CSE 5243. Course Page & Schedule

- **Class Homepage:**

- **Class Schedule:**
 9:35-10:55 AM, Tue/Thur, Bolz Hall 318

- **Office hours:**
 - **Instructor:** Huan Sun @DL699, Tue 4:30-5:30PM
 - First week: Thur 4:30-5:30PM
 - **Grader:** Yu Wang, wang.5205@osu.edu, By appointment
CSE 5243. Textbook

- **Textbook**
 - Jiawei Han, Micheline Kamber and Jian Pei, *Data Mining: Concepts and Techniques (3rd ed)*, 2011
 - More resources: https://wiki.illinois.edu/wiki/display/cs412/2.+Course+Syllabus+and+Schedule
 - Pang-Ning Tan, Michael Steinbach, and Vipin Kumar, *Introduction to Data Mining*, 2006
 - Mohammed J. Zaki and Wagner Meira, Jr., *Data Mining Analysis and Concepts*, 2014
 - Jure Leskovec, Anand Rajaraman, Jeff Ullman, *Mining of Massive Datasets*
 - More resources: http://www.mmds.org/
CSE 5243. Course Work and Grading

- Homework, Course Projects, and Exams
 - Participation: 10% (*Class attendance is critical*)
 - Homework: 50% (*No Late Submissions!*)
 - Midterm exam: 20%
 - Final project: 20%

- Need help and/or discussions?
 - Sign on: Piazza (piazza.com/osu/autumn2017/au175243)
 - Receive credits: answering questions related to the homework on Piazza and engaging in class discussion.
Chapter 1. Introduction

- What Is Data Mining?
- Why Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
What is Data Mining?

- Data mining (knowledge discovery from data, KDD)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data

- Data mining: a misnomer?

- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, data dredging, information harvesting, business intelligence, etc.
Knowledge Discovery (KDD) Process

- This is a view from typical database systems and data warehousing communities.
- Data mining plays an essential role in the knowledge discovery process.
Example: A Web Mining Framework

- Web mining usually involves
 - Data cleaning
 - Data integration from multiple sources
 - Warehousing the data
 - Data cube construction
 - Data selection for data mining
 - Data mining
 - Presentation of the mining results
 - Patterns and knowledge to be used or stored into knowledge-base
Data Mining in Business Intelligence

Increasing potential to support business decisions

- Decision Making
 - Data Presentation
 - Visualization Techniques
 - Data Mining
 - Information Discovery
 - Data Exploration
 - Statistical Summary, Querying, and Reporting
 - Data Preprocessing/Integration, Data Warehouses
 - Data Sources
 - Paper, documents, Scientific experiments, Database Systems

End User

Business Analyst

Data Analyst

DBA
KDD Process: A View from ML and Statistics

- Input Data
 - Data integration
 - Normalization
 - Feature selection
 - Dimension reduction

- Data Pre-Processing
 - Pattern discovery
 - Classification
 - Clustering
 - Outlier analysis

- Data Mining
 - Pattern evaluation
 - Pattern selection
 - Pattern interpretation
 - Pattern visualization

- Post-Processing

- This is a view from typical machine learning and statistics communities
Chapter 1. Introduction

- What Is Data Mining?
- Why Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes

 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society

 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, …
 - Science: Remote sensing, bioinformatics, scientific simulation, …
 - Society and everyone: news, digital cameras, YouTube
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, …
 - Science: Remote sensing, bioinformatics, scientific simulation, …
 - Society and everyone: news, digital cameras, YouTube
- We are drowning in data, but starving for knowledge!
- “Necessity is the mother of invention”—Data mining—Automated analysis of massive data sets
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, …
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, …
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels

- **Techniques utilized**
 - Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.
Multi-Dimensional View of Data Mining

- **Data to be mined**
 - Database data (extended-relational, object-oriented, heterogeneous), data warehouse, transactional data, stream, spatiotemporal, time-series, sequence, text and web, multi-media, graphs & social and information networks

- **Knowledge to be mined (or: Data mining functions)**
 - Characterization, discrimination, association, classification, clustering, trend/deviation, outlier analysis, …
 - Descriptive vs. predictive data mining
 - Multiple/integrated functions and mining at multiple levels

- **Techniques utilized**
 - Data-intensive, data warehouse (OLAP), machine learning, statistics, pattern recognition, visualization, high-performance, etc.

- **Applications adapted**
 - Retail, telecommunication, banking, fraud analysis, bio-data mining, stock market analysis, text mining, Web mining, etc.
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
 - Object-relational databases, Heterogeneous databases and legacy databases

- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and information networks
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining Functions: Pattern Discovery

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?
Data Mining Functions: Pattern Discovery

- **Frequent patterns (or frequent itemsets)**
 - What items are frequently purchased together in your Walmart?

