
ORNL is managed by UT-Battelle
for the US Department of Energy

Interconnect Related
Research at Oak
Ridge National
Laboratory

Barney Maccabe

Director, Computer Science and
Mathematics Division

July 16, 2015
Frankfurt, Germany

2 ExaComm 2015; 7/16/2015; Frankfurt, Germany

The story of this talk

Underlying thesis
•  RAM is a bad abstraction

for memory systems
–  It’s going to get much worse

•  Latency versus bandwidth
–  Well understood for IPC and

I/O
–  Exploit bandwidth capabilities

when possible

•  We need to start supporting
other abstractions
–  Ifetch loop requires RAM so

we can’t get rid of it entirely

Outline of content
•  Interconnect performance is

not tracking for Exascale

•  Relevant work at ORNL
–  Understanding applications

•  Tools for measurement and
prediction

–  Programming interfaces
•  Application and library APIs

–  Exploiting in-transit
processing

–  Understanding node structure

•  Back to the thesis!

The urgency for
Interconnect R&D

Contributions from:

Al Geist

Short story:

We’re on track for
almost everything
needed for an Exascale
platform.

We’re off the tracks in
Interconnects, inter-
node is really bad and
I/O is bad. Worse than
that, we didn’t really
consider on-node
interconnects.

4 ExaComm 2015; 7/16/2015; Frankfurt, Germany

2017 OLCF Leadership System
Hybrid CPU/GPU architecture (like Titan)

Vendor: IBM (Prime) / NVIDIA™ / Mellanox®

At least 5X Titan’s Application Performance

Approximately 3,400 nodes, each with:
•  Multiple IBM POWER9™ CPUs and multiple NVIDIA Volta® GPUs.
•  CPUs and GPUs completely connected with high speed NVLink
•  Large coherent memory: over 512 GB (HBM + DDR4)

–  all directly addressable from the CPUs and GPUs
•  An additional 800 GB of NVRAM, which can be configured as either a

burst buffer or as extended memory or both
•  over 40 TF peak performance

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect

IBM Elastic Storage (GPFS™) - 1TB/s I/O and 120 PB disk capacity.

5 ExaComm 2015; 7/16/2015; Frankfurt, Germany

OLCF-5 What’s exascale look like?
Date 2009 2012 2017 2022
System Jaguar Titan Summit Exascale

System peak 2.3 Peta 27 Peta 150+ Peta 1-2 Exa

System memory 0.3 PB 0.7 PB 2-5 PB 10-20 PB

NVM per node none none 800 GB ~2 TB

Storage 15 PB 32 PB 120 PB ~300 PB

MTTI days days days O(1 day)

Power 7 MW 9 MW 10 MW ~20 MW

Node architecture CPU 12
core

CPU + GPU X CPU + Y GPU X loc + Y toc

System size (nodes) 18,700 18,700 3,400 How fat?

Node performance 125 GF 1.5 TF 40 TF depends (X,Y)

Node memory BW 25 GB/s 25 - 200 GB/
s

100 – 1000 GB/s 10x fast vs
slow

Interconnect BW 1.5 GB/s 6.4 GB/s 25 GB/s 4x each gen

IO Bandwidth 0.2 TB/s 1 TB/s 1 TB/s flat

OLCF-5

6 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Exascale architecture targets circa 2009
2009 Exascale Challenges Workshop in San Diego

System attributes 2009 “Pre-Exascale” “Exascale”
System peak 2 PF 100-200 PF/s 1 Exaflop/s
Power 6 MW 15 MW 20 MW
System memory 0.3 PB 5 PB 32–64 PB
Storage 15 PB 150 PB 500 PB
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000
Node interconnect
BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Attendees envisioned two possible architectural swim lanes:
1.  Homogeneous many-core thin-node system
2.  Heterogeneous (accelerator + CPU) fat-node system

7 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Exascale architecture targets
defined at 2009 Exascale Challenges Workshop in San Diego

System attributes 2009 “Pre-Exascale” “Exascale”
System peak 2 PF 100-200 PF/s 1 Exaflop/s
Power 6 MW 15 MW 20 MW
System memory 0.3 PB 5 PB 32–64 PB
Storage 15 PB 150 PB 500 PB
Node performance 125 GF 0.5 TF 7 TF 1 TF 10 TF
Node memory BW 25 GB/s 0.1 TB/s 1 TB/s 0.4 TB/s 4 TB/s
Node concurrency 12 O(100) O(1,000) O(1,000) O(10,000)
System size (nodes) 18,700 500,000 50,000 1,000,000 100,000
Node interconnect
BW 1.5 GB/s 150 GB/s 1 TB/s 250 GB/s 2 TB/s

IO Bandwidth 0.2 TB/s 10 TB/s 30-60 TB/s

MTTI day O(1 day) O(0.1 day)

Where we are going “off the tracks” is
data movement between nodes and from node to storage
Summit: Interconnect BW= 25 GB/s, I/O BW= 1 TB/s

Understanding
Applications

Contributions from:

Jeffery Vetter,
Phil Roth,
Jeremy Meredith,
Seyong Lee, and
Christian Engelmann

Short story:

We are developing
tools to understand
applications. Including
both measurement and
prediction.

