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The story of this talk 

Underlying thesis 
•  RAM is a bad abstraction 

for memory systems 
–  It’s going to get much worse 

•  Latency versus bandwidth 
–  Well understood for IPC and 

I/O 
–  Exploit bandwidth capabilities 

when possible 

•  We need to start supporting 
other abstractions 
–  Ifetch loop requires RAM so 

we can’t get rid of it entirely 

Outline of content 
•  Interconnect performance is 

not tracking for Exascale 

•  Relevant work at ORNL 
–  Understanding applications 

•  Tools for measurement and 
prediction 

–  Programming interfaces 
•  Application and library APIs 

–  Exploiting in-transit 
processing 

–  Understanding node structure 

•  Back to the thesis! 



The urgency for 
Interconnect R&D 
 
Contributions from: 
 
Al Geist 

Short story:  
 
We’re on track for 
almost everything 
needed for an Exascale 
platform. 
 
We’re off the tracks in 
Interconnects, inter-
node is really bad and 
I/O is bad.  Worse than 
that, we didn’t really 
consider on-node 
interconnects. 
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2017 OLCF Leadership System 
Hybrid CPU/GPU architecture (like Titan) 

Vendor: IBM (Prime) / NVIDIA™ / Mellanox® 

At least 5X Titan’s Application Performance  

Approximately 3,400 nodes, each with: 
•  Multiple IBM POWER9™ CPUs and multiple NVIDIA Volta® GPUs.  
•  CPUs and GPUs completely connected with high speed NVLink  
•  Large coherent memory: over 512 GB (HBM + DDR4) 

–  all directly addressable from the CPUs and GPUs  
•  An additional 800 GB of NVRAM, which can be configured as either a 

burst buffer or as extended memory or both 
•  over 40 TF peak performance  

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect  

IBM Elastic Storage (GPFS™) - 1TB/s I/O and 120 PB disk capacity. 
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OLCF-5 What’s exascale look like? 
Date 2009 2012 2017 2022 
System Jaguar  Titan Summit Exascale 

System peak 2.3 Peta 27 Peta 150+ Peta 1-2 Exa 

System memory 0.3 PB 0.7 PB 2-5 PB 10-20 PB 

NVM per node none none 800 GB ~2 TB 

Storage 15 PB 32 PB 120 PB ~300 PB 

MTTI days days days O(1 day) 

Power 7 MW 9 MW 10 MW ~20 MW 

Node architecture CPU  12 
core 

CPU + GPU X CPU + Y GPU X loc + Y toc 

System size (nodes) 18,700 18,700 3,400 How fat? 

Node performance 125 GF 1.5 TF 40 TF depends (X,Y) 

Node memory BW 25 GB/s 25 - 200 GB/
s 

100 – 1000 GB/s 10x fast vs 
slow 

Interconnect BW 1.5 GB/s 6.4 GB/s 25 GB/s 4x each gen 

IO Bandwidth 0.2 TB/s 1 TB/s 1 TB/s flat 

OLCF-5 
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Exascale architecture targets circa 2009 
2009 Exascale Challenges Workshop in San Diego  

System attributes 2009 “Pre-Exascale” “Exascale” 
System peak 2 PF 100-200 PF/s 1 Exaflop/s 
Power 6 MW 15 MW 20 MW 
System memory 0.3 PB 5 PB 32–64 PB 
Storage 15 PB 150 PB 500 PB 
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF 
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s 
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000 
Node interconnect 
BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s 

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s 

MTTI day O(1 day) O(0.1 day) 

Attendees envisioned two possible architectural swim lanes: 
1.  Homogeneous many-core thin-node system 
2.  Heterogeneous (accelerator + CPU)  fat-node system 
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Exascale architecture targets  
defined at 2009 Exascale Challenges Workshop in San Diego  

System attributes 2009 “Pre-Exascale” “Exascale” 
System peak 2 PF 100-200 PF/s 1 Exaflop/s 
Power 6 MW 15 MW 20 MW 
System memory 0.3 PB 5 PB 32–64 PB 
Storage 15 PB 150 PB 500 PB 
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF 
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s 
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000) 
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000 
Node interconnect 
BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s 

