Exascale Topologies: The Good, the Bad, and the Not-so-Pretty

ExaComm Workshop @ ISC, 16 July 2015

Cyriel Minkenberg, Bogdan Prisacari, German Rodriguez Herrera, Wolfgang Denzel (IBM Research – Zurich) Philip Heidelberger, Dong Chen, Craig Stunkel, Yutaka Sugawara (IBM TJ Watson Research Center)

IBM Confidential

Acknowledgment

 This work was supported and partially funded by Lawrence Berkeley National Laboratory (LBNL), on behalf of the US Department of Energy, under LBNL subcontract number 7078416.

Agenda

- 1. Network challenges
 - <u>Cost</u>, scale, energy, reliability, performance at scale, *balance*
- 2. Topologies
 - Low-diameter networks, including some new options
- 3. Routing algorithms
 - Direct, Valiant, Adaptive
- 4. Performance evaluation
 - Traffic: Uniform, adversarial, exchange patterns
 - Topologies: 1 old, 2 new

5. Conclusions

Network challenges

Compute nodes are getting "fat"

- On Nov. 2014 Top 500 list, 75 systems use accelerators, mostly NVIDIA GPUs or Intel MIC (Xeon Phi)
- Five of the Top 10 systems, incl. #1 & #2
- Two classes of ~20 PF/s systems
 - "Thin" nodes: 100K nodes @ 0.2 TFLOP/s/node; CPU-only
 - "Fat" nodes: 10 K nodes @ 2 TFLOP/s/node; CPU+accelerators
- "Fat" nodes imply that per-node FLOP rate is growing much faster than per-node network bandwidth!

Fat vs thin in the Top 10

#	System	Manuf. & type	Rmax [PFLOP/s]	#cores	Accel.	Nodes	TFLOPs/ node	Network & Topology	BW/node [GB/s]	B/FLOP
1	Tianhe-2	NUDT	54.9	3.12 M	XeonPhi (2+3)	16,000	3.4	Custom Fat tree	16	0.0047
2	Titan	Cray XK7	27.1	560 K	GPU (1+1)	18,688	1.45	Custom 3D Torus	9.6	0.0066
3	Sequoia	IBM BG/Q	20.1	1.57 M	-	98,304	0.2	Custom 5D Torus	20	0.1
4	K	Fujitsu	11.3	705 K	-	88,128	0.13	Custom 6D Torus	20	0.15
5	Mira	IBM BG/Q	10.1	786 K	-	49,152	0.2	Custom 5D Torus	20	0.1
6	Piz Daint	Cray XC30	7.8	116 K	GPU	5,272	1.48	Custom Dragonfly	64	0.043
7	Stampede	Dell PowerEdge	8.5	462 K	XeonPhi (2+1)	6,400	1.5	InfiniBand Fat tree	7+7	0.009
8	JUQUEEN	IBM BG/Q	5.9	459 K	-	28,672	0.2	Custom 3D Torus	20	0.1
9	Vulcan	IBM BG/Q	5.0	393 K	-	24,576	0.2	Custom 3D Torus	20	0.1
1 0		Cray CS- Storm	6.1	73 K	GPU (x+y)	?	>10?	InfiniBand Fat tree	7+7	~0.001?

Towards exascale: degrading system balance

Source: Nvidia

- Pre-exascale (~2017)
 - > 40 TFLOP/s per node
 - Dual-rail InfiniBand 4xEDR (2x 12.5 GB/s) per node
 - Bytes/FLOP < 0.000625
 - Bytes/FLOP = 0.1 would require >320 IB
 4xEDR links per compute node
- Exascale balance can be expected to be similarly poor
 - E.g., node performance x2, IB links x2 (HDR)

Anticipated design point for exascale systems has moved

from >100,000 nodes of <10 TFLOP/s to 10,000-25,000 nodes of 40-100 TFLOP/s

July 16, 2015

Price-performance

- InfiniBand QDR/FDR cable list price data
 - Normalized w.r.t. data rate: \$/Gbps
 - Passive copper (top)
 - Active optical (bottom)
 - Roughly linear with cable length
- Optical has ~6x higher offset (integrated) transceivers) and ~2x lower slope
 - Large fraction of total cost in optical cables
- InfiniBand FDR switch ports
 - Normalized w.r.t. data rate: \$/Gbps

Something's gotta give...

System balance is worsening significantly

- Byte/FLOP ratios are going to have to drop by up to two orders of magnitude (< 0.001 B/F)
- Need cost-effective topologies with as few links and ports port endpoint as possible to achieve desired number of endpoints
- Need optimized packaging to maximize fraction of electrical links (backplane traces, TwinAx, coax) and minimize number of active optical links
- Major potential cost savings by integrating optical links with the switches and endpoints
 - Eliminate pluggable transceivers
 - Lead role for silicon photonics?

