Exascale Topologies: The Good, the Bad, and the Not-so-Pretty

ExaComm Workshop @ ISC, 16 July 2015

Cyriel Minkenberg, Bogdan Prisacari, German Rodriguez Herrera, Wolfgang Denzel (IBM Research - Zurich)
Philip Heidelberger, Dong Chen, Craig Stunkel, Yutaka Sugawara (IBM TJ Watson Research Center)

Acknowledgment

- This work was supported and partially funded by Lawrence Berkeley National Laboratory (LBNL), on behalf of the US Department of Energy, under LBNL subcontract number 7078416.

Agenda

1. Network challenges

- Cost, scale, energy, reliability, performance at scale, balance

2. Topologies

- Low-diameter networks, including some new options

3. Routing algorithms

- Direct, Valiant, Adaptive

4. Performance evaluation

- Traffic: Uniform, adversarial, exchange patterns
- Topologies: 1 old, 2 new

5. Conclusions

Network challenges

Compute nodes are getting "fat"

- On Nov. 2014 Top 500 list, 75 systems use accelerators, mostly NVIDIA GPUs or Intel MIC (Xeon Phi)
- Five of the Top 10 systems, incl. \#1 \& \#2
- Two classes of ~20 PF/s systems
- "Thin" nodes: 100K nodes @ 0.2 TFLOP/s/node; CPU-only
- "Fat" nodes: 10 K nodes @ 2 TFLOP/s/node; CPU+accelerators
- "Fat" nodes imply that per-node FLOP rate is growing much faster than per-node network bandwidth!

Fat vs thin in the Top 10

\#	System	Manuf. \& type	Rmax [PFLOP/s]	\#cores	Accel.	Nodes	TFLOPs/ node	Network \& Topology	BW/node [GB/s]	B/FLOP
1	Tianhe-2	NUDT	54.9	3.12 M	$\begin{aligned} & \text { XeonPhi } \\ & (2+3) \end{aligned}$	16,000	3.4	Custom Fat tree	16	0.0047
2	Titan	Cray XK7	27.1	560 K	$\begin{aligned} & \text { GPU } \\ & (1+1) \end{aligned}$	18,688	1.45	Custom 3D Torus	9.6	0.0066
3	Sequoia	IBM BG/Q	20.1	1.57 M	-	98,304	0.2	Custom 5D Torus	20	0.1
4	K	Fujitsu	11.3	705 K	-	88,128	0.13	Custom 6D Torus	20	0.15
5	Mira	IBM BG/Q	10.1	786 K	-	49,152	0.2	Custom 5D Torus	20	0.1
6	Piz Daint	Cray XC30	7.8	116 K	GPU	5,272	1.48	Custom Dragonfly	64	0.043
7	Stampede	Dell PowerEdge	8.5	462 K	$\begin{aligned} & \text { XeonPhi } \\ & (2+1) \end{aligned}$	6,400	1.5	InfiniBand Fat tree	7+7	0.009
8	JUQUEEN	IBM BG/Q	5.9	459 K	-	28,672	0.2	Custom 3D Torus	20	0.1
9	Vulcan	IBM BG/Q	5.0	393 K	-	24,576	0.2	Custom 3D Torus	20	0.1
1		Cray CS- Storm	6.1	73 K	$\begin{aligned} & \text { GPU } \\ & (x+y) \end{aligned}$?	>10?	InfiniBand Fat tree	7+7	$\sim 0.001 ?$

Towards exascale：degrading system balance

US to Build Two Flagship Supercomputers

ジきOAK
－RIDGE
SUMMIT
L．Lawrence Livermore
SIERRA
150－300 PFLOPS Peak Performance IBM POWER9 CPU＋NVIDIA Volta GPU NVLink High Speed Interconnect 40 TFLOPS per Node，＞3，400 Nodes

Major Step Forward on the Path to Exascale

Source：Nvidia
－Pre－exascale（～2017）
－＞ 40 TFLOP／s per node
－Dual－rail InfiniBand 4xEDR（2x 12．5 GB／s）per node
－Bytes／FLOP＜ 0.000625
－Bytes／FLOP＝ 0.1 would require＞320 IB $4 x E D R$ links per compute node
－Exascale balance can be expected to be similarly poor
－E．g．，node performance x2，IB links x2（HDR）

