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Abstract—This paper investigates a category of cyber-
attacks on control systems, which regulate processes of a single
plant while sharing a communication network. The design of
these attacks aims to deceive conventional fault detectors that
test locally generated residuals for inconsistent statistics. The
authors propose a network-wide attack detector and isolator
that collects information from other neighborhoods subject to
availability of locality and network resources. Their method
relies on estimating the output of a process, whose regulator
may be under attack, from measurements gathered at other
processes connected to the one under examination through
links existing at the physical layer. Next, a notional consensus
network coalesces all of these estimates into information that
is independent of possibly deceptive sensory data at the
suspect locality. The thesis of this paper is that residuals
generated from far-flung estimates will reveal an anomaly (even
if the statistics of local residuals are consistent). A necessary
condition is the existence of an observable subsystem within
the physical network of interconnected processes. The authors
employ graph theory techniques to identify the subsystem and
optimize its observability.

I. Introduction

Critical and non-critical global infrastructures have
evolved into Cyber-Physical Systems (CPS) as expounded
in [1]. Inherent in CPS are vulnerabilities that can be
exploited at the lower physical level rather than at
traditional attack-surface levels which exists in the upper
layers of Open Source Interconnection (OSI) model [2].
The highest level of the OSI seven-layer model consists
of all application-entities that operate inside the OSI
environment, whereas the lowest levels provide the services
through which those applications operate. Supervisory
Control and Data Acquisition or SCADA systems are
gaining attention in literature as those types of control and
management systems which epitomize the aforementioned
weakness in an ever-aging national and global automated
system of utilities and accommodations [3]. Specifically,
energy and transportation sectors are postured to realize
the greatest effects of tangible cyber-effects delivered upon
its command, control, and actuation systems. While well-
known examples of electrical blackouts, air-gapped zero-
day worms, and industrial security incidents are often used
for introduction and motivation, it is important to remain
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vigilant and continue exploration of the cyber realm that
is seemingly ubiquitous.

As a category of CPS, Networked Control Systems
(NCS) are consistent with established Wireless Integrated
Network Sensors (WINS) which provide the ability to
define and operate clustered or distributed communication
methods over various distances and protocols required for
a System of Systems or SoS to behave as directed [4],
[5]. One of the most attractive features of WINS is its
rapid deployment, low-costs and scalability, but the same
provides for adversarial actors who desire access to any
network node assigned to a controller, actuator, or sensor.
Furthermore, it is possible that malicious agents interfere
with the behavior of any given node on the system without
an apparent effect; herein lay the motivations of addressing
attacks of deception on NCS.

The fly-by-wire aircraft used by most today are in many
ways the most vulnerable of CPS examples available. A
Federal Register submitted through the Department of
Transportation to the Federal Aviation Administration
[6], identifies commercial aircraft that will have “in-
creased connectivity with external network sources and
will have more interconnected networks and systems, such
as passenger entertainment and information services than
previous airplane models.” The growth and scaling of NCS
allow direct access between components of functionally
separate subsystems such as control and navigation, op-
erator information services, and passenger entertainment.

The United States Navy is quickly evolving into a cyber-
consumer and cyber-target simultaneously. The advanced
naval capabilities described in the Hull, Mechanical and
Electrical (HM&E) roadmap are advanced sensors, di-
rected energy weapons, and hypersonic technologies [7].
Together these three major topics of the future should
require wireless sensor nodes and edges that are count-
less and immeasurable. The attack surfaces that would
exist due to complexity of the architecture could result
in vulnerability to interference with the programmable
logic controllers connecting shipboard physical systems.
Resilient Hull, Mechanical and Electrical Security or
RHIMES system “aims to prevent” such schemes [8].

In each of these motivating examples, it is evident that
detection and identification of attacks at the lower physical



level is critical to the well-being of the overall system.
The ultimate goal is to improve upon established fault
tolerance of distributed systems that succumb to known
Byzantine failures [9].

In view of numerous possibilities of attacks, the scope of
the present work is narrow addressing specifically attacks
of deception. These attacks manage to introduce an
anomaly in one of the sensor nodes of the NCS without any
of the statistical characteristics of a fault. The proposed
method lies within the system-theoretic framework for
cyber-attacks presented in [10]–[12]. Furthermore, the
present paper focuses solely on anomaly detection and
identification leaving other facets of the problem such as
its effect on the performance of the NCS for future work.

