Classification (Basic Concepts)
Huan Sun, CSE@The Ohio State University
09/12/2017
Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary

This class

Next class
Classification: Basic Concepts

- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary
Decision Tree Induction: An Example

- Training data set: Buys_computer
- The data set follows an example of Quinlan’s ID3 (Playing Tennis)
- Resulting tree:

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31...40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31...40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>
Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a **top-down recursive divide-and-conquer manner**
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., **information gain**)

- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning—**majority voting** is employed for classifying the leaf
 - There are no samples left
Algorithm Outline

- Split (node, {data tuples})
 - A <= the best attribute for splitting the {data tuples}
 - Decision attribute for this node <= A
 - For each value of A, create new child node
 - For each child node / subset:
 - If one of the stopping conditions is satisfied: STOP
 - Else: Split (child_node, {subset})

ID3 algorithm: how it works

https://www.youtube.com/watch?v=_XhOdSLIE5c
Algorithm Outline

- **Split** (node, {data tuples})
 - A <= the best attribute for splitting the {data tuples}
 - Decision attribute for this node <= A
 - For each value of A, create new child node
 - For each child node / subset:
 - If one of the stopping conditions is satisfied: STOP
 - Else: Split (child_node, {subset})

https://www.youtube.com/watch?v=_XhOdSLIE5c

ID3 algorithm: how it works
Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random number
 - Calculation: For a discrete random variable \(Y \) taking \(m \) distinct values \(\{y_1, y_2, \ldots, y_m\} \)
 \[
 H(Y) = - \sum_{i=1}^{m} p_i \log(p_i) \quad \text{where } p_i = P(Y = y_i)
 \]
 - Interpretation
 - Higher entropy \(\rightarrow \) higher uncertainty
 - Lower entropy \(\rightarrow \) lower uncertainty

- Conditional entropy
 \[
 H(Y|X) = \sum_x p(x)H(Y|X = x)
 \]
Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i, estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:
 \[\text{Info}(D) = -\sum_{i=1}^{m} p_i \log_2(p_i) \]
- Information needed (after using A to split D into v partitions) to classify D:
 \[\text{Info}_A(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \text{Info}(D_j) \]
- Information gained by branching on attribute A
 \[\text{Gain}(A) = \text{Info}(D) - \text{Info}_A(D) \]
Attribute Selection: Information Gain

- **Class P**: buys_computer = “yes”
- **Class N**: buys_computer = “no”

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>

The information gain for the attribute “age” can be calculated as follows:

\[
Info(D) = I(9,5) = -\frac{9}{14} \log_2\left(\frac{9}{14}\right) - \frac{5}{14} \log_2\left(\frac{5}{14}\right) = 0.940
\]

Looking at “age”:

<table>
<thead>
<tr>
<th>age</th>
<th>(p_i)</th>
<th>(n_i)</th>
<th>(I(p_i, n_i))</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>2</td>
<td>3</td>
<td>0.971</td>
</tr>
<tr>
<td>31…40</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>>40</td>
<td>3</td>
<td>2</td>
<td>0.971</td>
</tr>
</tbody>
</table>

The information gain for the age attribute can be calculated as:

\[
Info_{age}(D) = \frac{5}{14} I(2,3) + \frac{4}{14} I(4,0) + \frac{5}{14} I(3,2) = 0.694
\]
Attribute Selection: Information Gain

- Class P: buys_computer = “yes”
- Class N: buys_computer = “no”

<table>
<thead>
<tr>
<th>age</th>
<th>income</th>
<th>student</th>
<th>credit_rating</th>
<th>buys_computer</th>
</tr>
</thead>
<tbody>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>high</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>no</td>
</tr>
<tr>
<td>31…40</td>
<td>low</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>no</td>
<td>fair</td>
<td>no</td>
</tr>
<tr>
<td><=30</td>
<td>low</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td><=30</td>
<td>medium</td>
<td>yes</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>yes</td>
</tr>
<tr>
<td>31…40</td>
<td>high</td>
<td>yes</td>
<td>fair</td>
<td>yes</td>
</tr>
<tr>
<td>>40</td>
<td>medium</td>
<td>no</td>
<td>excellent</td>
<td>no</td>
</tr>
</tbody>
</table>

\[
\text{Info}(D) = I(9,5) = - \frac{9}{14} \log_2 \left(\frac{9}{14} \right) - \frac{5}{14} \log_2 \left(\frac{5}{14} \right) = 0.940
\]

\[
\text{Info}_{age}(D) = \frac{5}{14} I(2,3) + \frac{4}{14} I(4,0) + \frac{5}{14} I(3,2) = 0.694
\]

\[
\text{Gain}(age) = \text{Info}(D) - \text{Info}_{age}(D) = 0.246
\]

Similarly,

\[
\text{Gain}(income) = 0.029
\]
\[
\text{Gain}(student) = 0.151
\]
\[
\text{Gain}(credit_rating) = 0.048
\]
1. After selecting age at the root node, we will create three child nodes.

2. One child node is associated with red data tuples.

3. How to continue for this child node?

Now, you will make $D = \{\text{red data tuples}\}$ and then select the best attribute to further split D.