Anticipated design point for exascale systems has moved
from $>100,000$ nodes of <10 TFLOP／s to $10,000-25,000$ nodes of $40-100$ TFLOP／s

Price-performance

- InfiniBand QDR/FDR cable list price data
- Normalized w.r.t. data rate: \$/Gbps
- Passive copper (top)
- Active optical (bottom)
- Roughly linear with cable length
- Optical has ~6x higher offset (integrated transceivers) and ~2x lower slope
- Large fraction of total cost in optical cables
- InfiniBand FDR switch ports
- Normalized w.r.t. data rate: \$/Gbps

(Very) Rough exascale network cost estimate

Something's gotta give...

System balance is worsening significantly

- Byte/FLOP ratios are going to have to drop by up to two orders of magnitude (<0.001 B/F)
- Need cost-effective topologies with as few links and ports port endpoint as possible to achieve desired number of endpoints
- Need optimized packaging to maximize fraction of electrical links (backplane traces, TwinAx, coax) and minimize number of active optical links
- Major potential cost savings by integrating optical links with the switches and endpoints
- Eliminate pluggable transceivers
- Lead role for silicon photonics?

Logic: μ proc, memory, switch, etc.
First-level package
optical module

Logic: μ proc, memory, switch, etc.

Network power

- Network power
- Electrical links: integrated electrical IO; proportional to number of switch ports
- Optical links: integrated electrical IO plus discrete optical transceiver; proportional to $2 x$ number of optical links
- Switching power; proportional to diameter
- $P_{\text {network }}=8 \cdot\left(2 L_{\mathrm{opt}} \varepsilon_{\mathrm{opt}}+(M+1) \varepsilon_{\text {ele }}+\right.$

■ $\beta=0.001$

Cost is currently a stronger constraint than power

Topologies

Present network options

- Ethernet
- Suitable for smaller commodity clusters
- Topology options basically limited to trees
- Lacks virtual channels \& proper flow control
- Infiniband
- Suitable for high-end systems in terms of scale, performance, features
- Better price/performance than Ethernet at high data rates
- Limited choice of vendors
- Custom/Proprietary
- Aries, p775 hub, Tianhe, BG/Q torus, Tofu
- Highest performance, densest integration
- Substantial cost of design and implementation
- Custom solution could integrate network on CPU, eliminating NICs and/or switches

Performance Share

Topologies

- Network topology plays a critical w.r.t. overall cost
- Each endpoint requires multiple links and switch ports depending on topology
- Packaging considerations
- We consider high-radix, low(ish)diameter topologies only
- Low diameter means lower cost, because fewer links and switch ports per end point
- Fewer hops means lower latency
- Discrete, high-radix switches
- Topologies
- Fat tree: two-level and three-level
- Dragonfly: two-tier and three-tier
- Multi-layer full mesh (aka stacked all-toall)
- "Dragontree"
- Slim fly
- 3D HyperX
- Metrics
- Scale S: number of endpoints
- Diameter D: max. number of links across all shortest paths
- Number of links per endpoint L
- Number of switch ports per endpoint M

Topologies (1)

Fat tree

- k-ary n-tree
- Max scale $S=N\left(\frac{r}{2}\right)^{n-1}$, where n is the number of levels
- Two-level: $D=2, L=2, M=3$
- Three-level: $D=4, L=3, M=5$

Dragonfly

Tier-1 group: full mesh of switches

Tier-2: full mesh of tier-1 groups

- Recursive structure: at each tier, sub-groups form a full mesh
- Max scale $S_{2 t} \approx \frac{1}{64} r^{4} ; S_{3 t} \approx \frac{1}{16,384} r^{8}$
- Two-tier: $D=3, L=2.5, M=4$
- Three-tier: $D=7, L=4.5, M=8$

Topologies (2)

Dragontree

- Two-tier dragonfly where intra-group topology is a two-level fat tree instead of a full mesh
- $S \approx\left(\frac{r}{2}\right)^{4}$
- $D=3, L=2.5, M=4$