While not specifically
developed for
interconnect research,
these tools can be used
to study issues related
to interconnects

•  Oxbow

•  Aspen/Compass

•  xSim

9 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Oxbow: Understanding application
needs

•  Characterization on several axes:
–  Communication (topology, volume)
–  Computation (instruction mix)
–  Memory access (reuse distance)

•  Impact
–  Representativeness of proxy apps
–  System design

• Online database for
results with web portal
including analytics
support

Instruction Mix, HPCG, 64 processes

Result of clustering apps using instruction mix

http://oxbow.ornl.gov

10 Automated Characterization of Parallel Application Communication Patterns – HPDC 2015

Example: Understanding communication
patterns

•  Communication matrix collected using mpiP from 96 process run on Keeneland
•  Imperfect 3D Nearest Neighbor pattern (note red circle in last figure)

Original matrix

After removing broadcast

After removing reduce
13354 x Broadcast(root:0) +

700 x Reduce(root:0) +
19318888 x 3DNearestNeighbor(

dims:(4,4,6),
periodic:True)

After removing 3D
nearest neighbor,
dimensions (4,4,6),
periodic

Successive
removal of

known
patterns

“Automated
Characterization of
Parallel Application

Communication
Patterns,”

Roth, Meredith, and
Vetter,

HPDC 2015

LAMMPS

11 ExaComm 2015; 7/16/2015; Frankfurt, Germany

COMPASS System Overview

source code Input Program
Analyzer

Aspen machine
model

OpenARC IR*
with Aspen
annotations

Aspen IR
Generator

ASPEN IR

Aspen IR
Postprocessor

Aspen
application

model
Aspen

Performance
Prediction

Tools

Program
characteristics
(flops, loads,
stores, etc.)

Runtime
prediction

Optional feedback for advanced users

Other program
analysis

*IR: Intermediate
Representation

COMPASS is:
•  Implemented using OpenARC (Open Accelerator Research Compiler)

http://ft.ornl.gov/research/openarc, and
•  Uses Aspen for performance analysis

http://ft.ornl.gov/research/performance

12 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Example: LULESH

1.E+07

1.E+08

1.E+09

1.E+10

10 20 30 40 50

FL
O
PS

Edge*Elements

Measured
(Unoptimized)

Aspen
Prediction

Measured
(Optimized)

0%

1%

10%

100%

JA
CO

BI
M
AT

M
UL

SP
M
UL

LA
PL
AC

E2
D CG EP

BA
CK

PR
O
P

BF
S

CF
D

HO
TS
PO

T
KM

EA
NS LU
D

NW SR
AD

LU
LE
SH

GPU:Memory:Clock

GPU:Core:Clock

PCIe:Bandwidth

PCIe:Latency

Automatic generation of an Aspen
application model enables highly
complex models that exhibit a very
high degree of accuracy

•  Input LULESH program:

3700 lines of C codes
•  Output Aspen model:

2300 lines of Aspen specifications

Accuracy

Sensitivity to variation in
hardware parameters

S. Lee, J.S. Meredith, and J.S. Vetter,
“COMPASS: A Framework for Automated
Performance Modeling and Prediction,” in
Proceedings of the 29th ACM on
International Conference on
Supercomputing. Newport Beach,
California, USA: ACM, 2015.

Sensitivity =
Application improvement
Hardware improvement

13 ExaComm 2015; 7/16/2015; Frankfurt, Germany

xSim: the Extreme Scale Simulator

• Use a moderate scale
system to simulate
extreme scale systems

•  Implementation
–  Applications run within the

context of virtual processors
•  Applications are unmodified and only need to link to the xSim library

–  The virtual processors expose a virtual MPI for applications
•  Utilizes PMPI to intercept MPI calls and to hide the PDES

–  Parallel Discrete Event Simulation (PDES)
•  Uses the native MPI to simulate virtual processors
•  Implements a time-accurate network with tunable performance (e.g.,

bandwidth, latency, topology)