A recursive procedure.
How to Select Test Attribute?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous

- Depends on number of ways to split
 - 2-way split
 - Multi-way split
Splitting Based on Nominal Attributes

- **Multi-way split:** Use as many partitions as distinct values.

- **Binary split:** Divides values into two subsets. Need to find optimal partitioning.
Splitting Based on Continuous Attributes

(i) Binary split

Taxable Income > 80K?

Yes No

(ii) Multi-way split

Taxable Income?

< 10K [10K,25K) [25K,50K) [50K,80K) > 80K
How to Determine the Best Split

Greedy approach:

- Nodes with **homogeneous** class distribution are preferred

Ideally, data tuples at that node belong to the same class.

<table>
<thead>
<tr>
<th></th>
<th>C0: 5</th>
<th>C1: 5</th>
<th>C0: 9</th>
<th>C1: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-homogeneous,</td>
<td>High degree of impurity</td>
<td>Homogeneous,</td>
<td>Low degree of impurity</td>
<td></td>
</tr>
</tbody>
</table>
Rethink about Decision Tree Classification

- Greedy approach:
 - Nodes with **homogeneous** class distribution are preferred

- Need a measure of **node impurity**:

 | C0: 5 | C0: 9 |
 | C1: 5 | C1: 1 |

 - Non-homogeneous, High degree of impurity
 - Homogeneous, Low degree of impurity
Measures of Node Impurity

- Entropy:
 \[H(Y) = -\sum_{i=1}^{m} p_i \log(p_i) \quad \text{where} \quad p_i = P(Y = y_i) \]
 - Higher entropy \(\Rightarrow\) higher uncertainty, higher node impurity
 - Why entropy is used in information gain

- Gini Index

- Misclassification error
Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

\[
SplitInfo_A(D) = - \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)
\]

The entropy of the partitioning, or the potential information generated by splitting \(D\) into \(v\) partitions.

\[
GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}
\]

(normalizing Information Gain)
Gain Ratio for Attribute Selection (C4.5)

- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

\[
\text{SplitInfo}_A(D) = -\sum_{j=1}^{v} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)
\]

- GainRatio(A) = Gain(A)/SplitInfo(A)

- Ex.

\[\text{Gain}(\text{income}) = 0.029\] (from last class, slide 27)

\[
\text{SplitInfo}_{\text{income}}(D) = \frac{4}{14} \times \log_2 \left(\frac{4}{14} \right) - \frac{6}{14} \times \log_2 \left(\frac{6}{14} \right) = 1.557
\]

- gain_ratio(income) = 0.029/1.557 = 0.019

- The attribute with the **maximum gain ratio** is selected as the splitting attribute
Gini Index (CART, IBM IntelligentMiner)

- If a data set D contains examples from n classes, gini index, $gini(D)$ is defined as
 \[gini(D) = 1 - \sum_{j=1}^{n} p_j^2 \]
 where p_j is the relative frequency of class j in D

- If a data set D is split on A into two subsets D_1 and D_2, the gini index after the split is defined as
 \[gini_A(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2) \]

- Reduction in impurity:
 \[\Delta gini(A) = gini(D) - gini_A(D) \]

- The attribute provides the smallest $gini_A(D)$ (or, the largest reduction in impurity) is chosen to split the node.
Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of weighing partitions:
 - Larger and Purer Partitions are sought for.

\[
gini(D) = 1 - \sum_{j=1}^{n} p_j^2
\]

<table>
<thead>
<tr>
<th>Parent</th>
<th>Node N1</th>
<th>Node N2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

Gini = ?
Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of weighing partitions:
 - Larger and Purer Partitions are sought for.

\[
gini(D) = 1 - \sum_{j=1}^{n} p_j^2
\]

\[
\begin{array}{c|c|c}
\text{Parent} & \text{C1} & \text{C2} \\
\hline
\text{N1} & 5 & 1 \\
\text{N2} & 2 & 4 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{Gini(N1)} & 0.194 & \text{Gini(N2)} \\
\hline
\text{Gini = 0.500} & 0.528 \\
\end{array}
\]
Binary Attributes: Computing Gini Index

- Splits into two partitions
- Effect of weighing partitions:
 - Prefer Larger and Purer Partitions.

\[
gini(D) = 1 - \sum_{j=1}^{n} p_j^2
\]

<table>
<thead>
<tr>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
</tbody>
</table>

\[
\text{Gini(N1)} = 1 - \left(\frac{5}{6}\right)^2 - \left(\frac{2}{6}\right)^2 = 0.194
\]

\[
\text{Gini(N2)} = 1 - \left(\frac{1}{6}\right)^2 - \left(\frac{4}{6}\right)^2 = 0.528
\]

\[
\text{Gini(Children)} = \frac{7}{12} \times 0.194 + \frac{5}{12} \times 0.528 = 0.333
\]
Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

<table>
<thead>
<tr>
<th>CarType</th>
<th>Family</th>
<th>Sports</th>
<th>Luxury</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gini</td>
<td>0.393</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two-way split (find best partition of values)

Split 1

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports, Luxury}</th>
<th>{Family}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>C2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Gini</td>
<td>0.400</td>
<td></td>
</tr>
</tbody>
</table>