Dragontree* (with bundling)

- Same, but using multiple $\left(\frac{r}{2}\right)$ links in between each pair of groups
- $S \approx\left(\frac{r}{2}\right)^{3}$
- $D=3, L=2.5, M=4$

Topologies（3）

3D HyperX

－Three－dimensional generalized hypercube aka flattened butterfly aka HyperX
－$S \approx \frac{1}{256} N^{4}$
－$D=3, L=2.5, M=4$

DragonFB

－Two－tier dragonfly where intra－group topology is a 2D Generalized Hypercube instead of a full mesh
－$S \approx\left(\frac{r}{6}\right)^{2}\left(\frac{r}{3}+1\right)^{4} \approx \frac{r^{6}}{2916}$
－$D=5, L=3.5, M=6$

Topologies (4)

Slim fly

Source: M. Besta \& T. Hoefler, "Slim Fly: A costeffective low-diameter network topology," SC 2014

- Based on McKay-Miller-Širán (MMS) graphs
- $S \approx\left(\frac{N}{2}\right)^{3}$
- $D=2, L=2, M=3$

Stacked all-to-all aka multi-level full mesh

\square : local switch

One plane: full mesh

Plane 1

Plane 2
Plane P

- Start from a full mesh; insert a global switch in each link of the mesh; stack multiple planes connected via the global switches
- $S \approx\left(\frac{N}{2}\right)^{3}$
- $D=2, L=2, M=3$

Stacked All-to-all

Source: Fujitsu, http://www.fujitsu.com/global/about/resources/news/press-releases/2014/0715-02.html

Orthogonal fat tree

- M. Valerio, L. E. Moser and P. M. Melliar-Smith, "Recursively Scalable Fat-Trees as Interconnection Networks," IEEE 13th Annual Int'l Phoenix Conf. on Computers and Communications, pp.40, 12-15 April 1994
- Trade (more) scale for (less) path diversity; construction is related to Latin Squares
- Indirect topology - diameter 2 among endpoints; diameter 3 among switches!
- $S=2\left(k^{3}-k^{2}+k\right), D=2, L=2, M=3$: twice the scale of MLFM/SF at same cost/endpoint

High-level topology comparison

Topology	Diameter		Maximum scale N				\#links /endpoint	\#ports/ endpoint
	dir	in	r	$r=36$	$r=48$	$r=64$	L	
2-level Fat Tree	2	-	$\frac{r^{2}}{2}$	648	1152	2,048	2	3
Multi-layer Full Mesh	2	4	$\approx \frac{r^{3}}{8}$	6,156	14,400	33,792	2	3
Slim Fly	2	4	$\approx \frac{r^{3}}{8}$	6,144	14,112	32,928	2	3
Orthogonal fat tree	2	4	$\approx \frac{r^{3}}{4}$	11,052	26,544	63,552	2	3
3D HyperX	3	6	$\approx \frac{r^{4}}{256}$	9,000	26,364	78,608	2.5	4
2-tier Dragonfly	3	5 (6)	$\approx \frac{r^{4}}{64}$	29,412	90,300	279,312	2.5	4
Dragontree	3	6	$\approx \frac{r^{4}}{16}$	105,300	332,352	1 M	2.5	4
Dragontree*	3	4	$\approx \frac{r^{3}}{16}$	6,156	14,400	33,792	2.5	4
3-level Fat Tree	4	-	$\frac{r^{3}}{4}$	11,664	27,648	65,536	3	5
DragonFB (Aries)	5	$\begin{gathered} 8 \\ (10) \end{gathered}$	$\approx \frac{r^{6}}{2,916}$	1M	>1M	>1M	3.5	6
3-tier Dragonfly	7	$\begin{gathered} 11 \\ (14) \end{gathered}$	$\approx \frac{r^{8}}{16,384}$	> 1M	> 1M	>1M	4.5	8

Scalability

- Number of switch ports to scale to a given number of endpoints
- Balanced network configuration: full uniform all-to-all bandwidth
- Commercially available switches are expected to have $36-48$ ports
- 10,000-15,000 endpoint network provides significantly more freedom of choice w.r.t. topology
- Larger switch radix is generally better, but only if it enables smaller diameter!

