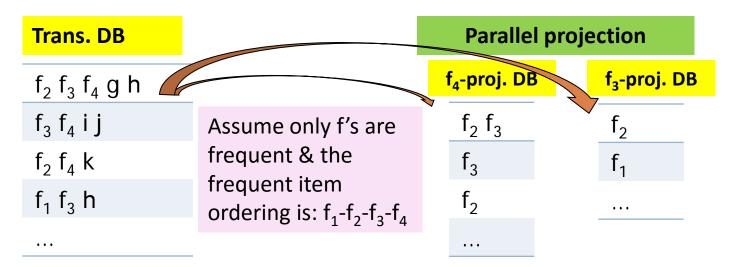
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - **The Second Sec**

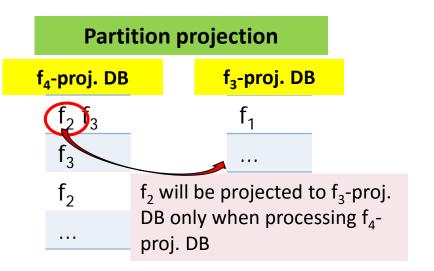
Expressing Patterns in Compressed Form: Max-Patterns

- Solution 2: Max-patterns: A pattern X is a maximal frequent pattern or max-pattern if X is frequent and there exists no frequent super-pattern Y > X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - **Let** Transaction DB TDB₁: $T_1: \{a_1, ..., a_{50}\}; T_2: \{a_1, ..., a_{100}\}$
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - **D** But we do not know the real support of $\{a_1, \ldots, a_{40}\}, \ldots, any more \}$
 - Thus in many applications, close-patterns are more desirable than max-patterns

Scaling FP-growth by Item-Based Data Projection

- What if FP-tree cannot fit in memory?—Do not construct FP-tree
 - "Project" the database based on frequent single items
 - Construct & mine FP-tree for each projected DB
- Parallel projection vs. partition projection
 - Parallel projection: Project the DB on each frequent item
 - Space costly, all partitions can be processed in parallel
 - Partition projection: Partition the DB in order
 - Passing the unprocessed parts to subsequent partitions





61

Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18 <	0.123~(6)	0.351(2)	0.562 (2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	16	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	\checkmark 12	120	12	0.100(10)	0.316~(6)	0.550 (3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

Analysis of DBLP Coauthor Relationships

DBLP: Computer science research publication bibliographic database

□ > 3.8 million entries on authors, paper, venue, year, and other information

		/ I	1 1	• /				
ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	18	146	18	0.123~(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	1 6	120	16	0.133(5)	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	<12	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111(8)	0.312(9)	0.485(5)
	•					-		

Advisor-advisee relation: Kulc: high, Jaccard: low, cosine: middle

- Which pairs of authors are strongly related?
 - Use Kulc to find Advisor-advisee, close collaborators

What Measures to Choose for Effective Pattern Evaluation?

- Null value cases are predominant in many large datasets
 - Neither milk nor coffee is in most of the baskets; neither Mike nor Jim is an author in most of the papers;
- Null-invariance is an important property
- Lift, χ² and cosine are good measures if null transactions are not predominant
 - Otherwise, *Kulczynski* + *Imbalance Ratio* should be used to judge the interestingness of a pattern
- Exercise: Mining research collaborations from research bibliographic data
 - Find a group of frequent collaborators from research bibliographic data (e.g., DBLP)
 - Can you find the likely advisor-advisee relationship and during which years such a relationship happened?
 - Ref.: C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo, "Mining Advisor-Advisee Relationships from Research Publication Networks", KDD'10