Split 2

<table>
<thead>
<tr>
<th>CarType</th>
<th>{Sports}</th>
<th>{Family, Luxury}</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>C2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Gini</td>
<td>0.419</td>
<td></td>
</tr>
</tbody>
</table>
Continuous Attributes: Computing Gini Index or Information Gain

- To discretize the attribute values
 - Use Binary Decisions based on one splitting value

- Several Choices for the splitting value
 - Number of possible splitting values = Number of distinct values - 1
 - Typically, the midpoint between each pair of adjacent values is considered as a possible split point
 - \((a_i + a_{i+1})/2\) is the midpoint between the values of \(a_i\) and \(a_{i+1}\)

- Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, \(A < v\) and \(A \geq v\)

- Simple method to choose best \(v\)
 - For each \(v\), scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

<table>
<thead>
<tr>
<th>Tid</th>
<th>Refund</th>
<th>Marital Status</th>
<th>Taxable Income</th>
<th>Cheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Yes</td>
<td>Single</td>
<td>125K</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>No</td>
<td>Married</td>
<td>100K</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>No</td>
<td>Single</td>
<td>70K</td>
<td>No</td>
</tr>
<tr>
<td>4</td>
<td>Yes</td>
<td>Married</td>
<td>120K</td>
<td>No</td>
</tr>
<tr>
<td>5</td>
<td>No</td>
<td>Divorced</td>
<td>95K</td>
<td>Yes</td>
</tr>
<tr>
<td>6</td>
<td>No</td>
<td>Married</td>
<td>60K</td>
<td>No</td>
</tr>
<tr>
<td>7</td>
<td>Yes</td>
<td>Divorced</td>
<td>220K</td>
<td>No</td>
</tr>
<tr>
<td>8</td>
<td>No</td>
<td>Single</td>
<td>85K</td>
<td>Yes</td>
</tr>
<tr>
<td>9</td>
<td>No</td>
<td>Married</td>
<td>75K</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>No</td>
<td>Single</td>
<td>90K</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Taxable Income > 80K?

Yes
No
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 Step 1: Sort the attribute on values
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Step 1:
Sorted Values → Possible Splitting Values

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td><=65</td>
<td>> ></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Step 2:
For each splitting value, get its count matrix: how many data tuples have:
- (a) Taxable income <=65 with class label “Yes”,
- (b) Taxable income <=65 with class label “No”,
- (c) Taxable income >65 with class label “Yes”,
- (d) Taxable income >65 with class label “No”.

Gini

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td>0.420</td>
<td>0.400</td>
<td>0.375</td>
<td>0.343</td>
<td>0.417</td>
<td>0.400</td>
<td>0.300</td>
<td>0.343</td>
<td>0.375</td>
<td>0.400</td>
<td>0.420</td>
</tr>
</tbody>
</table>
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix

Possible Splitting Values

Sorted Values

<table>
<thead>
<tr>
<th>Step 1:</th>
<th>Sorted Values</th>
<th>Possible Splitting Values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>60 70 75 85 90 95 100 120 125 220</td>
<td>65 72 <= > <= ></td>
</tr>
<tr>
<td>Step 2:</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>0 3 0 3</td>
<td>1 6 2 5</td>
</tr>
</tbody>
</table>

For each splitting value, get its count matrix: how many data tuples have:

(a) Taxable income <=72 with class label “Yes”,
(b) Taxable income <=72 with class label “No”,
(c) Taxable income >72 with class label “Yes”,
(d) Taxable income >72 with class label “No”.
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,

 Step 1: Sort the attribute on values

 Step 2: **Linearly scan these values, each time updating the count matrix**

For each splitting value, get its **count matrix**: how many data tuples have:
- **(a)** Taxable income \(\leq 80 \) with class label “Yes”,
- **(b)** Taxable income \(\leq 80 \) with class label “No”,
- **(c)** Taxable income \(> 80 \) with class label “Yes”,
- **(d)** Taxable income \(> 80 \) with class label “No”.

Step 1:

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>172</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><-</td>
<td>></td>
<td><=</td>
<td>></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2:

<table>
<thead>
<tr>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 6</td>
<td>3 2 5 3 4</td>
</tr>
</tbody>
</table>
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: **Linearly scan these values, each time updating the count matrix**

For each splitting value, get its **count matrix**: how many data tuples have:
(a) Taxable income \(\leq 172\) with class label “Yes”, (b) Taxable income \(\leq 172\) with class label “No”, (c) Taxable income \(> 172\) with class label “Yes”, (d) Taxable income \(> 172\) with class label “No”.

