
Copyright 2016 FUJITSU LIMITED

Reducing manipulation overhead of

remote data structure by controlling

remote memory access order

Yuichiro Ajima, Takafumi Nose, Kazushige Saga,

Naoyuki Shida, Shinji Sumimoto

Fujitsu Limited / JST-CREST

0June 23rd, 2016, ExaComm2016 Workshop

Acknowledgement

The development of the ACP library is a part of the Advanced Communication for Exa (ACE)
project, which is a research theme in the CREST research area ‘Development of System
Software Technologies for post-Peta Scale High Performance Computing,’ sponsored by JST
(Japan Science and Technology Agency).

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 1

PGAS Programming Model

 Partitioned Global Address Space

 A programming model for distributed memory machines

Global address space: shared objects are handled by a global address

 Partitioned: each shared object is owned by a process

 Productive syntax of PGAS languages

 Inter-process data transfer is written as an assignment statement

 Private-to-shared, shared-to-private, and shared-to-shared

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

#0 #1 #2 #4Process rank

Shared objects –

Global address space

Private objects –

Local address space

#3

x x x xx

s0 s1 s2 s4s3

2

Advanced Communication Primitives (ACP)

 A communication library Including a PGAS layer as a basis

Designed for memory-efficient programming

 Each communication primitive consumes memory explicitly

 Programmers can control the amount of memory consumption

 Interface categories and the software structure

 ACPdl – data library: data structure interfaces for irregular data

 ACPcl – communication library: message passing interfaces

 ACPbl – basic layer: hardware abstraction with the PGAS model

• Four implementations: UDP, InfiniBand, Tofu, Tofu2

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

ACPblACPdl ACPcl

Interconnect device

Upper layer software

3

 Introduction

 ACP basic layer

 ACP data library

 Issue and proposal

 Evaluation results

 Future work and summary

Index

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 4

Global Memory Management

 Static global memory – statically allocated for each process

Global address of any process is available after the initialization

Dynamic global memory – locally registered

Globally accessible, but the address translation must be done locally

Copyright 2016 FUJITSU LIMITED

#include <stdlib.h>

#include <acp.h>

int main(int argc, char** argv)

{

acp_init(&argc, &argv);

acp_ga_t my_bss = acp_query_starter_ga(acp_rank());

void* buf = malloc(65536);

acp_atkey_t key = acp_register_memory(buf, size, 0);

acp_ga_t my_heap = acp_query_ga(key, buf);

/* ... */

Static global memory

Dynamic global memory

June 23rd, 2016, ExaComm2016 Workshop 5

Global Address Model

 Each shared object has both global and local addresses

Only the local process can obtain the local address
corresponding to a global address

 The return value will be NULL if the global address is out of the process

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

/* ... */

acp_ga_t my_bss = acp_query_starter_ga(acp_rank());

void* pointer = acp_query_address(my_bss + 64);

/* ... */

6

#0 #1 #2 #4Process rank #3

x x x xx

s3s0 s1 s4s2
Shared objects –

Both address space

Private objects –

Local address space

Data Transfer Model

Only shared-to-shared data transfer is provided

 The source and the destination can be an arbitrary global address

 An arbitrary process can be the initiator of a data transfer

 Assumed protocol

1. The initiator sends a request to the source

2. The source transfers data to the destination

3. The destination sends a notification to the initiator

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

#0 #1 #2 #4Process rank #3

x x x xx

s3s0 s1 s4s2
Shared objects –

Both address space

Private objects –

Local address space

7

 Introduction

 ACP basic layer

 ACP data library

 Issue and proposal

 Evaluation results

 Future work and summary

Index

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 8

Categories of ACPdl Interfaces

Memory allocator

 acp_ga_t acp_malloc (size_t size, int rank);

• Allocate a block of global memory at the specified process

 void acp_free (acp_ga_t ga);

• Deallocate a block of global memory

Remote data structure types

 acp_vector_t: dynamic array

 acp_deque_t: double-ended queue

Distributed data structure types

 acp_list_t: doubly-linked list

 acp_set_t: unordered dictionary

 acp_map_t: unordered associative array

Copyright 2016 FUJITSU LIMITED

acp_push_back_list (list, element, 2)

acp_push_back_vector (vector, element)