- **Association and Correlation Analysis**
Data Mining Functions: Pattern Discovery

- Frequent patterns (or frequent itemsets)
 - What items are frequently purchased together in your Walmart?

- Association and Correlation Analysis

 - A typical association rule
 - Diaper \rightarrow Beer [0.5%, 75%] (support, confidence)
 - Are strongly associated items also strongly correlated?

 - How to mine such patterns and rules efficiently in large datasets?
 - How to use such patterns for classification, clustering, and other applications?
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels

- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, …
Data Mining Functions: Classification

- Classification and label prediction
 - Construct models (functions) based on some training examples
 - Describe and distinguish classes or concepts for future prediction
 - Ex. 1. Classify countries based on (climate)
 - Ex. 2. Classify cars based on (gas mileage)
 - Predict some unknown class labels

- Typical methods
 - Decision trees, naïve Bayesian classification, support vector machines, neural networks, rule-based classification, pattern-based classification, logistic regression, ...

- Typical applications:
 - Credit card fraud detection, direct marketing, classifying stars, diseases, web-pages, ...
Data Mining Functions: Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
Data Mining Functions: Cluster Analysis

- Unsupervised learning (i.e., Class label is unknown)
- Group data to form new categories (i.e., clusters), e.g., cluster houses to find distribution patterns
- Principle: Maximizing intra-class similarity & minimizing interclass similarity
- Many methods and applications
Data Mining Functions: Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person’s garbage could be another person’s treasure
Data Mining Functions: Outlier Analysis

- Outlier analysis
 - Outlier: A data object that does not comply with the general behavior of the data
 - Noise or exception?—One person’s garbage could be another person’s treasure
 - Methods: by product of clustering or regression analysis, …
 - Useful in fraud detection, rare events analysis
Data Mining Functions: Time and Ordering: Sequential Pattern, Trend and Evolution Analysis

- Sequence, trend and evolution analysis
 - Trend, time-series, and deviation analysis
 - e.g., regression and value prediction
 - Sequential pattern mining
 - e.g., buy digital camera, then buy large memory cards
 - Periodicity analysis
- Motifs and biological sequence analysis
 - Approximate and consecutive motifs
- Similarity-based analysis

- Mining data streams
 - Ordered, time-varying, potentially infinite, data streams
Graph mining
- Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)
Data Mining Functions: Structure and Network Analysis

- Graph mining
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)

- Information network analysis
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, ...
 - Links carry a lot of semantic information: Link mining
Data Mining Functions: Structure and Network Analysis

- **Graph mining**
 - Finding frequent subgraphs (e.g., chemical compounds), trees (XML), substructures (web fragments)

- **Information network analysis**
 - Social networks: actors (objects, nodes) and relationships (edges)
 - e.g., author networks in CS, terrorist networks
 - Multiple heterogeneous networks
 - A person could be multiple information networks: friends, family, classmates, …
 - Links carry a lot of semantic information: Link mining

- **Web mining**
 - Web is a big information network: from PageRank to Google
 - Analysis of Web information networks
 - Web community discovery, opinion mining, usage mining, …
Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of “patterns”
 - Some may fit only certain dimension space (time, location, …)
 - Some may not be representative, may be transient, …
Evaluation of Knowledge

- Are all mined knowledge interesting?
 - One can mine tremendous amount of “patterns”
 - Some may fit only certain dimension space (time, location, …)
 - Some may not be representative, may be transient, …

- Evaluation of mined knowledge → directly mine only interesting knowledge?
 - Descriptive vs. predictive
 - Coverage
 - Typicality vs. novelty
 - Accuracy
 - Timeliness
 - …
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data Mining: Confluence of Multiple Disciplines

- Machine Learning
- Pattern Recognition
- Statistics
- Applications
- Visualization
- Algorithm
- Database Technology
- High-Performance Computing
Why Confluence of Multiple Disciplines?

- Tremendous amount of data
 - Algorithms must be scalable to handle big data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social and information networks
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Applications of Data Mining

- Web page analysis: classification, clustering, ranking
- Collaborative analysis & recommender systems
- Biological and medical data analysis
- Data mining and software engineering
- Data mining and text analysis
- Data mining and social and information network analysis
- Built-in (invisible data mining) functions in Google, MS, Yahoo!, Linked, Facebook, ...
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Major Issues in Data Mining (1)

- **Mining Methodology**
 - Mining various and new kinds of knowledge
 - Mining knowledge in **multi-dimensional** space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a **networked** environment
 - Handling **noise, uncertainty, and incompleteness** of data
 - Pattern evaluation and pattern- or **constraint-guided** mining
Major Issues in Data Mining (1)