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>(\leq)</td>
<td>(>)</td>
<td>(\leq)</td>
<td>(>)</td>
<td>(\leq)</td>
<td>(>)</td>
<td>(\leq)</td>
<td>(>)</td>
<td>(\leq)</td>
<td>(>)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>72</td>
<td>80</td>
<td>87</td>
<td>92</td>
<td>97</td>
<td>110</td>
<td>122</td>
<td>172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix
 - Step 3: Computing Gini index and choose the split position that has the least Gini index

Step 1:
- Sorted Values
- Possible Splitting Values

Step 2:
- Yes
- No

Step 3:
- Gini

For each splitting value \(v \) (e.g., 65), compute its Gini index:

\[
gini_{\text{Taxable Income}}(D) = \frac{|D_1|}{|D|} gini(D_1) + \frac{|D_2|}{|D|} gini(D_2)
\]

Here \(D_1 \) and \(D_2 \) are two partitions based on \(v \): \(D_1 \) has taxable income \(\leq v \) and \(D_2 \) has \(> v \)
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix
 - Step 3: Computing Gini index and choose the split position that has the least Gini index

For each splitting value v (e.g., 72), compute its Gini index:

\[
gini_{\text{Taxable Income}}(D) = \frac{|D_1|}{|D|} \cdot gini(D_1) + \frac{|D_2|}{|D|} \cdot gini(D_2)
\]

Here \(D_1\) and \(D_2\) are two partitions based on \(v\): \(D_1\) has taxable income \(\leq v\) and \(D_2\) has \(> v\)
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix
 - Step 3: **Computing Gini index and choose the split position that has the least Gini index**

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>80</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
</tr>
<tr>
<td>Possible Splitting Values</td>
<td><= ></td>
</tr>
<tr>
<td>Sorted Values</td>
<td>65</td>
<td>72</td>
<td>80</td>
<td>87</td>
<td>92</td>
<td>97</td>
<td>110</td>
<td>122</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>

Step 1:
- Sort the attribute on values

Step 2:
- Linearly scan these values, each time updating the count matrix

Step 3:
- **Choose this splitting value (=97) with the least Gini index to discretize Taxable Income**
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,

 Step 1: Sort the attribute on values

 Step 2: Linearly scan these values, each time updating the count matrix

 Step 3: Computing expected information requirement and choose the split position that has the least value

If Information Gain is used for attribute selection,

Similarly to calculating Gini index, for each splitting value, compute $\text{Info}_{\{\text{Taxable Income}\}}$:

$$
\text{Info}_{\text{Taxable Income}}(D) = \sum_{j=1}^{2} \frac{|D_j|}{|D|} \times \text{Info}(D_j)
$$
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 Step 1: Sort the attribute on values
 Step 2: Linearly scan these values, each time updating the count matrix
 Step 3: Computing Gini index and choose the split position that has the least Gini index

![Table showing possible splitting values and Gini values](image)

Choose this splitting value (=97 here) with the least Gini index or expected information requirement to discretize Taxable Income
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:

- For efficient computation: for each attribute,
 - Step 1: Sort the attribute on values
 - Step 2: Linearly scan these values, each time updating the count matrix
 - Step 3: Computing Gini index and choose the split position that has the least Gini index

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td><= 65</td>
<td><= 72</td>
<td><= 80</td>
<td><= 87</td>
<td><= 92</td>
<td><= 97</td>
<td><= 110</td>
<td><= 122</td>
<td><= 172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Gini</td>
<td>0.400</td>
<td>0.375</td>
<td>0.343</td>
<td>0.417</td>
<td>0.400</td>
<td>0.300</td>
<td>0.343</td>
<td>0.375</td>
<td>0.400</td>
<td>0.400</td>
<td></td>
</tr>
</tbody>
</table>

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value; (2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.
Continuous Attributes:
Computing Gini Index or expected information requirement

First decide the splitting value to discretize the attribute:
- For efficient computation: for each attribute,
 Step 1: Sort the attribute on values
 Step 2: Linearly scan these values, each time updating the count matrix
 Step 3: Computing Gini index and choose the split position that has the least Gini index

For each attribute, only scan the data tuples once

<table>
<thead>
<tr>
<th>Cheat</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>Yes</th>
<th>Yes</th>
<th>Yes</th>
<th>No</th>
<th>No</th>
<th>No</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxable Income</td>
<td>60</td>
<td>70</td>
<td>75</td>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
<td>120</td>
<td>125</td>
<td>220</td>
</tr>
<tr>
<td>Sorted Values</td>
<td>65</td>
<td>72</td>
<td>80</td>
<td>87</td>
<td>92</td>
<td>97</td>
<td>110</td>
<td>122</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>Possible Splitting Values</td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
<td><=</td>
<td>></td>
</tr>
<tr>
<td>Step 1: Yes</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>No</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>Step 3: Gini</td>
<td>0.400</td>
<td>0.375</td>
<td>0.343</td>
<td>0.417</td>
<td>0.400</td>
<td>0.300</td>
<td>0.343</td>
<td>0.375</td>
<td>0.400</td>
<td></td>
</tr>
</tbody>
</table>

At each level of the decision tree, for attribute selection, (1) First, discretize a continuous attribute by deciding the splitting value; (2) Then, compare the discretized attribute with other attributes in terms of Gini Index reduction or Information Gain.
Another Impurity Measure: Misclassification Error

- Classification error at a node t:

$$Error(t) = 1 - \max_i P(i \mid t)$$

- $P(i \mid t)$ means the relative frequency of class i at node t.