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s 

MTTI day O(1 day) O(0.1 day) 

Where we are going “off the tracks” is  
data movement between nodes and from node to storage 
Summit: Interconnect BW= 25 GB/s, I/O BW= 1 TB/s 



Understanding 
Applications 
 
Contributions from: 
 
Jeffery Vetter,  
Phil Roth,  
Jeremy Meredith,  
Seyong Lee, and 
Christian Engelmann 

Short story:  
 
We are developing 
tools to understand 
applications. Including 
both measurement and 
prediction. 
 
While not specifically 
developed for 
interconnect research, 
these tools can be used 
to study issues related 
to interconnects 
 
•  Oxbow 

•  Aspen/Compass 

•  xSim 
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Oxbow: Understanding application 
needs 

•   Characterization on several axes: 
–  Communication (topology, volume) 
–  Computation (instruction mix) 
–  Memory access (reuse distance) 

•  Impact 
–  Representativeness of proxy apps 
–  System design 

• Online database for 
results with web portal 
including analytics 
support 

 

Instruction Mix, HPCG, 64 processes 

Result of clustering apps using instruction mix 

http://oxbow.ornl.gov 
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Example: Understanding communication 
patterns 

•  Communication matrix collected using mpiP from 96 process run on Keeneland  
•  Imperfect 3D Nearest Neighbor pattern (note red circle in last figure) 

Original matrix 

After removing broadcast 

After removing reduce 
13354 x Broadcast(root:0) + 

700 x Reduce(root:0) + 
19318888 x 3DNearestNeighbor( 

dims:(4,4,6), 
periodic:True) 

After removing 3D 
nearest neighbor, 
dimensions (4,4,6), 
periodic  

Successive 
removal of 

known 
patterns 

“Automated 
Characterization of 
Parallel Application 

Communication 
Patterns,”  

Roth, Meredith, and 
Vetter,  

HPDC 2015 

LAMMPS 
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COMPASS System Overview 

source code Input Program 
Analyzer 

Aspen machine 
model 

OpenARC IR* 
with Aspen 
annotations 

Aspen IR 
Generator 

ASPEN IR 

Aspen IR 
Postprocessor 

Aspen 
application 

model 
Aspen 

Performance 
Prediction 

Tools 

Program 
characteristics 
(flops, loads, 
stores, etc.) 

Runtime 
prediction 

Optional feedback for advanced users 

Other program 
analysis 

*IR: Intermediate 
Representation 

COMPASS is: 
•  Implemented using OpenARC (Open Accelerator Research Compiler) 

http://ft.ornl.gov/research/openarc, and 
•  Uses Aspen for performance analysis 

http://ft.ornl.gov/research/performance 
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Example: LULESH 
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Automatic generation of an Aspen 
application model enables highly 
complex models that exhibit a very 
high degree of accuracy 
 
•  Input LULESH program:  

3700 lines of C codes 
•  Output Aspen model:  

2300 lines of Aspen specifications 

Accuracy 

Sensitivity to variation in 
hardware parameters 

S. Lee, J.S. Meredith, and J.S. Vetter, 
“COMPASS: A Framework for Automated 
Performance Modeling and Prediction,” in 
Proceedings of the 29th ACM on 
International Conference on 
Supercomputing. Newport Beach, 
California, USA: ACM, 2015. 