Network power

- Network power
 - Electrical links: integrated electrical IO; proportional to number of switch ports
 - Optical links: integrated electrical IO plus discrete optical transceiver; proportional to 2x number of optical links
 - Switching power; proportional to diameter

•
$$P_{\text{network}} = 8 \cdot (2L_{\text{opt}}\varepsilon_{\text{opt}} + (M+1)\varepsilon_{\text{ele}} +$$

Cost is currently a stronger constraint than power

Topologies

Present network options

System Share

- Suitable for smaller commodity clusters
- Topology options basically limited to trees
- Lacks virtual channels & proper flow control

Infiniband

- Suitable for high-end systems in terms of scale, performance, features
- Better price/performance than Ethernet at high data rates
- Limited choice of vendors
- Custom/Proprietary
 - Aries, p775 hub, Tianhe, BG/Q torus, Tofu
 - Highest performance, densest integration
 - Substantial cost of design and implementation
 - Custom solution could integrate network on CPU, eliminating NICs and/or switches

Topologies

- Network topology plays a critical w.r.t. overall cost
 - Each endpoint requires multiple links and switch ports depending on topology
 - Packaging considerations
- We consider high-radix, low(ish)diameter topologies only
 - Low diameter means lower cost, because fewer links and switch ports per end point
 - Fewer hops means lower latency
 - Discrete, high-radix switches

- Topologies
 - Fat tree: two-level and three-level
 - Dragonfly: two-tier and three-tier
 - Multi-layer full mesh (aka stacked all-toall)
 - "Dragontree"
 - Slim fly
 - 3D HyperX
- Metrics
 - Scale S: number of endpoints
 - Diameter D: max. number of links across all shortest paths
 - Number of links per endpoint L
 - Number of switch ports per endpoint M

Topologies (1)

Fat tree

- k-ary n-tree
- Max scale $S = N\left(\frac{r}{2}\right)^{n-1}$, where *n* is the number of levels
- Two-level: D = 2, L = 2, M = 3
- Three-level: D = 4, L = 3, M = 5

- Recursive structure: at each tier, sub-groups form a full mesh
- Max scale $S_{2t} \approx \frac{1}{64}r^4$; $S_{3t} \approx \frac{1}{16,384}r^8$
- Two-tier: D = 3, L = 2.5, M = 4
- Three-tier: D = 7, L = 4.5, M = 8

Topologies (2)

- Two-tier dragonfly where intra-group topology is a two-level fat tree instead of a full mesh
- $S \approx \left(\frac{r}{2}\right)^4$
- D = 3, L = 2.5, M = 4

• Same, but using multiple $\left(\frac{r}{2}\right)$ links in between each pair of groups

•
$$S \approx \left(\frac{r}{2}\right)^3$$

• $D = 3, L = 2.5, M = 4$

Topologies (3)

3D HyperX

- Three-dimensional generalized hypercube aka flattened butterfly aka HyperX
- $S \approx \frac{1}{256} N^4$
- D = 3, L = 2.5, M = 4

 Two-tier dragonfly where intra-group topology is a 2D Generalized Hypercube instead of a full mesh

•
$$S \approx \left(\frac{r}{6}\right)^2 \left(\frac{r}{3} + 1\right)^4 \approx \frac{r^6}{2916}$$

• $D = 5, \ L = 3.5, \ M = 6$

ExaComm Workshop @ ISC'15

Topologies (4)

Slim fly

Source: M. Besta & T. Hoefler, "Slim Fly: A costeffective low-diameter network topology," SC 2014

- Based on McKay-Miller-Širán (MMS) graphs
- $S \approx \left(\frac{N}{2}\right)^3$
- D = 2, L = 2, M = 3

Stacked all-to-all aka multi-level full mesh

One plane: full mesh

Plane 1 Plane 2

 Start from a full mesh; insert a global switch in each link of the mesh; stack multiple planes connected via the global switches

•
$$S \approx \left(\frac{N}{2}\right)^3$$

•
$$D = 2, L = 2, M = 3$$

ExaComm Workshop @ ISC'15

Plane P

Stacked All-to-all

"Stacked" representation

Source: Fujitsu, http://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html

Orthogonal fat tree

- M. Valerio, L. E. Moser and P. M. Melliar-Smith, "Recursively Scalable Fat-Trees as Interconnection Networks," *IEEE 13th Annual Int'l Phoenix Conf. on Computers and Communications,* pp.40, 12-15 April 1994
- Trade (more) scale for (less) path diversity; construction is related to Latin Squares
- Indirect topology diameter 2 among endpoints; diameter 3 among switches!
- $S = 2(k^3 k^2 + k)$, D = 2, L = 2, M = 3: twice the scale of MLFM/SF at same cost/endpoint