- Measures misclassification error made by a node.
 - Maximum $(1 - 1/n_c)$ when records are equally distributed among all classes, implying most impurity
 - Minimum (0.0) when all records belong to one class, implying least impurity
Examples for Misclassification Error

\[
Error(t) = 1 - \max_i P(i \mid t)
\]

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(C1) = 0/6 = 0 \quad P(C2) = 6/6 = 1
\]

Error = 1 − max (0, 1) = 1 − 1 = 0

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(C1) = 1/6 \quad P(C2) = 5/6
\]

Error = 1 − max (1/6, 5/6) = 1 − 5/6 = 1/6

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

\[
P(C1) = 2/6 \quad P(C2) = 4/6
\]

Error = 1 − max (2/6, 4/6) = 1 − 4/6 = 1/3
Comparison among Impurity Measure

For a 2-class problem:

\[\text{Entropy} = -p \log(p) - (1-p) \log(1-p) \]

\[\text{Gini} = 1 - p^2 - (1-p)^2 \]

\[\text{Error} = 1 - \max(p, 1-p) \]
Other Attribute Selection Measures

- **CHAID**: a popular decision tree algorithm, measure based on χ^2 test for independence
- **C-SEP**: performs better than info. gain and gini index in certain cases
- **G-statistic**: has a close approximation to χ^2 distribution
- **MDL (Minimal Description Length) principle** (i.e., the simplest solution is preferred):
 - The best tree as the one that requires the fewest # of bits to both (1) encode the tree, and (2) encode the exceptions to the tree
- **Multivariate splits** (partition based on multiple variable combinations)
 - **CART**: finds multivariate splits based on a linear comb. of attrs.
- **Which attribute selection measure is the best?**
 - Most give good results, none is significantly superior than others
Decision Tree Based Classification

- Advantages:
 - Inexpensive to construct
 - Extremely fast at classifying unknown records
 - Easy to interpret for small-sized trees
 - Accuracy is comparable to other classification techniques for many simple data sets
Example: C4.5

- Simple depth-first construction.
- Uses Information Gain
- **Sorts Continuous Attributes at each node.**
- Needs entire data to fit in memory.
- Unsuitable for Large Datasets.
 - Needs out-of-core sorting.

- You can download the software online, e.g.,
Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary
Model Evaluation

- **Metrics for Performance Evaluation**
 - How to evaluate the performance of a model?

- **Methods for Performance Evaluation**
 - How to obtain reliable estimates?

- **Methods for Model Comparison**
 - How to compare the relative performance among competing models?
Metrics for Performance Evaluation

- **Focus on the predictive capability of a model**
 - Rather than how fast it takes to classify or build models, scalability, etc.
- **Confusion Matrix:**

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Class=Yes</td>
<td>Class=No</td>
<td></td>
</tr>
<tr>
<td>Class=Yes</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td>Class=No</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

- a: TP (true positive)
- b: FN (false negative)
- c: FP (false positive)
- d: TN (true negative)
Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

<table>
<thead>
<tr>
<th>Actual class\Predicted class</th>
<th>C_1</th>
<th>$\sim C_1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>True Positives (TP)</td>
<td>False Negatives (FN)</td>
</tr>
<tr>
<td>$\sim C_1$</td>
<td>False Positives (FP)</td>
<td>True Negatives (TN)</td>
</tr>
</tbody>
</table>

Example of Confusion Matrix:

<table>
<thead>
<tr>
<th>Actual class\Predicted class</th>
<th>buy_computer = yes</th>
<th>buy_computer = no</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>buy_computer = yes</td>
<td>6954</td>
<td>46</td>
<td>7000</td>
</tr>
<tr>
<td>buy_computer = no</td>
<td>412</td>
<td>2588</td>
<td>3000</td>
</tr>
<tr>
<td>Total</td>
<td>7366</td>
<td>2634</td>
<td>10000</td>
</tr>
</tbody>
</table>

- Given m classes, an entry, CM_{ij}, in a **confusion matrix** indicates # of tuples in class i that were labeled by the classifier as class j.
- May have extra rows/columns to provide totals.
Classifier Evaluation Metrics: Accuracy, Error Rate

- **Classifier Accuracy**, or recognition rate:
 percentage of test set tuples that are correctly classified

 \[
 \text{Accuracy} = \frac{TP + TN}{\text{All}}
 \]

- **Error rate**: \(1 - \text{accuracy}\), or

 \[
 \text{Error rate} = \frac{FP + FN}{\text{All}}
 \]
Limitation of Accuracy

- Consider a 2-class problem
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10

- If a model predicts everything to be class 0,
 Accuracy is $\frac{9990}{10000} = 99.9\%$

- Accuracy is misleading because model does not detect any class 1 example
Cost Matrix

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
<th>Class=Yes</th>
<th>Class=No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>C(Yes</td>
<td>Yes)</td>
<td>C(No</td>
</tr>
<tr>
<td>Class=No</td>
<td>C(Yes</td>
<td>No)</td>
<td>C(No</td>
</tr>
</tbody>
</table>

\(C(i|j)\): Cost of misclassifying one class \(j\) example as class \(i\)
Computing Cost of Classification

<table>
<thead>
<tr>
<th>Cost Matrix</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL CLASS</td>
<td>C(ij)</td>
</tr>
<tr>
<td>+</td>
<td>-1</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

