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PGAS Programming Model

 Partitioned Global Address Space

 A programming model for distributed memory machines

Global address space: shared objects are handled by a global address

 Partitioned: each shared object is owned by a process

 Productive syntax of PGAS languages

 Inter-process data transfer is written as an assignment statement

 Private-to-shared, shared-to-private, and shared-to-shared
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Advanced Communication Primitives (ACP)

 A communication library Including a PGAS layer as a basis

Designed for memory-efficient programming

 Each communication primitive consumes memory explicitly

 Programmers can control the amount of memory consumption

 Interface categories and the software structure

 ACPdl – data library: data structure interfaces for irregular data

 ACPcl – communication library: message passing interfaces

 ACPbl – basic layer: hardware abstraction with the PGAS model

• Four implementations: UDP, InfiniBand, Tofu, Tofu2
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Global Memory Management

 Static global memory – statically allocated for each process

Global address of any process is available after the initialization

Dynamic global memory – locally registered

Globally accessible, but the address translation must be done locally
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#include <stdlib.h>

#include <acp.h>

int main(int argc, char** argv)

{

acp_init(&argc, &argv);

acp_ga_t my_bss = acp_query_starter_ga(acp_rank());

void* buf = malloc(65536);

acp_atkey_t key = acp_register_memory(buf, size, 0);

acp_ga_t my_heap = acp_query_ga(key, buf);

/* ... */

Static global memory

Dynamic global memory
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Global Address Model

 Each shared object has both global and local addresses

Only the local process can obtain the local address 
corresponding to a global address

 The return value will be NULL if the global address is out of the process
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/* ... */

acp_ga_t my_bss = acp_query_starter_ga(acp_rank());

void* pointer = acp_query_address(my_bss + 64);

/* ... */
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Data Transfer Model

Only shared-to-shared data transfer is provided

 The source and the destination can be an arbitrary global address

 An arbitrary process can be the initiator of a data transfer

 Assumed protocol

1. The initiator sends a request to the source

2. The source transfers data to the destination

3. The destination sends a notification to the initiator
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Categories of ACPdl Interfaces

Memory allocator

 acp_ga_t acp_malloc (size_t size, int rank);

• Allocate a block of global memory at the specified process

 void acp_free (acp_ga_t ga);

• Deallocate a block of global memory 

Remote data structure types

 acp_vector_t: dynamic array

 acp_deque_t: double-ended queue

Distributed data structure types

 acp_list_t: doubly-linked list

 acp_set_t: unordered dictionary

 acp_map_t: unordered associative array
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acp_push_back_list (list, element, 2)

acp_push_back_vector (vector, element)
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Manipulation of Remote Data

 Inserting or erasing data at an arbitrary offset has high-cost

 The data after the offset must be moved backward before the insertion

 The latter part of the remaining data must be moved forward

 The source and destination of the data movement are overlapped

However, using a temporary buffer consumes additional memory

cf. the memmove function of the standard C library

 Inserting or erasing data at a particular position has low-cost

 At the end of vector

 At the start or end of deque
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In-Place Data Movement

 ACPdl uses the in-place algorithm for memory efficiency

Divide data into chunks and copy them sequentially

 Insert

 Erase

No temporal buffer is required

Minimum data movement

Disadvantage

 Increase in number of data transfers
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Issues of the In-Place Data Movement

 Smaller element size increases the number of data transfers

 Issue: protocol overhead for each copy

 The interaction between the initiator and the source incurs overhead
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Copy Function and Ordering

 Synopsis of the copy function

Non-blocking

 It returns an ordering handle value before starting the protocol

Completion can be done using the acp_complete function

 Strongly ordered data transfer

 The start of the protocol is delayed by specifying an ordering handle until 
the completion of the specified data transfer

 The defined macro ACP_HANDLE_ALL can be used instead of the most 
recently returned handle
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acp_handle_t acp_copy(acp_ga_t dst, acp_ga_t dst,

size_t size, acp_handle_t order);
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Implementation with and without RDMA

 The protocol is processed by a communication thread

 Typical protocol implementation with RDMA

 Typical protocol implementation without RDMA

 This work studied the interaction between the initiator and the 
source, therefore using RDMA or not is of no consequence
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Details of the Implemented Protocol

 The initiator controls the execution order

 The initiator awaits a notification of the preceding request to dequeue the 
next request from the command queue (CQ)

 The source executes received requests out of order

 The source dequeues a request from the delegate queue (DQ) whenever 
the communication resource is available

 The request and notification round-trip is necessary even if the 
sources of consecutive copies are the same
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Proposal: Remote Ordering with Fence

Concept of remote ordering

 The initiator forwards the next request before receiving the notification

 The source controls ordering of the forwarded request

 Fence flag

 A simple implementation technique of the remote ordering

 The initiator forwards the next request when it satisfies the following

• It specifies sequential order

• Its source process is the same as that of the previous request

• Its destination process is the same as that of the previous request

 The forwarded request has the fence flag

 The source waits to dequeue a request with a fence flag from the DQ 
until sending all notifications of preceding requests in the DQ
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Future Work

 For the ACP data library

 Further investigation of memory movement algorithms

• Semi in-place hybrid algorithms

• Adaptive algorithms

 Providing a simple memory movement function

 For the ACP basic layer

 Further investigation of remote-to-remote data transfer protocols
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Summary

 The ACP is a communication library including a PGAS layer

Designed for memory-efficient programming

 The ACP includes remote data structure types

Memory-efficient in-place algorithms are implemented for manipulation

 The ordering control of the ACP basic layer caused overheads

 A new concept called remote ordering is proposed

 A simple implementation technique with fence flag was also proposed

 The evaluation results showed the reduction of overheads 
from about 0.1 to about 0.015 milli-seconds per element
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