High-level topology comparison

Topology	Diameter		•••	Maximun	n scale N	#links /endpoint	#ports/ endpoint	
	dir	in	r	<i>r</i> = 36	<i>r</i> = 48	<i>r</i> = 64	L	
2-level Fat Tree	2	-	$\frac{r^2}{2}$	648	1152	2,048	2	3
Multi-layer Full Mesh	2	4	$\approx \frac{r^3}{8}$	6,156	14,400	33,792	2	3
Slim Fly	2	4	$\approx \frac{r^3}{8}$	6,144	14,112	32,928	2	3
Orthogonal fat tree	2	4	$pprox rac{r^3}{4}$	11,052	26,544	63,552	2	3
3D HyperX	3	6	$pprox rac{r^4}{256}$	9,000	26,364	78,608	2.5	4
2-tier Dragonfly	3	5 (6)	$pprox rac{r^4}{64}$	29,412	90,300	279,312	2.5	4
Dragontree	3	6	$pprox rac{r^4}{16}$	105,300	332,352	1 M	2.5	4
Dragontree*	3	4	$pprox rac{r^3}{16}$	6,156	14,400	33,792	2.5	4
3-level Fat Tree	4	-	$\frac{r^3}{4}$	11,664	27,648	65,536	3	5
DragonFB (Aries)	5	8 (10)	$pprox rac{r^6}{2,916}$	1M	≫ 1M	≫ 1M	3.5	6
3-tier Dragonfly	7	11 (14)	$pprox rac{r^8}{16,384}$	≫1M	≫1M	≫1M	4.5	8

Scalability

- Number of switch ports to scale to a given number of endpoints
 - Balanced network configuration: full uniform all-to-all bandwidth
- Commercially available switches are expected to have 36-48 ports
- 10,000-15,000 endpoint network provides significantly more freedom of choice w.r.t. topology
- Larger switch radix is generally better, but only if it enables smaller diameter!

ExaComm Workshop @ ISC'15

Partitionability

- Ability to divide a topology into non-interfering parts
- Main benefit is performance isolation
- Topologies that can naturally provide this: Fat trees, Multi-layer Full Mesh
- Topologies that could provide this by using slow Optical Circuit Switching: Dragonflies, HyperX, Dragontree*, DragonFB
- Not all customers care about this, YMMV

Routing algorithms

Generic routing algorithms

- Direct: Shortest path; adaptive load-balancing based on local queue lengths across multiple shortest paths
- Valiant: Indirect routing with topology-aware selection of intermediate destination to avoid unproductive hops; direct routing is applied on both segments of the Valiant path
 - Not applicable to Fat Tree
 - Never route indirectly when source and destination attached to same switch, or are within same group in Dragontree*
 - "Optimized" Dragontree* : Second-level switch can be selected as intermediate destination, eliminating down-up hops in intermediate group
 - Multi-layer full mesh: Only endpoint switches are eligible as intermediate destination
- Adaptive: Universal Global Adaptive Load-balanced routing: Decides whether to take Direct or Valiant path based on local queue lengths
 - Not applicable to Fat Tree (load-balance adaptively across direct paths)
 - "Optimized" Dragontree* : Decision taken at second-level switch
 - Multi-layer full mesh: Decision taken at local switch (first hop)

Adaptive routing parameters

- Number of direct paths D
 - Compute average output queue length Ld across D direct-path output queues
 - -D = 1 or D = all
- Threshold T
 - If Ld < T then route to lowest cost direct path
- Number of indirect paths I
 - Randomly select up to *l* intermediate destinations and determine the corresponding ports to go there (eliminate already selected ports and direct ports)
 - Compute average output queue length *Li* of *I* indirectpath output queues
- Weight W
 - If $T \le Ld \le W^*Li$ then route to lowest cost direct path, otherwise to intermediate destination with lowest cost

- Number of direct paths *D*
 - -D = all
 - We consider ALL direct paths, because we need to evaluate them for direct path load-balancing anyway
- Threshold *T*
 - T = 10 KB
 - Prevent indirect routing when backlog is very small
- Number of indirect paths /
 - /= 1
 - We consider ONE direct path to reduce complexity
- Weight W
 - W = 2
 - Higher weight to indirect paths to avoid unnecessary detours (latency)
- Settings selected based on sensitivity analysis
 - To be included in final report

Performance evaluation

Topologies

- Fat tree
 - 24-ary 3-three using radix-48 switches
 - 24 level-2 switches x 24 level-1 switches x 24 endpoints = 13,824 endpoints
 - Serves as performance benchmark
- Dragontree*
 - Radix-48 switches
 - 24 groups x 24 level-1 switches x 24 endpoints = 13,824 endpoints
 - One group unpopulated: slight imbalance for direct routing (indirect can use links to unpopulated group)
- Multi-layer full mesh
 - Radix-47 local switches; radix-48 global switches
 - 24 planes x 24 switches x 24 endpoints = 13,824 endpoints
 - Slight imbalance (23/24) within plane