Model M_1

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>150 40</td>
</tr>
<tr>
<td>-</td>
<td>60 250</td>
</tr>
</tbody>
</table>

Accuracy = 80%
Cost = 3910

Model M_2

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>250 45</td>
</tr>
<tr>
<td>-</td>
<td>5 200</td>
</tr>
</tbody>
</table>

Accuracy = 90%
Cost = 4255
Cost-Sensitive Measures

Precision (p) = \frac{a}{a + c}

Recall (r) = \frac{a}{a + b}

F - measure (F) = \frac{2rp}{r + p} = \frac{2a}{2a + b + c}

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy = \frac{w_1a + w_4d}{w_1a + w_2b + w_3c + w_4d}

<table>
<thead>
<tr>
<th>ACTUAL CLASS</th>
<th>PREDICTED CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class=Yes</td>
<td>a (TP)</td>
</tr>
<tr>
<td>Class=Yes</td>
<td>b (FN)</td>
</tr>
<tr>
<td>Class=No</td>
<td>c (FP)</td>
</tr>
<tr>
<td>Class=No</td>
<td>d (TN)</td>
</tr>
</tbody>
</table>
Classifier Evaluation Metrics: Sensitivity and Specificity

<table>
<thead>
<tr>
<th>A\P</th>
<th>C</th>
<th>¬C</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>TP</td>
<td>FN</td>
</tr>
<tr>
<td>¬C</td>
<td>FP</td>
<td>TN</td>
</tr>
<tr>
<td>P’</td>
<td>N’</td>
<td>All</td>
</tr>
</tbody>
</table>

- Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified
 \[\text{Accuracy} = \frac{TP + TN}{\text{All}} \]

- Error rate: \(1 - \text{accuracy} \), or
 \[\text{Error rate} = \frac{FP + FN}{\text{All}} \]

- Class Imbalance Problem:
 - One class may be rare, e.g. fraud, or HIV-positive
 - Significant majority of the negative class and minority of the positive class

- Sensitivity: True Positive recognition rate
 - \[\text{Sensitivity} = \frac{TP}{P} \]

- Specificity: True Negative recognition rate
 - \[\text{Specificity} = \frac{TN}{N} \]
Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?

- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets
Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)

Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate
Methods of Estimation

- **Holdout**
 - Reserve 2/3 for training and 1/3 for testing

- **Random subsampling**
 - Repeated holdout

- **Cross validation**
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: \(k=n \)

- **Stratified sampling**
 - oversampling vs undersampling

- **Bootstrap**
 - Sampling with replacement
Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

- **Holdout method**
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - **Random sampling**: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained

- **Cross-validation** (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At i-th iteration, use D_i as test set and others as training set
 - **Leave-one-out**: k folds where k = # of tuples, for small sized data
 - **Stratified cross-validation**: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data
Evaluating Classifier Accuracy: Bootstrap

- **Bootstrap**
 - Works well with small data sets
 - Samples the given training tuples uniformly with replacement
 - Each time a tuple is selected, it is equally likely to be selected again and re-added to the training set

- **Several bootstrap methods, and a common one is .632 bootstrap**
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 - 1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure k times, overall accuracy of the model:

\[
 Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})
\]
Model Evaluation

- **Metrics for Performance Evaluation**
 - How to evaluate the performance of a model?

- **Methods for Performance Evaluation**
 - How to obtain reliable estimates?

- **Methods for Model Comparison**
 - How to compare the relative performance among competing models?
ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal

- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class
Using ROC for Model Comparison

- No model consistently outperform the other
 - M_1 is better for small FPR
 - M_2 is better for large FPR

- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess (diagonal line):
 - Area = 0.5
Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary
Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Costs of Classification
Underfitting and Overfitting

Underfitting: when model is too simple, both training and test errors are large
Overfitting due to Noise

Decision boundary is distorted by noise point
Overfitting due to Insufficient Examples

Lack of data points in the lower half of the diagram makes it difficult to predict correctly the class labels of that region.

- Insufficient number of training records in the region causes the decision tree to predict the test examples using other training records that are irrelevant to the classification task.
Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary.

- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records.

- Need new ways for estimating errors.
Estimating Generalization Errors

- **Re-substitution errors**: error on training ($\Sigma e(t)$)
- **Generalization errors**: error on testing ($\Sigma e'(t)$)

- **Methods for estimating generalization errors**:
 - **Optimistic approach**: $e'(t) = e(t)$
 - **Pessimistic approach**:
 - For each leaf node: $e'(t) = e(t) + 0.5$
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 - Training error $= 10/1000 = 1\%$
 - Generalization error $= (10 + 30 \times 0.5)/1000 = 2.5\%$

- **Reduced error pruning (REP)**:
 - uses validation data set to estimate generalization error
How to Address Overfitting

- **Pre-Pruning (Early Stopping Rule)**
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).
How to Address Overfitting...