- **Mining Methodology**
 - Mining various and new kinds of knowledge
 - Mining knowledge in multi-dimensional space
 - Data mining: An interdisciplinary effort
 - Boosting the power of discovery in a networked environment
 - Handling noise, uncertainty, and incompleteness of data
 - Pattern evaluation and pattern- or constraint-guided mining

- **User Interaction**
 - Interactive mining
 - Incorporation of background knowledge
 - Presentation and visualization of data mining results
Efficiency and Scalability
- Efficiency and scalability of data mining algorithms
- Parallel, distributed, stream, and incremental mining methods

Diversity of data types
- Handling complex types of data
- Mining dynamic, networked, and global data repositories

Data mining and society
- Social impacts of data mining
- Privacy-preserving data mining
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
A Brief History of Data Mining Society

- 1989 IJCAI Workshop on Knowledge Discovery in Databases
 - Knowledge Discovery in Databases (G. Piatetsky-Shapiro and W. Frawley, 1991)
- 1991-1994 Workshops on Knowledge Discovery in Databases
 - Advances in Knowledge Discovery and Data Mining (U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, 1996)
- 1995-1998 International Conferences on Knowledge Discovery in Databases and Data Mining (KDD’95-98)
 - Journal of Data Mining and Knowledge Discovery (1997)
- ACM SIGKDD conferences since 1998 and SIGKDD Explorations
- More conferences on data mining
- ACM Transactions on KDD (2007)
Conferences and Journals on Data Mining

KDD Conferences
- ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (KDD)
- SIAM Data Mining Conf. (SDM)
- (IEEE) Int. Conf. on Data Mining (ICDM)
- European Conf. on Machine Learning and Principles and practices of Knowledge Discovery and Data Mining (ECML-PKDD)
- Pacific-Asia Conf. on Knowledge Discovery and Data Mining (PAKDD)
- Int. Conf. on Web Search and Data Mining (WSDM)

Other related conferences
- DB conferences: ACM SIGMOD, VLDB, ICDE, EDBT, ICDT, …
- Web and IR conferences: WWW, SIGIR, WSDM
- ML conferences: ICML, NIPS
- PR conferences: CVPR,

Journals
- Data Mining and Knowledge Discovery (DAMI or DMKD)
- IEEE Trans. On Knowledge and Data Eng. (TKDE)
- KDD Explorations
- ACM Trans. on KDD
Where to Find References? DBLP, CiteSeer, Google

- **Data mining and KDD (SIGKDD)**
 - Conferences: ACM-SIGKDD, IEEE-ICDM, SIAM-DM, PKDD, PAKDD, etc.
 - Journal: Data Mining and Knowledge Discovery, KDD Explorations, ACM TKDD

- **Database systems (SIGMOD)**
 - Conferences: ACM-SIGMOD, ACM-PODS, VLDB, IEEE-ICDE, EDBT, ICDT, DASFAA

- **AI & Machine Learning**
 - Conferences: Machine learning (ML), AAAI, IJCAI, COLT (Learning Theory), CVPR, NIPS, etc.
 - Journals: Machine Learning, Artificial Intelligence, Knowledge and Information Systems, IEEE-PAMI, etc.
Where to Find References? DBLP, CiteSeer, Google

- **Web and IR**
 - Conferences: SIGIR, WWW, CIKM, etc.
 - Journals: WWW: Internet and Web Information Systems

- **Statistics**
 - Conferences: Joint Stat. Meeting, etc.
 - Journals: Annals of statistics, etc.

- **Visualization**
 - Conference proceedings: CHI, ACM-SIGGraph, etc.
 - Journals: IEEE Trans. visualization and computer graphics, etc.
Chapter 1. Introduction

- Why Data Mining?
- What Is Data Mining?
- A Multi-Dimensional View of Data Mining
- What Kinds of Data Can Be Mined?
- What Kinds of Patterns Can Be Mined?
- What Kinds of Technologies Are Used?
- What Kinds of Applications Are Targeted?
- Major Issues in Data Mining
- A Brief History of Data Mining and Data Mining Society
- Summary
Data mining: Discovering interesting patterns and knowledge from massive amount of data

A natural evolution of science and information technology, in great demand, with wide applications

A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation

Mining can be performed in a variety of data

Data mining functionalities: characterization, discrimination, association, classification, clustering, trend and outlier analysis, etc.

Data mining technologies and applications

Major issues in data mining
Recommended Reference Books

- J. Han, M. Kamber, and J. Pei, *Data Mining: Concepts and Techniques*. Morgan Kaufmann, 3rd ed., 2011
http://web.cse.ohio-state.edu/~sun.397/courses/au2017/cse5243-new.html