Router radix required to scale to $10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}$ endpoints

Partitionability

- Ability to divide a topology into non-interfering parts
- Main benefit is performance isolation
- Topologies that can naturally provide this: Fat trees, Multi-layer Full Mesh
- Topologies that could provide this by using slow Optical Circuit Switching: Dragonflies, HyperX, Dragontree*, DragonFB
- Not all customers care about this, YMMV

Routing algorithms

Generic routing algorithms

- Direct: Shortest path; adaptive load-balancing based on local queue lengths across multiple shortest paths
- Valiant: Indirect routing with topology-aware selection of intermediate destination to avoid unproductive hops; direct routing is applied on both segments of the Valiant path
- Not applicable to Fat Tree
- Never route indirectly when source and destination attached to same switch, or are within same group in Dragontree*
- "Optimized" Dragontree* : Second-level switch can be selected as intermediate destination, eliminating down-up hops in intermediate group
- Multi-layer full mesh: Only endpoint switches are eligible as intermediate destination
- Adaptive: Universal Global Adaptive Load-balanced routing: Decides whether to take Direct or Valiant path based on local queue lengths
- Not applicable to Fat Tree (load-balance adaptively across direct paths)
- "Optimized" Dragontree* : Decision taken at second-level switch
- Multi-layer full mesh: Decision taken at local switch (first hop)

Adaptive routing parameters

- Number of direct paths D
- Compute average output queue length $L d$ across D direct-path output queues
- $D=1$ or $D=$ all
- Threshold T
- If $L d<T$ then route to lowest cost direct path
- Number of indirect paths I
- Randomly select up to I intermediate destinations and determine the corresponding ports to go there (eliminate already selected ports and direct ports)
- Compute average output queue length Li of I indirectpath output queues
- Weight W
- If $T \leq L d \leq W^{*} L i$ then route to lowest cost direct path, otherwise to intermediate destination with lowest cost
- Number of direct paths D
- $D=$ all
- We consider ALL direct paths, because we need to evaluate them for direct path load-balancing anyway
- Threshold T
- $T=10 \mathrm{~KB}$
- Prevent indirect routing when backlog is very small
- Number of indirect paths I
$-I=1$
- We consider ONE direct path to reduce complexity
- Weight W
- $\mathrm{W}=2$
- Higher weight to indirect paths to avoid unnecessary detours (latency)
- Settings selected based on sensitivity analysis
- To be included in final report

Performance evaluation

Topologies

- Fat tree
- 24-ary 3-three using radix-48 switches
-24 level-2 switches $\times 24$ level-1 switches $\times 24$ endpoints $=13,824$ endpoints
- Serves as performance benchmark
- Dragontree*
- Radix-48 switches
-24 groups $\times 24$ level- 1 switches $\times 24$ endpoints $=13,824$ endpoints
- One group unpopulated: slight imbalance for direct routing (indirect can use links to unpopulated group)
- Multi-layer full mesh
- Radix-47 local switches; radix-48 global switches
- 24 planes $\times 24$ switches $\times 24$ endpoints $=13,824$ endpoints
- Slight imbalance (23/24) within plane

Combined input-output-queued switch model

Simulation parameters

- Max. simulated time (uniform traffic) $=1 \mathrm{~ms}$
- Statistics collection interval = 10 us
- Uniform traffic
- Message size = 512 B
- Interarrival time @ 100\% load = 10.24 ns
- Switch
- Packet size $=512$ B; packet duration $=10.24$ ns
- Per-port buffer size $=50 \mathrm{~KB}$ input +50 KB output
- Ports per buffer = 2
- Internal speedup = 1.5x
- Number of virtual channels $=2$
- Adapter buffer size (uniform traffic): 200 KB input + 200 KB output
- Packet size $=512$ B; packet duration $=10.24$ ns
- Interleaving threshold = 512 B
- Latencies
- Switch traversal = 100 ns
- Adapter traversal = 100 ns
- NIC to switch = 10 ns
- Switch to switch = 50 ns
- Reordering
- Disabled for random uniform/shift patterns
- Enabled for exchange patterns
- Routing
- Direct
- Valiant
- Adaptive