- **Post-pruning**
 - Grow decision tree to its entirety
 - Trim the nodes of the decision tree in a bottom-up fashion
 - If generalization error improves after trimming, replace sub-tree by a leaf node.
 - Class label of leaf node is determined from majority class of instances in the sub-tree
 - Can use MDL for post-pruning
Example of Post-Pruning

<table>
<thead>
<tr>
<th>Class = Yes</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class = No</td>
<td>10</td>
</tr>
<tr>
<td>Error</td>
<td>10/30</td>
</tr>
</tbody>
</table>

Training Error (Before splitting) = 10/30
Pessimistic error = (10 + 0.5)/30 = 10.5/30
Training Error (After splitting) = 9/30
Pessimistic error (After splitting)
= (9 + 4 × 0.5)/30 = 11/30

PRUNE!
Examples of Post-pruning

- **Optimistic error?**

 Don’t prune for both cases

- **Pessimistic error?**

 Don’t prune case 1, prune case 2

- **Reduced error pruning?**

 Depends on validation set
Occam’s Razor

- Given two models of similar generalization errors, one should prefer the simpler model over the more complex model.

- For complex models, there is a greater chance that it was fitted accidentally by errors in data.

- Therefore, one should include model complexity when evaluating a model.
Handling Missing Attribute Values

- Missing values affect decision tree construction in three different ways:
 - Affects how impurity measures are computed
 - Affects how to distribute instance with missing value to child nodes
 - Affects how a test instance with missing value is classified

- While the book describes a few ways it can be handled as part of the process — it is often best to handle this using standard statistical methods
 - EM-based estimation
Other Issues

- Data Fragmentation
- Search Strategy
- Expressiveness
Data Fragmentation

- Number of instances gets smaller as you traverse down the tree

- Number of instances at the leaf nodes could be too small to make any statistically significant decision
Finding an optimal decision tree is NP-hard

The algorithm presented so far uses a greedy, top-down, recursive partitioning strategy to induce a reasonable solution

Other strategies?
- Bottom-up
- Bi-directional
Expressiveness

- Decision tree provides expressive representation for learning discrete-valued function
 - But they do not generalize well to certain types of Boolean functions
 - Example: XOR or Parity functions (example in book)

- Not expressive enough for modeling continuous variables
 - Particularly when test condition involves only a single attribute at-a-time
Expressiveness: Oblique Decision Trees

- Test condition may involve multiple attributes
- More expressive representation
- Finding optimal test condition is computationally expensive
- Needs multi-dimensional discretization

\[x + y < 1 \]
Classification: Basic Concepts

- Classification: Basic Concepts
- Decision Tree Induction
- Model Evaluation and Selection
- Practical Issues of Classification
- Bayes Classification Methods
- Techniques to Improve Classification Accuracy: Ensemble Methods
- Summary
Bayesian Classification: Why?

- **A statistical classifier**: performs *probabilistic prediction*, i.e., predicts class membership probabilities

- **Foundation**: Based on Bayes’ Theorem.

- **Performance**: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers

- **Incremental**: Each training example can incrementally increase/decrease the probability that a hypothesis is correct — prior knowledge can be combined with observed data

- **Standard**: Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured
Bayes’ Theorem: Basics

- **Total probability Theorem:** \(P(B) = \sum_{i=1}^{M} P(B | A_i)P(A_i) \)

- **Bayes’ Theorem:**
 \[
 P(H | X) = \frac{P(X | H)P(H)}{P(X)} = \frac{P(X | H) \times P(H)}{P(X)}
 \]

- Let \(X \) be a data sample (“evidence”): class label is unknown
- Let \(H \) be a hypothesis that \(X \) belongs to class \(C \)
- Classification is to determine \(P(H | X) \), (i.e., *posteriori probability*): the probability that the hypothesis holds given the observed data sample \(X \)
- \(P(H) \) (*prior probability*): the initial probability
 - E.g., \(X \) will buy computer, regardless of age, income, ...
- \(P(X) \): probability that sample data is observed
- \(P(X | H) \) (likelihood): the probability of observing the sample \(X \), given that the hypothesis holds
 - E.g., Given that \(X \) will buy computer, the prob. that \(X \) is 31..40, medium income
Prediction Based on Bayes’ Theorem

- Given training data X, posteriori probability of a hypothesis H, $P(H|X)$, follows the Bayes’ theorem

$$P(H|X) = \frac{P(X|H)P(H)}{P(X)} = P(X|H) \times P(H)/P(X)$$

- Informally, this can be viewed as

 posteriori = likelihood \times prior/evidence

- Predicts X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes

- Practical difficulty: It requires initial knowledge of many probabilities, involving significant computational cost
Classification Is to Derive the Maximum Posteriori

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector \(X = (x_1, x_2, \ldots, x_n) \)

- Suppose there are \(m \) classes \(C_1, C_2, \ldots, C_m \).