The contributions of the present paper to the aforemen-
tioned system-theoretic framework are the following: 1) a
novel scheme for detection of anomalies such as Attacks of
Deception—not merely detection of faults or bad data; 2) a
graph-theoretic method for the identification of observable
subgraphs (on the physical layer of the NCS), which
constitute the basis for anomaly detection; and 3) the
application of consensus techniques to weigh in estimates
from subgraph-based observers and, eventually, to resolve
the anomaly detection. The scope of the present work
has been further limited to consider the possibility of one
attack at a time, as the authors aim is proof of concept.
In future, the authors will extend their work to multiple
attacks and address the question of existence of a “core”
of trusted sensor nodes.

In Section II-B, the authors introduce anomaly detec-
tion from far-flung observations. Predictions the output
of the sensor–suspect of anomalous behavior–are based
on measurements gathered at other processes connected
to the one under examination through links existing at
the physical layer. This is a departure from reliance on
local predicted residuals, which the basis of fault detection
literature [13]–[15]. Section II-C investigates the feasibility
of estimating a state variable–whose direct measurement
is suspect–from available sensors elsewhere in the NCS.
Drawing upon the theory of observable subgraphs [16],
[17], the authors develop an approach to identify ob-
servable albeit reduced-order models as bases for state
reconstruction. The fusion of multiple estimates of the
state variable of interest is presented in Section II-D. There
is variability in the estimates due to differences in model
fidelity as well as sensory modality. The authors introduce
a strongly connected ad hoc network and implement an av-
erage consensus algorithm [18]. Consensus algorithms are
tolerant to time-varying, directed communication links [19]
and time-delayed communication [20]. Of the two tangible
components of the proposed system, the ad hoc consensus
network adds to the overhead cost of the NCS; the far-
flung observers can run on existing hardware, in lieu
of local fault detectors, and incur no additional cost to
overhead.

The final cause of the work has been inspired by the

“fast” and “slow” architectures describing two modes
of human reasoning: heuristic and rational decision-
making [21]. For many years, the dichotomy has been
the central thesis of research in the field of psychology.
Furthermore, these systems of thought as stimulated by
external and internal events express various degrees of
environmental and self awareness, respectively. In the field
of engineering, where artificial intelligence remains elusive,
designs that emulate “fast” and “slow” behavior may lead
to autonomic decision-making by degree of awareness.

II. NCS with Self-Awareness

Figure 1 depicts NCS with multiple processes. Shown
is a typical SISO loop including sensor, Si, controller,
CONi, and actuator, ACTi. The horizontal double solid
line represents the communication layer of the NCS. The
sensor Si is shown under Attack of Deception (AoD).

Specific to the proposed approach, unit O(i)
j is an estimator

of process i from data collected at location j. The NCS
interface with the physical network modeled in the next
section.

Fig. 1: Networked Control Systems

A. The Physical Network

The variables xi, i = {1, . . . ,n}, in Fig. 1 represent,
respectively, the states of processes under the NCS.
Without loss of generality, each state is scalar and its
value equals the deviation of the physical variable of the
process from its operating point. Normally, the deviation
from the operating point of a process is expected to settle
at zero. Interconnections between any two processes at the
physical layer (e.g., dashed line in Fig. 1), are captured
by the adjacency matrix M = [m ji]. By convention, m ji = 1
indicates an edge issued from x j to xi; m ji = 0 no edge. Let
x be the vector of the states of all processes. Assuming
linearity, the aggregate state evolves as follows:

ẋ = Ax (1)



The state matrix A is decomposed as follows:

A = MT◦P (2)

where ◦ denotes the Hadamard product and P the matrix
of model parameters.

A subset of r < n processes is regulated by means
of SISO control systems. The remainder of processes
are unregulated. Denote regulated states as xiq where
q = {1, . . . ,r} and iq takes values in {1, . . . ,n}. The anatomy
of the i-th row of the state matrix A reveals the equation
below:

ẋi = aiixi + ∑
j 6=i

ai jx j

For the regulated iq-th process, the diagonal entry of A is
as follows:

aiqiq = aiq + biquiq

The input uiq is produced by the controller CONiq below:

uiq =−kiqyiq

Normally, the output yiq of the sensor Siq is an ideal
measurement of the state

yiq = ciqxiq

The following is a working assumption for the proposed
approach. The state matrix A is diagonally dominant by
row when all of the state variables xiq are regulated. For
the attacks of deception considered, it remains diagonally
dominant (and hence stable) after the event of attack.