P P P P

VP VP VP VP VP VP VP

PDES

MPI

Virtual MPI

Application

xS
im

Li

br
ar

y

14 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Example: Network Topology

• Configurable network model
•  Star, ring, mesh, torus, twisted torus, and tree
•  Link latency & bandwidth
•  Contention and routing
•  Hierarchical combinations, e.g.,on-chip, on-

node, & off-node
•  Simulated rendezvous

protocol

• Example: NAS MG in a
dual-core 3D mesh or
twisted torus

C. Engelmann. xSim: The Extreme-
scale Simulator. Munich, 2015.

Programming Interfaces
Contributions from:

Oscar Hernandez,
Pavel Shamis, and
Manjunath Gorentla Venkata

Short story:

We are also engaged in
the development of
APIs related to
interconnects.

•  Open MPI,

•  OpenACC

•  OpenSHMEM

•  UCX

16 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Improving the Performance of Collective
Operations in Open MPI
•  Collective operations are global communication and

synchronization operations in a parallel job
•  Important component of a parallel system software stack

–  Simulations are sensitive to collectives performance characteristics
–  Simulations spend significant amount of time in collectives

 Time spent in collectives
(in Red)

LAMMPS > 35% CESM > 50%

17 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Approach Objectives

Cheetah: A Framework for High-performing
Collectives

!  Develop a high-performing and highly scalable
collective operations library

!  Develop collective offload mechanism for
InfiniBand HCA

!  Designed to support blocking and nonblocking
semantics, and achieve high scalability and
performance on modern multicore systems

http://www.csm.ornl.gov/cheetah

!  Hierarchical design driven implementation to
achieve performance and scalability

!  Offload collective processing to the network
hardware, reducing OS noise effects and
enhancing CPU availability to the computations

 Outcomes
!  Influenced capabilities and functionality of

Mellanox’s CORE-Direct technologyAvailable
in Open MPI 1.8

Intra-socket Optimized Collective

Intra-node Optimized Collective

Intra-switch Optimized Collective

Inter-switch Optimized Collective

Cheetah Collective

Regular Collective

Design

Support
!  FAST-OS (PI: Richard Graham) and
!  Oak Ridge Leadership Facility (OLCF)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50 100 150 200 250 300 350 400 450 500 550

L
a

te
n

cy
 (

m
ic

ro
se

c.
)

MPI Processes

 Open MPI default
 Cheetah Iallreduce (p2p, uma)

Improved Scalability
of Allreduce for large

messages

18 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Reminder: OpenACC in a Nutshell

•  Directive-based API
•  Bindings for C, C++, Fortran
•  Single code base for both

accelerator and non-accelerator
implementations

•  Strategically important to
ORNL/CORAL as a standard,
portable solution to
programming accelerators
–  Implementations available for NVIDIA

GPUs, AMD GPUs and APUs, Intel
Xeon Phi

•  OpenACC is a “research
vehicle” for OpenMP
accelerator support
–  Use OpenACC to figure it out (rapid

release cycle)
–  Put “the right answer” into OpenMP

(slow release cycle)

#pragma acc kernels loop
for(i = 0; i < nrows; ++I){
 double val = 0.0;
 int nstart = rowindex[i];
 int nend = rowindex[i+1];
 #pragma acc loop vector
 reduction(+:val)
 for(n = nstart; n < nend; ++n)
 val += m[n] * v[colndx[n]];
 r[i] = val;

}

Sparse (CSR) matrix-vector
multiplication in C + OpenACC

19 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Co-Designing Programming Environment

CAAR

CoE
(IBM, NVIDIA)

Other CORAL
Activities

(LLNL, ORNL, ANL)

NCCS
Workshops / User

Training

INCITE /
ALCF

OpenACC
Organization

Vendors
(HW, SW, Tools)

HPC
Community

(Labs, Universities,
etc)

Other Standard
Bodies

(OpenMP)

HPC Benchmarks
SPEC / HPG

Non-HPC
Users

ORNL
CSM / OLCF4

Gathering User
Requirements

Barriers to
Adoption and
User “gaps”

Evaluation of
Current Solutions

Co-Design
Hardware, Compilers,

Tools

Outreach to
HPC Community

In General

Co-Design
with OpenMP

Developing
Best Programming

Practices

“

20 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Current Challenges
Moving complex data to/from accelerators
•  Hardware solutions: NVLINK, etc