June 23rd, 2016, ExaComm2016 Workshop

#0 #1 #2

vector

#0 #1 #2

head tail

list

9

Manipulation of Remote Data

 Inserting or erasing data at an arbitrary offset has high-cost

 The data after the offset must be moved backward before the insertion

 The latter part of the remaining data must be moved forward

 The source and destination of the data movement are overlapped

However, using a temporary buffer consumes additional memory

cf. the memmove function of the standard C library

 Inserting or erasing data at a particular position has low-cost

 At the end of vector

 At the start or end of deque

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

H I J K L M N O P

H J L M N O P

K L M N O P

A B C D E F G

A C D E F GB

A B C D E F G I K

H J L M N O PA B C D E F G I K

10

In-Place Data Movement

 ACPdl uses the in-place algorithm for memory efficiency

Divide data into chunks and copy them sequentially

 Insert

 Erase

No temporal buffer is required

Minimum data movement

Disadvantage

 Increase in number of data transfers

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

H J L M N O PA B C D E F G I K

H J L M N O PA B C D E F G I KH JI

H J L M N O PA B C D E F G I K N O P

H JA B C D E F G I L MK L M N O PK

H I J K L M N O PA B C D E F G

K L M N O PA C D E F GB N O P

K L M N O PA C D E F GB L MK

11

 Introduction

 ACP basic layer

 ACP data library

 Issue and proposal

 Evaluation results

 Future work and summary

Index

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 12

Issues of the In-Place Data Movement

 Smaller element size increases the number of data transfers

 Issue: protocol overhead for each copy

 The interaction between the initiator and the source incurs overhead

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

#0 #1 #2

H J L M N O PA B C D E F G I K

H J L M N O PA B C D E F G I K N

H J L M N O PA B C D E F G I K P

H J L M N O PA B C D E F G I K O

H J L M N O PA B C D E F G I K M

13

Copy Function and Ordering

 Synopsis of the copy function

Non-blocking

 It returns an ordering handle value before starting the protocol

Completion can be done using the acp_complete function

 Strongly ordered data transfer

 The start of the protocol is delayed by specifying an ordering handle until
the completion of the specified data transfer

 The defined macro ACP_HANDLE_ALL can be used instead of the most
recently returned handle

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

acp_handle_t acp_copy(acp_ga_t dst, acp_ga_t dst,

size_t size, acp_handle_t order);

14

Implementation with and without RDMA

 The protocol is processed by a communication thread

 Typical protocol implementation with RDMA

 Typical protocol implementation without RDMA

 This work studied the interaction between the initiator and the
source, therefore using RDMA or not is of no consequence

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

Initiator

Main thread

Source

Main thread

Destination

Main thread

Comm. thread Comm. thread Comm. thread

1. req.

3. end

2. put

Initiator

Main thread

Source

Main thread

Destination

Main thread

Comm. thread Comm. thread Comm. thread

1. req.

3. end

2. data

15

Details of the Implemented Protocol

 The initiator controls the execution order

 The initiator awaits a notification of the preceding request to dequeue the
next request from the command queue (CQ)

 The source executes received requests out of order

 The source dequeues a request from the delegate queue (DQ) whenever
the communication resource is available

 The request and notification round-trip is necessary even if the
sources of consecutive copies are the same

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

Initiator Source

Comm. thread Comm. thread

reqCQ DQ
exec

end

16

Proposal: Remote Ordering with Fence

Concept of remote ordering

 The initiator forwards the next request before receiving the notification

 The source controls ordering of the forwarded request

 Fence flag

 A simple implementation technique of the remote ordering

 The initiator forwards the next request when it satisfies the following

• It specifies sequential order

• Its source process is the same as that of the previous request

• Its destination process is the same as that of the previous request

 The forwarded request has the fence flag

 The source waits to dequeue a request with a fence flag from the DQ
until sending all notifications of preceding requests in the DQ

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 17

 Introduction

 ACP basic layer

 ACP data library

 Issue and proposal

 Evaluation results

 Future work and summary

Index

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 18

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 5 10 15 20 25 30

A
v

er
a

g
e

e
x

ce
cu

ti
o

n
 t

im
e

(m
se

c)

Number of elements in target vector

insert at begin iterator

two copy insert via remote buffer

two copy insert via local buffer

Results of Original Insertion

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

ACPbl UDP version

Interconnect Gigabit Ethernet

Size of element 4 bytes

About 0.1 msec per element

Almost fixed cost

Cross-point is around 11 elements

19

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

0 10 20 30 40 50 60 70 80 90 100 110 120

A
v

er
a

g
e

e
x

ce
cu

ti
o

n
 t

im
e

(m
se

c)

Number of elements in input vector

insert at begin iterator (initiator ordering)
erase at begin iterator (initiator ordering)
insert at begin iterator (remote ordering)
erase at begin iterator (remote ordering)

Results of Remote Ordering

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

About 0.1 msec per element

About 0.015 msec per element

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 10 20 30 40 50 60 70 80 90 100 110 120

A
v

er
a

g
e

e
x

ce
cu

ti
o

n
 t

im
e

(m
se

c)

Number of elements in target vector

insert at begin iterator

two copy insert via remote buffer

two copy insert via local buffer

Results of Improved Insertion

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop

Cross-point is around 80 elements

21

 Introduction

 ACP basic layer

 ACP data library

 Issue and proposal

 Evaluation results

 Future work and summary

Index

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 22

Future Work

 For the ACP data library

 Further investigation of memory movement algorithms

• Semi in-place hybrid algorithms

• Adaptive algorithms

 Providing a simple memory movement function

 For the ACP basic layer

 Further investigation of remote-to-remote data transfer protocols

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 23

Summary

 The ACP is a communication library including a PGAS layer

Designed for memory-efficient programming

 The ACP includes remote data structure types

Memory-efficient in-place algorithms are implemented for manipulation

 The ordering control of the ACP basic layer caused overheads

 A new concept called remote ordering is proposed

 A simple implementation technique with fence flag was also proposed

 The evaluation results showed the reduction of overheads
from about 0.1 to about 0.015 milli-seconds per element

Copyright 2016 FUJITSU LIMITEDJune 23rd, 2016, ExaComm2016 Workshop 24

Copyright 2016 FUJITSU LIMITED