Uniform and adversarial traffic

Fat Tree, Dragontree* and multi-layer full mesh

Uniform random traffic for 6,156 endpoints

3-level Fat Tree

Dragontree*

Multi-layer full mesh

Adversarial traffic for 6,156 endpoints

Dragontree*

Multi-layer full mesh

Exchange patterns

Nearest neighbor and dimension-wise all-to-all

Exchange patterns for 13,824 endpoints

- Nearest neighbor exchange
- Simulated tasks form a 3D torus topology
- Each task sends one message to both neighbors along each dimension
- Total number of message per task $=6$
- 1 task per network endpoint
- Dimension-wise all-to-all along X, Y, or Z
- Simulated tasks from a 3D torus topology
- X: Each task sends one message to each other task with the same Y and Z coordinates
- Y: Each task sends one message to each other task with the same X and Z coordinates
- Z: Each task sends one message to each other task with the same X and Y coordinates
- Total number of message per task $=\# X+\# Y+\# Z-3$
- 1 task per network endpoint
- Torus geometry is selected to match network topology hierarchy
- X within switch
- Y within subtree, group or plane
- Z across subtrees, groups, or planes

Nearest neighbor, 128 KB

3-level fat tree

Dragontree*

Multi-layer full mesh

- Fat tree behaves ideal
- Dragontree*: direct routing suffers contention along Z axis; valiant and adaptive close to ideal
- MLFM: direct routing suffers contention along Y axis; adaptive best

Dimension-wise exchange along X, 128 KB

Dragontree*

Multi-layer full mesh

- All messages stay within the local switch, hence ideal throughput in all cases

Dimension-wise exchange along Y; 128 KB

Multi-layer full mesh

- Fat tree ideal
- Dragontree* ideal with any routing: all messages stay within group, hence full bandwidth
- MLFM: all messages within plane; Direct and adaptive almost but not quite ideal because per switch there are only 23 local links but 24 endpoints; valiant halves bandwidth

Dimension-wise exchange along Z; 128 KB

Dragontree*

Multi-layer full mesh

- Fat tree ideal
= Dragontree*: direct slightly less than ideal (only 23 links to every other groups but 24 endpoints); valiant halves bandwidth; adaptive close to ideal
- MLFM: all routings perform similarly; not quite full throughput (why?)

Mixed pattern

Interleaved uniform random + permutation traffic

Mixed uniform random + permutation traffic

- N endpoints total, two workloads of $N / 2$ ranks each, 1 rank per endpoint
- Random uniform across N/2 ranks
- Shift permutation across N/2 ranks
- Workload ranks interleaved one by one across endpoints

Uniform random Shift permutation

Mixed Traffic Fat Tree: 6,156 endpoints

Throughput-Load

Delay-Load

Delay-Throughput

Mixed Traffic Dragontree*: 6,156 endpoints

- perm_shift_size=162, perm_grp_size $=0$

Mixed Traffic Multi-layer Full Mesh: 6,156 endpoints

- perm_shift_size=9, perm_grp_size = 171

Conclusions

- Cost is major constraint on the system balance
- Byte per FLOP ratios can be expected to drop significantly for exascale systems
- Increasing node fatness implies that scale is less of an issue
- Diameter-2 or -3 topologies with 2 or 2.5 links and 3 or 4 ports per endpoint are a viable option given radix-48 switches
- Fat tree is the gold standard performance standard
- Performance-wise, these networks can be on par with the more expensive and higherdiameter 3-level fat tree
- Indirect and adaptive routing is a must
- Half the performance of fat tree for adversarial patterns
- Next step: Apply more realistic workload patterns via traces (extrae/paraver) and mini-apps (Ember motifs).

Thank you!

Exascale network challenges

1. Cost
2. Balance: Dealing with bandwidth-challenged systems
3. Bandwidth density: Packaging
4. Energy
5. Reliability