Combined input-output-queued switch model

July 16, 2015

Simulation parameters

- Max. simulated time (uniform traffic) = 1 ms
- Statistics collection interval = 10 us
- Uniform traffic
 - Message size = 512 B
 - Interarrival time @ 100% load = 10.24 ns
- Switch
 - Packet size = 512 B; packet duration = 10.24 ns
 - Per-port buffer size = 50 KB input + 50 KB output
 - Ports per buffer = 2
 - Internal speedup = 1.5x
 - Number of virtual channels = 2
- Adapter buffer size (uniform traffic): 200 KB input + 200 KB output
 - Packet size = 512 B; packet duration = 10.24 ns
 - Interleaving threshold = 512 B

- Latencies
 - Switch traversal = 100 ns
 - Adapter traversal = 100 ns
 - NIC to switch = 10 ns
 - Switch to switch = 50 ns
- Reordering
 - Disabled for random uniform/shift patterns
 - Enabled for exchange patterns
- Routing
 - Direct
 - Valiant
 - Adaptive

Uniform and adversarial traffic Fat Tree, Dragontree* and multi-layer full mesh

Uniform random traffic for 6,156 endpoints

1

1

July 16, 2015

Adversarial traffic for 6,156 endpoints

Exchange patterns

Nearest neighbor and dimension-wise all-to-all

Exchange patterns for 13,824 endpoints

- Nearest neighbor exchange
 - Simulated tasks form a 3D torus topology
 - Each task sends one message to both neighbors along each dimension
 - Total number of message per task = 6
 - 1 task per network endpoint
- Dimension-wise all-to-all along X, Y, or Z
 - Simulated tasks from a 3D torus topology
 - X: Each task sends one message to each other task with the same Y and Z coordinates
 - Y: Each task sends one message to each other task with the same X and Z coordinates
 - Z: Each task sends one message to each other task with the same X and Y coordinates
 - Total number of message per task = #X+#Y+#Z-3
 - 1 task per network endpoint
- Torus geometry is selected to match network topology hierarchy
 - X within switch
 - Y within subtree, group or plane
 - Z across subtrees, groups, or planes

Nearest neighbor, 128 KB

- Fat tree behaves ideal
- Dragontree*: direct routing suffers contention along Z axis; valiant and adaptive close to ideal
- MLFM: direct routing suffers contention along Y axis; adaptive best

Dimension-wise exchange along X, 128 KB

All messages stay within the local switch, hence ideal throughput in all cases

Dimension-wise exchange along Y; 128 KB

- Fat tree ideal
- Dragontree* ideal with any routing: all messages stay within group, hence full bandwidth
- MLFM: all messages within plane; Direct and adaptive almost but not quite ideal because per switch there are only 23 local links but 24 endpoints; valiant halves bandwidth

Dimension-wise exchange along Z; 128 KB

- Fat tree ideal
- Dragontree*: direct slightly less than ideal (only 23 links to every other groups but 24 endpoints); valiant halves bandwidth; adaptive close to ideal
- MLFM: all routings perform similarly; not quite full throughput (why?)

Mixed pattern

Interleaved uniform random + permutation traffic

Mixed uniform random + permutation traffic

N endpoints total, two workloads of N/2 ranks each, 1 rank per endpoint

- Random uniform across N/2 ranks
- Shift permutation across N/2 ranks
- Workload ranks interleaved one by one across endpoints

Uniform random Shift permutation

Mixed Traffic Fat Tree: 6,156 endpoints

Mixed Traffic Dragontree*: 6,156 endpoints

perm_shift_size=162, perm_grp_size = 0

Mixed Traffic Multi-layer Full Mesh: 6,156 endpoints

perm_shift_size=9, perm_grp_size = 171

ExaComm Workshop @ ISC'15

Conclusions

- Cost is major constraint on the system balance
- Byte per FLOP ratios can be expected to drop significantly for exascale systems
- Increasing node fatness implies that scale is less of an issue
- Diameter-2 or -3 topologies with 2 or 2.5 links and 3 or 4 ports per endpoint are a viable option given radix-48 switches
- Fat tree is the gold standard performance standard
- Performance-wise, these networks can be on par with the more expensive and higherdiameter 3-level fat tree
 - Indirect and adaptive routing is a **must**
 - Half the performance of fat tree for adversarial patterns
- Next step: Apply more realistic workload patterns via traces (extrae/paraver) and mini-apps (Ember motifs).

Thank you!

Exascale network challenges

- 1. Cost
- 2. Balance: Dealing with bandwidth-challenged systems
- 3. Bandwidth density: Packaging
- 4. Energy
- 5. Reliability