- Classification is to derive the maximum posteriori, i.e., the maximal \(P(C_i | X) \)

- This can be derived from Bayes’ theorem

\[
P(C_i | X) = \frac{P(X | C_i)P(C_i)}{P(X)}
\]

- Since \(P(X) \) is constant for all classes, only

\[
P(C_i | X) = P(X | C_i)P(C_i)
\]

needs to be maximized
Naïve Bayes Classifier

- A simplified assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

\[
P(X|C_i) = \prod_{k=1}^{n} P(x_k|C_i) = P(x_1|C_i) \times P(x_2|C_i) \times \ldots \times P(x_n|C_i)
\]

- This greatly reduces the computation cost: Only counts the class distribution

- If \(A_k\) is categorical, \(P(x_k|C_i)\) is the # of tuples in \(C_i\) having value \(x_k\) for \(A_k\) divided by \(|C_{i,D}|\) (# of tuples of \(C_i\) in D)

- If \(A_k\) is continuous-valued, \(P(x_k|C_i)\) is usually computed based on Gaussian distribution with a mean \(\mu\) and standard deviation \(\sigma\)

\[
g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}
\]

and \(P(x_k|C_i)\) is

\[
P(X|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})
\]
Naïve Bayes Classifier: Training Dataset

Class:
C1: buys_computer = ‘yes’
C2: buys_computer = ‘no’

Data to be classified:
X = (age <=30, Income = medium, Student = yes, Credit_rating = Fair)
Naïve Bayes Classifier: An Example

- **P(C_i):**
 - P(buys_computer = “yes”) = 9/14 = 0.643
 - P(buys_computer = “no”) = 5/14 = 0.357

- Compute P(X | C_i) for each class
 - P(age = “<=30” | buys_computer = “yes”) = 2/9 = 0.222
 - P(age = “<=30” | buys_computer = “no”) = 3/5 = 0.6
 - P(income = “medium” | buys_computer = “yes”) = 4/9 = 0.444
 - P(income = “medium” | buys_computer = “no”) = 2/5 = 0.4
 - P(student = “yes” | buys_computer = “yes”) = 6/9 = 0.667
 - P(student = “yes” | buys_computer = “no”) = 1/5 = 0.2
 - P(credit_rating = “fair” | buys_computer = “yes”) = 6/9 = 0.667
 - P(credit_rating = “fair” | buys_computer = “no”) = 2/5 = 0.4

- X = (age <= 30, income = medium, student = yes, credit_rating = fair)
 - P(X | C_i) : P(X | buys_computer = “yes”) = 0.222 x 0.444 x 0.667 x 0.667 = 0.044
 - P(X | buys_computer = “no”) = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
 - P(X | C_i)*P(C_i) : P(X | buys_computer = “yes”) * P(buys_computer = “yes”) = 0.028
 - P(X | buys_computer = “no”) * P(buys_computer = “no”) = 0.007

Therefore, X belongs to class (“buys_computer = yes”)
Naïve Bayes Classifier: An Example

- $P(C_i)$: $P(\text{buys_computer} = \text{“yes”}) = 9/14 = 0.643$

 $P(\text{buys_computer} = \text{“no”}) = 5/14 = 0.357$

- Compute $P(X|C_i)$ for each class

 $P(\text{age} = \text{“<=30”} | \text{buys_computer} = \text{“yes”}) = 2/9 = 0.222$

 $P(\text{age} = \text{“<= 30”} | \text{buys_computer} = \text{“no”}) = 3/5 = 0.6$

 $P(\text{income} = \text{“medium”} | \text{buys_computer} = \text{“yes”}) = 4/9 = 0.444$

 $P(\text{income} = \text{“medium”} | \text{buys_computer} = \text{“no”}) = 2/5 = 0.4$

 $P(\text{student} = \text{“yes”} | \text{buys_computer} = \text{“yes”}) = 6/9 = 0.667$

 $P(\text{student} = \text{“yes”} | \text{buys_computer} = \text{“no”}) = 1/5 = 0.2$

 $P(\text{credit_rating} = \text{“fair”} | \text{buys_computer} = \text{“yes”}) = 6/9 = 0.667$

 $P(\text{credit_rating} = \text{“fair”} | \text{buys_computer} = \text{“no”}) = 2/5 = 0.4$

- $X = (\text{age} \leq 30, \text{income} = \text{medium}, \text{student} = \text{yes}, \text{credit_rating} = \text{fair})$

 $P(X|C_i) : P(X|\text{buys_computer} = \text{“yes”}) = 0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$

 $P(X|\text{buys_computer} = \text{“no”}) = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(X|C_i) \times P(C_i) : P(X|\text{buys_computer} = \text{“yes”}) \times P(\text{buys_computer} = \text{“yes”}) = 0.028$

 $P(X|\text{buys_computer} = \text{“no”}) \times P(\text{buys_computer} = \text{“no”}) = 0.007$

- Therefore, X belongs to class (”buys_computer = yes”)
Avoiding the Zero-Probability Problem

- Naïve Bayesian prediction requires each conditional prob. be **non-zero**. Otherwise, the predicted prob. will be zero

\[P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) \]

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income= medium (990), and income = high (10)

- Use **Laplacian correction** (or Laplacian estimator)
 - **Adding 1 to each case**
 - Prob(income = low) = 1/1003
 - Prob(income = medium) = 991/1003
 - Prob(income = high) = 11/1003
 - The “corrected” prob. estimates are close to their “uncorrected” counterparts
Naïve Bayes Classifier: Comments

- **Advantages**
 - Easy to implement
 - Good results obtained in most of the cases

- **Disadvantages**
 - Assumption: class conditional independence, therefore loss of accuracy
 - Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 - Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayes Classifier

- How to deal with these dependencies? Bayesian Belief Networks (Chapter 9)