B. Anomaly Detection via Physical Network

Consider the replay attack introduced in [22]. Suppose
sensor Siq reports a recorded version of its output, yD

iq ,
to the fault detector while it is feeding back an attack
signal, yA

iq , to the controller CONiq . Such deception attack
on the regulated process iq achieves two objectives. First,
the equation of the iq-th process becomes:

ẋiq = aiqxiq −biqkiqyA
iq + ∑

j 6=iq

aiq jx j

and, as a result, the process is no longer regulated. At
minimum, absence of regulating action will allow xiq to
deviate from its operating point at zero.

Second, by sending back past recordings of data, the
sensor Siq evades detection. Typically, fault detection is
based on the predicted residuals:

yiq − ŷiq

where ŷiq is the output of the estimator. Then, a fault
would be detected should these residuals be inconsistent
with their theoretical statistics [23]. Clearly, such is not
the case for yD

iq − ŷD
iq .

The present work posits that anomalous behavior of
sensor Siq is detectable from data available elsewhere in
the physical network. Indeed, there will be repercussions
due to the first objective of the deception attack that other

regulated process are able to sense. Using data from those
sensors, the authors propose the anomaly detector as an

alternative. Multiple estimators O(iq)
is , s6=q, produce local

estimates ŷ(iq,is), respectively. Potentially, there could be as
many observers as regulated states hence s = {1, . . . ,r} and
is takes values in {1, . . . ,n}. The next section identifies such
observers using a graph-theoretic criterion; in the section
after, the identified estimators form an ad hoc sub-network
whose objective is to reach consensus regarding the ŷiq .

C. Identifying the Observable Subgraph

To be able produce estimates, ŷ(iq,is), locally, the state
variable xiq must be reconstructable from data gathered at
Sis and local knowledge of the model. In general, the model
(A,Cis) is not observable; here, the matrix Cis maps the
aggregate state, x, to the output yis . The authors develop
an approach to identify observable albeit reduced-order

models (A(iq)
is ,C(iq)

is ) as bases for state reconstruction.
To illustrate, consider the following model representa-

tive of fluid flow through a cascade of chemical reactors:

A =


a11 0 0 0
a21 a22 0 0
0 a32 a33 0
0 0 a43 a44


The state variables x1, x2, and x3 are regulated; x4 is not
regulated. The regulated state variables are sensed by S1,
S2, and S3 with output matrices respectively

C1 =
[

1 0 0 0
]

C2 =
[

0 1 0 0
]

C3 =
[

0 0 1 0
]

State variable x4 is not sensed. To test the hypothesis
that sensor S1 is under deception attack, the proposed
approach seeks to reconstruct state variable x1 from avail-
able sensors S2 and S3. Neither model (A,C2) nor (A,C3),
however, is observable. Figure 2 depicts the digraph of the
process. Next, the approach employs the main result of

Fig. 2: Digraph representation of a process

an early work on controllable subspaces [16]. The graph
of an unobservable model contains a maximal subgraph
whose number of edges determines the dimension of the
model’s observable subspace. For single output models—
here, (A,C2) or (A,C3), candidate subgraphs consist of one
simple directed path, which ends at the output node.



The proposed approach constrains the number of can-
didate subgraphs to ones that contain the node of the
state variable to be estimated—here, x1. Such candidate
subgraphs are associated with reduced-order models that
could be used to reconstruct the state variable and hence
the sensor output in the hypothesis.

As stated here, the problem of finding the maximal
subgraph is a constrained version of the one in [16]. To
the best of the authors knowledge, there is no algorithm to
solve for the maximum single path that ends at the output
node and includes the node of interest. Alternatively, one
could aim for the maximum path that starts at the node of
interest and ends at the output node. Since the maximum
cannot be computed in polynomial time for every graph,
the authors solve for the minimum path instead. Once
these minimum paths have been identified, one collects all
of the nodes in their corresponding subgraphs and forms
reduced-order models.

Equivalently, the reduced-order models are obtained
from the state matrix A by eliminating rows and columns
associated with those state variables not included in their
respective subgraph. Here, the resulting reduced-order

models (A(1)
2 ,C(1)

2 ) and (A(1)
3 ,C(1)

3 ) are

A(1)
2 =

[
a11 0
a21 a22

]
, C(1)

2 =
[

0 1
]

A(1)
3 =

 a11 0 0
a21 a22 0
0 a32 a33

 , C(1)
3 =

[
0 0 1

]
Then, local estimates of y1, namely, ŷ(1,2) and ŷ(1,3)

can be reconstructed from data gathered at S2 and S3,
respectively.