–  First touch policy, OS support

•  Programming model solutions
–  “Deep copy” is a blocking issue for

OpenACC adoption
–  Deep copy solution also addresses key

C++ issues: STLs, etc
template <class T>
class Matrix {
 size_type nRow, nCol, lDim, physicalSize;
 bool owner;
 T* data;
 #pragma acc policy(managed) inherit(data[0:lDim*nCol])
 #pragma acc policy(aliased) present(data[@])
…}
…
Matrix<double> a(M*N,M*N);
Matrix<double> b, c;
b.owner = false;
c.owner = false;
#pragma acc data enter copyin(managed:a, aliased:b)
{
 #pragma acc parallel for private(c)
 for(i=0; i<M*N; ++i)
…

Complex data
structures in
applications

OpenACC “deep copy” directives

OpenACC Complex Data Management Tech Report
http://www.openacc.org/sites/default/files/TR-14-1.pdf

21 ExaComm 2015; 7/16/2015; Frankfurt, Germany

OpenSHMEM Research OpenSHMEM Reference
Implementation

OpenSHMEM Activities at ORNL

! Open source reference
implementation
!  Supports InfiniBand and Gemini

network interfaces
!  Leverages UCCS (UCX) and

GASNet for network functionality
!  Available on GitHub:

https://github.com/openshmem-org/
!  Partners : UH

! UCX: High-performing network
layer for OpenSHMEM libraries

! OpenSHMEM with GPU-Initiated
communication
!  Co-design with NVIDIA

! OpenSHMEM Analyzer
!  Analyzes semantic compliancy of

OpenSHMEM programs
!  Partners: UH

!  Fault-tolerant OpenSHMEM
!  Partners: University of Tennessee,

Knoxville

http://openshmem.org

Partners

22 ExaComm 2015; 7/16/2015; Frankfurt, Germany

The Vision

UCX

InfiniBand uGNI Shared
Memory GPU Memory Emerging

Interconnects

MPI GasNet PGAS Task Based
Runtimes I/O

Transports

Protocols Services

Applications

23 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Collaboration

• Mellanox co-designs network interface and
contributes MXM technology

○  Infrastructure, UD, RC, DCT, shared memory, protocols, integration with
OpenMPI/SHMEM, MPICH

• ORNL co-designs network interface and
contributes UCCS project

○  IB optimizations, support Crays devices, shared memory

• NVIDIA co-designs high-quality support for GPU
devices

○  GPU-Direct, GDR copy, etc.

•  IBM co-designs network interface and contributes
ideas and concepts from PAMI
• UH/UTK focus on integration with their research
platforms

24 ExaComm 2015; 7/16/2015; Frankfurt, Germany

UCX: Background

MXM
●  Developed by Mellanox

Technologies
●  HPC communication library for

InfiniBand devices and shared
memory

●  Primary focus: MPI, PGAS

UCCS
●  Developed by ORNL, UH, UTK
●  Originally based on Open MPI

BTL and OPAL layers
●  HPC communication library for

InfiniBand, Cray Gemini/Aries,
and shared memory

●  Primary focus: OpenSHMEM,
PGAS

●  Also supports: MPI

Portals?
●  Sandia, UNM, ORNL, etc
●  Network Interface Architecture
●  Define essential capabilities

PAMI
●  Developed by IBM on BG/Q,

PERCS, IB VERBS
●  Network devices and shared

memory
●  MPI, OpenSHMEM, PGAS, CHARM

++, X10
●  C++ components
●  Aggressive multi-threading with

contexts
●  Active Messages
●  Non-blocking collectives with hw

accleration support

Interactions Between
Data Processing and Data
Movement

Contributions from:

Scott Klasky

Short story:

Computing systems
provide new
opportunities for
integrating computation
with data movement

26 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Statistics

Visualization

Topology

Statistics

Visualization

In transit

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS H
y

b
rid

S

ta
g

in
g

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

Compute
 cores

Parallel Data Staging coupling/analytics/viz

A
s
y
n

c
h

ro
n

o
u

s

D
a

ta
 T

ra
n

s
fe

r

Hybrid Staging

•  Use compute and deep-memory hierarchies to optimize
overall workflow for power vs. performance tradeoffs

•  Abstract complex/deep memory hierarchy access

•  Placement of analysis and visualization tasks in a complex
system

•  Impact of network data movement compared to memory
movement

Statistics

Visualization

Topology

Statistics

Visualization

In transit

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS H
y

b
rid

S

ta
g

in
g

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

ADIOS

In transit
Analysis

Visualization

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

ADIOS

S3D-Box

In situ Analysis and
Visualization

ADIOS

Compute
 cores

Parallel Data Staging coupling/analytics/viz

A
s
y
n

c
h

ro
n

o
u

s

D
a

ta
 T

ra
n

s
fe

r

27 ExaComm 2015; 7/16/2015; Frankfurt, Germany

In-situ and In-transit Partitioning of
Workflows

•  Primary resources execute
the main simulation and in
situ computations

•  Secondary resources
provide a staging area
whose cores act as buckets
for in transit computations

•  4896%cores%total%(4480%simula3on/in%situ;%256%in%
transit;%160%task%scheduling/data%movement)%

•  Simula3on%size:%1600x1372x430%
•  All%measurements%are%per%simula3on%3me%step%

Understanding the on-
node components

Contributions from:

Jeffery Vetter

Short story:

On-node interconnects
are becoming more and
more complicated.