Sensitivity = 
Application improvement  
Hardware improvement  
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xSim: the Extreme Scale Simulator 

• Use a moderate scale  
system to simulate  
extreme scale systems 

•  Implementation 
–  Applications run within the 

context of virtual processors 
•  Applications are unmodified and only need to link to the xSim library 

–  The virtual processors expose a virtual MPI for applications 
•  Utilizes PMPI to intercept MPI calls and to hide the PDES 

–  Parallel Discrete Event Simulation (PDES) 
•  Uses the native MPI to simulate virtual processors 
•  Implements a time-accurate network with tunable performance (e.g., 

bandwidth, latency, topology) 
 

P P P P 

VP VP VP VP VP VP VP 

PDES 

MPI 

Virtual MPI 

Application 

xS
im

 
Li

br
ar

y 
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Example: Network Topology 

• Configurable network model 
•  Star, ring, mesh, torus, twisted torus, and tree 
•  Link latency & bandwidth 
•  Contention and routing 
•  Hierarchical combinations, e.g.,on-chip, on-

node, & off-node 
•  Simulated rendezvous 

protocol 

• Example: NAS MG in a  
dual-core 3D mesh or  
twisted torus 

C. Engelmann. xSim: The Extreme-
scale Simulator. Munich, 2015. 



Programming Interfaces 
Contributions from: 
 
Oscar Hernandez, 
Pavel Shamis, and 
Manjunath Gorentla Venkata 

Short story:  
 
We are also engaged in 
the development of 
APIs related to 
interconnects. 
 
•  Open MPI,  

•  OpenACC 

•  OpenSHMEM 

•  UCX 
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Improving the Performance of Collective 
Operations in Open MPI 
•  Collective operations are global communication and 

synchronization operations in a parallel job 
•  Important component of a parallel system software stack 

–  Simulations are sensitive to collectives performance characteristics 
–  Simulations spend significant amount of time in collectives 

 Time spent in collectives 
(in Red) 

LAMMPS > 35% CESM > 50% 
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Approach Objectives 

Cheetah: A Framework for High-performing 
Collectives 

!  Develop a high-performing and highly scalable 
collective operations library 

!  Develop collective offload mechanism for 
InfiniBand HCA 

!  Designed to support blocking and nonblocking 
semantics, and achieve high scalability and 
performance on modern multicore systems 

http://www.csm.ornl.gov/cheetah 

!  Hierarchical design driven implementation to 
achieve performance and scalability 

!  Offload collective processing to the network 
hardware, reducing OS noise effects and 
enhancing CPU availability to the computations  

    Outcomes 
!  Influenced capabilities and functionality of 

Mellanox’s CORE-Direct technologyAvailable 
in Open MPI 1.8 

Intra-socket Optimized Collective

Intra-node Optimized Collective

Intra-switch Optimized Collective

Inter-switch Optimized Collective

Cheetah Collective 

Regular Collective 

Design 

Support 
!  FAST-OS (PI: Richard Graham) and                   
!  Oak Ridge Leadership Facility (OLCF) 
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Reminder: OpenACC in a Nutshell 

•  Directive-based API 
•  Bindings for C, C++, Fortran 
•  Single code base for both 

accelerator and non-accelerator 
implementations 

•  Strategically important to 
ORNL/CORAL as a standard, 
portable solution to 
programming accelerators 
–  Implementations available for NVIDIA 

GPUs, AMD GPUs and APUs, Intel 
Xeon Phi 

•  OpenACC is a “research 
vehicle” for OpenMP 
accelerator support 
–  Use OpenACC to figure it out (rapid 

release cycle) 
–  Put “the right answer” into OpenMP 

(slow release cycle) 

#pragma acc kernels loop  
for( i = 0; i < nrows; ++I ){  
 double val = 0.0;  
 int nstart = rowindex[i]; 
 int nend = rowindex[i+1]; 
 #pragma acc loop vector       
  reduction(+:val)  
 for( n = nstart; n < nend; ++n )  
  val += m[n] * v[colndx[n]];  
 r[i] = val;  

} 

Sparse (CSR) matrix-vector 
multiplication in C + OpenACC 
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Co-Designing Programming Environment 

CAAR 

CoE 
(IBM, NVIDIA) 

Other CORAL 
Activities 

(LLNL, ORNL, ANL) 

NCCS 
Workshops / User 

Training 

INCITE /  
ALCF 

 

OpenACC 
Organization 

Vendors 
(HW, SW, Tools) 

HPC  
Community 

(Labs, Universities, 
etc) 