D. The Consensus ad hoc Network

Suppose that a number of t < r−1 observable reduced-

order models (A(iq)
is ,C(iq)

is ) have been obtained. To test the
hypothesis that sensor Siq is under AoD, the group of ob-

servers O(iq)
is reaches agreement on the global estimate, ŷiq ,

by means of the average consensus algorithm [18]. The con-
sensus algorithm requires information exchanges between
each observer and its neighbors in the group necessitating
an ad hoc network within the existing NCS [24]. Consensus
algorithms are guaranteed to converge even under very
mild assumptions on the communication network [25].
They are tolerant to time-varying, directed communication
links [19] and time-delayed communication [20].

Following on the AoD defined in Section II-B, each
observer’s estimate evolves according to the continuous-
time dynamics [24]

˙̂y(iq,is) = ∑
ip

(ŷ(iq,is)− ŷ(iq,ip)) (3)

where the cardinal number of the index set for ip is equal
to t. The initial “far-flung” estimate solved for by each

O(iq)
is is updated in way to reach agreement on a single

global estimate. Foreshadowing the example in the next
section, Fig. 3 illustrates the ad hoc consensus network

comprising three observers O(1)
3 , O(1)

5 , and O(1)
9 depicted

by their respective indices 3, 5, and 9. The pieces of
information passed from node to node are estimates of
the output, y1, of the process under attack in order to
reach consensus.

Fig. 3: Consensus ad hoc network.

III. Example: Attack of Deception

Consider an NCS interfacing with n = 9 processes inter-
connected at the physical layer according to the adjacency
matrix below:

M =



− 1 0 0 0 0 0 1 1
0 − 0 1 0 0 1 0 0
0 0 − 0 0 0 0 0 1
1 0 0 − 1 0 1 0 0
0 1 1 1 − 1 0 1 1
0 1 0 0 1 − 1 1 1
1 1 1 1 1 1 − 0 0
0 1 0 1 0 1 1 − 1
1 0 0 0 0 1 0 0 −


State variables xi, for i = {1, . . . ,9}, are deviations of the
physical variable of each process from its respective operat-
ing point. Under normal conditions, then, xi are expected
to settle at zero. For the purposes of the example, there
are as many sensors, Si, with outputs yi, i = {1, . . . ,9}.

Consider the hypothesis that sensor S1 is under attack of
deception, as defined in Section II-B. Accordingly, sensor
S1 reports yD

1 = 0 to the anomaly detector; it feeds back
the attack signal yA

1 to controller CON1. Therefore, the
process is no longer regulated and x1 deviates from its
operating point at zero. Through the interconnections at
the physical layer the deviation of x1 can be assessed from
other sensors across the NCS.

First, one searches among available sensors for those
sensors connected to state variable x1 via simple paths.
The method of the present paper uses minimum paths.
There are three sensors, namely, S j, j = {3,5,9}, whose
respective outputs y j, j = {3,5,9}, are end nodes on three
paths starting at state variable node x1.

Second, from each of the resulting paths, one constructs

a reduced order model (A(1)
j ,C(1)

j ), j = {3,5,9}, which is
observable. Figure 4 represents the “observability adja-
cency” graph for state variable x1, where the minimum
paths are depicted as edges.



Third, one designs observers O(1)
j , j = {3,5,9}, to

estimate the state x1 from outputs y j, j = {3,5,9}. The
estimates of y1, namely, ŷ(1, j), j = {3,5,9} are the initial
values of the respective nodes of the consensus ad hoc
network on Fig. 3, which is connected and undirected.
Fig. 5 shows the original estimates as well as convergence
to the final global estimate of state ŷ1 = 1.48. The result
supports the hypothesis that the report of sensor S1 is an
anomaly.

Fig. 4: Observability adjacency matrix for x1.

Fig. 5: Consensus of estimates for the output of suspect
sensor S1.

IV. Conclusion and Future Work

The authors have proposed a method for detecting
and isolating Attacks of Deception (AoD) on Networked
Control Systems (NCS). The main novelty of the approach
is the leveraging of the interconnections between processes
at the physical layer. Its success relies on the identification
of observable subgraphs in the adjacency matrix of the
Physical Network. The ad hoc consensus network adds to
the overhead cost of the NCS; the far-flung observers can
run on existing hardware, in lieu of local fault detectors,
and incur no additional cost to overhead. The preliminary
results in the present paper demonstrate proof of concept
for the case of a single attack at a time. In future, other
facets of the problem such as the effect of AoD on the
performance of the NCS will be investigated. Furthermore,
the authors will extend their work to multiple attacks and
address the question of existence of a “core” of trusted
sensor nodes.
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