We need to understand
the endpoints:
memories and
processors.

29 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Contemporary Heterogeneous
Architectures

Property CUDA GCN MIC
Programming

models
CUDA, OpenCL OpenCL, C++

AMP
OpenCL, Cilk,

TBB,
LEO, OpenMP

Thread Scheduling Hardware Hardware Software
Programmer

Managed Cache
Yes Yes No

Global
Synchronization

No No Yes

L2 Cache Type Shared Private per core Private per core
L2 Total Size Up to 1.5MB Up to 0.5 MB 25MB
L2 Line-size 128 64 64

L1 Data Cache Read-only +
Read-write

Read-only Read-write

Native Mode No No Yes

30 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Comparison to Hand-written CUDA/OpenCL
Programs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sp
ee

up
 O

ve
r H

an
d-

W
rit

te
n

Ve
rs

io
ns

CUDA

GCN

MIC

•  Geo.%mean%indicates%
that%82%,%81%,%92%%of%
the%performance%of%
hand%wriNen%code%can%
be%achieved%by%tuned%
OpenACC%programs%on%
CUDA,%GCN%and%MIC%
resp.%

•  LUD%:%CUDA,%GCN%are%slower%as%they%don’t%use%onZchip%sharedZ
memory.%No%issues%on%MIC,%as%there%is%no%sharedZmemory%

•  KMEANS%:%On%MIC,%OpenACC%performs%beNer%"%unrolling%
•  CFD%:%Performs%beNer%on%CUDA%"%Texture%memory%
•  BFS%:%BeNer%perf.%due%to%parallelism%arrangement%on%GCN%

31 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Overall Performance Portability

•  BeNer%perf.%portability%among%GPUs%
•  Lesser%across%GPUs%and%MIC%
•  Main%reasons%

–  Parallelism%arrangement%
–  Compiler%op3miza3ons%:%e.g.%deviceZ

specific%memories,%unrolling%etc.%

Performance
Portability

Matrix

0%

1%

2%

3%

4%

5%

6%

7%

8%

0%

0.2%

0.4%

0.6%

0.8%

1%

1.2%
JA
CO

BI
%

SR
AD

%
HO

TS
PO

T%
N
W
%

LU
D%

LA
PL
AC

E%
BF
S%

BA
CK

PR
O
P%

KM
EA

N
S%

CF
D%

M
AT

M
U
L%

SP
M
U
L%

JA
CO

BI
%

SR
AD

%
HO

TS
PO

T%
N
W
%

LU
D%

LA
PL
AC

E%
BF
S%

BA
CK

PR
O
P%

KM
EA

N
S%

CF
D%

M
AT

M
U
L%

SP
M
U
L%

JA
CO

BI
%

SR
AD

%
HO

TS
PO

T%
N
W
%

LU
D%

LA
PL
AC

E%
BF
S%

BA
CK

PR
O
P%

KM
EA

N
S%

CF
D%

M
AT

M
U
L%

SP
M
U
L%

Sp
ee
du

p&
of
&B
es
t&C

on
fig

ur
a2

on
&o
ve
r&

Ba
se
lin

e&

Sp
ee
du

p&
w
ith

&re
&

sp
ec
t&t
o&
Be

st
&C
on

fig
ur
a2

on
&

CUDA%Config% GCN%Config% MIC%Config% Best%Config%

11.3x 13.7x 13.8x 22.1x CUDA GCN MIC

A. Sabne, P. Sakhnagool et al., “Evaluating Performance Portability of
OpenACC,” in 27th International Workshop on Languages and Compiler
for Parallel Computing (LCPC) Portland, Oregon, 2014

32 ExaComm 2015; 7/16/2015; Frankfurt, Germany

Speculation (apologies to Dave Resnick)
• We need to define API(s) (abstract protocols) that

focus on data movement
• Can we unify on-node and off-node APIs into a

single framework?
– What about I/O?

• Virtualization
–  configurable isolation

• Resilience (at rest, in-transit, or transformation)
•  In-transit data manipulation (stream oriented

computation)
• Abstract, but enable access to hardware

capabilities?