Other Standard 
Bodies 

(OpenMP) 

HPC Benchmarks 
SPEC / HPG 

Non-HPC 
Users 

ORNL 
CSM / OLCF4 

Gathering User 
Requirements 

Barriers to 
Adoption and 
User “gaps” 

Evaluation of 
Current Solutions 

Co-Design 
Hardware, Compilers, 

Tools 

Outreach to 
HPC Community 

In General 

Co-Design 
with OpenMP 

Developing  
Best Programming  

Practices 

“ 
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Current Challenges 
Moving complex data to/from accelerators 
•  Hardware solutions: NVLINK, etc 

–  First touch policy, OS support  

•  Programming model solutions 
–  “Deep copy” is a blocking issue for 

OpenACC adoption  
–  Deep copy solution also addresses key 

C++ issues: STLs, etc  
template <class T> 
class Matrix { 
    size_type nRow, nCol, lDim, physicalSize; 
    bool owner; 
    T* data; 
    #pragma acc policy(managed) inherit(data[0:lDim*nCol]) 
    #pragma acc policy(aliased) present(data[@])  
…} 
… 
Matrix<double> a(M*N,M*N); 
Matrix<double> b, c; 
b.owner = false; 
c.owner = false;  
#pragma acc data enter copyin(managed:a, aliased:b)   
{ 
   #pragma acc parallel for private( c ) 
      for( i=0; i<M*N; ++i ) 
… 

Complex data 
structures in 
applications 

OpenACC “deep copy” directives 

OpenACC Complex Data Management Tech Report 
http://www.openacc.org/sites/default/files/TR-14-1.pdf  
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OpenSHMEM Research OpenSHMEM Reference  
Implementation 

OpenSHMEM Activities at ORNL 
 

! Open source reference 
implementation  
!  Supports InfiniBand and  Gemini 

network interfaces 
!  Leverages UCCS (UCX) and 

GASNet for network functionality 
!  Available on GitHub: 

https://github.com/openshmem-org/ 
!  Partners : UH 

! UCX: High-performing network 
layer for OpenSHMEM libraries 

 

! OpenSHMEM with GPU-Initiated 
communication  
!  Co-design with NVIDIA 

! OpenSHMEM Analyzer 
!  Analyzes semantic compliancy of 

OpenSHMEM programs 
!  Partners: UH 

!  Fault-tolerant OpenSHMEM 
!  Partners: University of Tennessee, 

Knoxville 

http://openshmem.org 

 

     

Partners 
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The Vision 

UCX

InfiniBand uGNI Shared 
Memory GPU Memory Emerging

Interconnects

MPI GasNet PGAS Task Based
Runtimes I/O

Transports

Protocols Services

Applications
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Collaboration 

• Mellanox co-designs network interface and 
contributes MXM technology 

○  Infrastructure, UD, RC, DCT, shared memory, protocols, integration with 
OpenMPI/SHMEM, MPICH 

• ORNL co-designs network interface and 
contributes UCCS project 

○  IB optimizations, support Crays devices, shared memory 

• NVIDIA co-designs high-quality support for GPU 
devices 

○  GPU-Direct, GDR copy, etc. 

•  IBM co-designs network interface and contributes 
ideas and concepts from PAMI 
• UH/UTK focus on integration with their research 
platforms 
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UCX: Background 

MXM 
●  Developed by Mellanox 

Technologies 
●  HPC communication library for 

InfiniBand devices and shared 
memory 

●  Primary focus: MPI, PGAS 

UCCS 
●  Developed by ORNL, UH, UTK 
●  Originally based on Open MPI 

BTL and OPAL layers 
●  HPC communication library for 

InfiniBand, Cray Gemini/Aries, 
and shared memory 

●  Primary focus: OpenSHMEM, 
PGAS 

●  Also supports: MPI 

Portals? 
●  Sandia, UNM, ORNL, etc 
●  Network Interface Architecture 
●  Define essential capabilities 

PAMI 
●  Developed by IBM on BG/Q, 

PERCS, IB VERBS 
●  Network devices and shared 

memory 
●  MPI, OpenSHMEM, PGAS, CHARM

++, X10 
●  C++ components 
●  Aggressive multi-threading with 

contexts 
●  Active Messages 
●  Non-blocking collectives with hw 

accleration support 



Interactions Between 
Data Processing and Data 
Movement 
 
Contributions from: 
 
Scott Klasky 

Short story:  
 
Computing systems 
provide new 
opportunities for 
integrating computation 
with data movement 
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Hybrid Staging 

•  Use compute and deep-memory hierarchies to optimize 
overall workflow for power vs. performance tradeoffs 

•  Abstract complex/deep memory hierarchy access 

•  Placement of analysis and visualization tasks in a complex 
system 

•  Impact of network data movement compared to memory 
movement 
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In-situ and In-transit Partitioning of 
Workflows 

•  Primary resources execute 
the main simulation and in 
situ computations 

•  Secondary resources 
provide a staging area 
whose cores act as buckets 
for in transit computations  

•  4896%cores%total%(4480%simula3on/in%situ;%256%in%
transit;%160%task%scheduling/data%movement)%

•  Simula3on%size:%1600x1372x430%
•  All%measurements%are%per%simula3on%3me%step%



Understanding the on-
node components  
 
Contributions from: 
 
Jeffery Vetter 

Short story:  
 
On-node interconnects 
are becoming more and 
more complicated.  
 
We need to understand 
the endpoints: 
memories and 
processors.  
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Contemporary Heterogeneous 
Architectures 

Property CUDA GCN MIC 
Programming 

models 
CUDA, OpenCL OpenCL, C++ 

AMP 
OpenCL, Cilk, 

TBB, 
LEO, OpenMP 

Thread Scheduling Hardware Hardware Software 
Programmer 

Managed Cache 
Yes Yes No 

Global 
Synchronization 

No No Yes 

L2 Cache Type Shared Private per core Private per core 
L2 Total Size Up to 1.5MB Up to 0.5 MB 25MB 
L2 Line-size 128 64 64 

L1 Data Cache Read-only + 
Read-write 

Read-only Read-write 

Native Mode No No Yes 
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Comparison to Hand-written CUDA/OpenCL 
Programs 
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•  Geo.%mean%indicates%
that%82%,%81%,%92%%of%
the%performance%of%
hand%wriNen%code%can%
be%achieved%by%tuned%
OpenACC%programs%on%
CUDA,%GCN%and%MIC%
resp.%

•  LUD%:%CUDA,%GCN%are%slower%as%they%don’t%use%onZchip%sharedZ
memory.%No%issues%on%MIC,%as%there%is%no%sharedZmemory%

•  KMEANS%:%On%MIC,%OpenACC%performs%beNer%"%unrolling%
•  CFD%:%Performs%beNer%on%CUDA%"%Texture%memory%
•  BFS%:%BeNer%perf.%due%to%parallelism%arrangement%on%GCN%
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Overall Performance Portability 

•  BeNer%perf.%portability%among%GPUs%
•  Lesser%across%GPUs%and%MIC%
•  Main%reasons%

–  Parallelism%arrangement%
–  Compiler%op3miza3ons%:%e.g.%deviceZ

specific%memories,%unrolling%etc.%
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11.3x 13.7x 13.8x 22.1x CUDA GCN MIC 

A. Sabne, P. Sakhnagool et al., “Evaluating Performance Portability of 
OpenACC,” in 27th International Workshop on Languages and Compiler 
for Parallel Computing (LCPC) Portland, Oregon, 2014 
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Speculation (apologies to Dave Resnick)  
• We need to define API(s) (abstract protocols) that 

focus on data movement 
• Can we unify on-node and off-node APIs into a 

single framework? 
– What about I/O? 

• Virtualization 
–  configurable isolation 

• Resilience (at rest, in-transit, or transformation) 
•  In-transit data manipulation (stream oriented 

computation) 
• Abstract, but enable access to hardware 

capabilities? 


