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ABSTRACT
We combine results from model predictive control, reinforce-
ment learning, and set-back temperature control to develop
an algorithm for adaptive control of a heat-pump thermo-
stat. The algorithm borrows from model predictive control
the concept of optimizing a controller based on a model of
environment dynamics, but then updates the model using
online reinforcement learning. An adaptive set-back heuris-
tic further improves energy savings while maintaining tar-
get temperature goals. We evaluate the framework in sim-
ulation, demonstrating its advantages over standard model
predictive control and reinforcement learning alone.

CCS Concepts
•Theory of computation → Theory and algorithms
for application domains; Machine learning theory; Rein-
forcement learning; Sequential decision making; •Computing
methodologies→Artificial intelligence ; Control meth-
ods ; Computational control theory;

Keywords
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1. INTRODUCTION
Residential and commercial buildings around the world

consume about 20–40% of global energy [1, 2]. This is es-
pecially true of heating, ventilation and air conditioning
(HVAC) systems, which consume over half of this energy.
Heat-pump thermostats have been actively studied for decades,
with the goal of improving building energy consumption ef-
ficiency. However, with changes in technology, energy and
comfort management in smart energy buildings remains an
open problem and active research area [3, 4].

In this paper, we develop and evaluate a method for syn-
thesizing an efficient control strategy for a heat-pump ther-
mostat. In our application domain, heat-pump control reg-
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ulates building temperature to maintain a thermal comfort
condition while maximizing power consumption efficiency.
In our approach, we combine model predictive control (MPC)
and reinforcement learning (RL) methods for control strat-
egy synthesis. MPC uses an explicitly formulated model of
the process to solve open-loop deterministic optimal control
problems [5, 6]. MPC generally achieves state of art perfor-
mance and is a popular choice for thermal control regimes.
However, the approach relies on the availability of an ac-
curate and stable model of building thermal dynamics, and
it can be costly to develop and maintain model quality [6].
RL, on the other hand, provides a method for synthesiz-
ing near-optimal control strategies in a model-free setting,
based on direct interaction with the control task environ-
ment. This approach does not rely on a pre-existing en-
vironment dynamics model and in principle can adapt to
changes in the environment dynamics. However, training
may be relatively slow, requiring a significant amount of
costly experience interacting with the environment in order
to achieve competitive performance. We develop a hybrid
method that combines the strengths of MPC and RL while
minimizing either’s shortcomings.

The paper is structured as follows. Section 2 presents a
review of prior work in model predictive control, reinforce-
ment learning, and set-back control as applied to heat-pump
thermostats. In section 3 we present our approach, which
combines a model predictive prior with set-point tempera-
ture control. Section 4 presents an evaluation of our method
compared to MPC and RL alone in simulation, and section 5
concludes with discussion and future work.

2. RELATED WORK
Model predictive control has become the dominant pop-

ular approach to heat-pump thermostat control [5, 6, 7].
At each decision point, the controller selects an action by
solving a fixed-horizon optimization problem. This process
depends on an accurately calibrated model of the task en-
vironment. Several different types of HVAC system control
schemes have been developed, including conventional con-
trollers, hard controllers, soft controllers, and hybrid con-
trollers [8]. These methods optimize lower energy consump-
tion and better transient response to changes in indoor air
temperature. However, MPC controllers are only as good as
their models and require accurate knowledge of the operat-
ing environment conditions, which realistically may change
over time, for example due to changes in local building neigh-
borhood, changes in global weather patterns, or changes in
building occupancy patterns.



An adaptive controller synthesis paradigm is preferred
when the task environment dynamics are not assumed to
be completely known ahead of time or might change. Q-
learning [9] has been proposed as one approach to minimiz-
ing the electricity cost of thermal energy storage systems
[10]. Reinforcement reward functions that incorporate both
thermal target and energy consumption objectives have been
studied [11]. Methods have also been explored for reducing
the amount of online training required through the use of
training in simulation that may only approximate the true
system dynamics, but helps prime the policy so that re-
quired online training is reduced [12, 13, 14]. How to design
the simulated training environment for optimally efficient
Q-learning remains and open research problem.

In the problem of designing the control agent of a heat-
pump thermostat, there are a series decisions that must be
made that require knowledge of the system dynamics. In
a review comparing RL with MPC [7], the conclusion was
that the proper way to address this kind of problem was to
combine model-based technology such as MPC and learning-
based techniques such as RL.

In addition to combining RL and MPC approaches to con-
troller synthesis, we also incorporate the use of a “set-back”
strategy for heat-pump control [15]. The conventional con-
trol paradigm for a heat pump keeps its temperature set-
point constant during the day. The set-back strategy re-
laxes the set-point (controlled target) temperature during
convenient times of the day, for example when the occu-
pants are not in the building, to reduce power consumption.
This method reduces the overall power consumption, but
can itself become a key source of energy usage inefficiency
as the controller engages to change the temperature from
the set-back state to the set-point state.

In this paper, we make two contributions. First, our ap-
proach seeks a compromise between MPC and RL by using
the concept of a prior environment dynamics, as used by
MPC, to determine the preliminary policy, and then refine
and update the policy by RL during online training. Sec-
ond, we employ our MPC+RL method in the context of the
set-back strategy to produce an adaptive set-point control
method to reduce overall power consumption. We demon-
strate that the proposed method gains the advantages of
MPC, RL, and the set-back strategy to provide a high per-
formance heat-pump controller synthesis method.

3. MODEL PREDICTIVE PRIOR REINFORCE-
MENT LEARNING

3.1 Problem Statement
In this work, we make the simplifying assumption that

energy consumption, E, is equivalent to heat-energy pro-
duction, Q. These quantities are related to building tem-
perature control by the following equation:

E ≈ Q = UA∆T = UA(C −B). (1)

Here, U represents thermal capacity, the degree to which
materials conduct or resist heat.1 A is the area of the sur-
face that the heat is flowing through. ∆T is the temperature
difference between the target controlled temperature C (as

1Thermal capacity is strictly positive and represents how
much energy the material needs to rise 1 degree celsius. The
baseline value U = 1 represents water.

Figure 1: Graphical model representing building tempera-
ture control problem.

set by the heat-pump controller) and the building temper-
ature B. In a specific environment, U and A are assumed
constant. The temperature difference ∆T is the main factor
determining energy consumption E. In order to simplify the
problem, we assume that the efficiency of converting heat-
energy production to energy consumption is constant in this
study. We also ignore the ramping-up or ramping-down time
and the corresponding energy consumption to activate to the
target controlled temperature in the the heat-pump thermo-
stat.

Heat-pump control can be naturally formulated as a se-
quential decision making problem. At each state s ∈ S, the
decision-making agent selects an action a ∈ A that maxi-
mizes the reward rk. The reward rk is considered as the
negative value of the linear combination of temperature er-
ror and the energy consumption:

rk = −(1− we)× (∆Tk)− we × (ek) , (2)

where ∆Tk is the temperature difference, which refers to
the temperature error, between the desired target set-point
Temperature Tsp and the building temperature Bk at time k,
ek is the energy consumption at time k, and we (0 ≤ we ≤ 1)
is a weight trading the contribution of ∆Tk.

Figure 1 shows a graphical model representing how the
next state building temperature, Bk+1, is a function of cur-
rent building temperature, Bk, the external environment
temperature, Ek, and the temperature control signal from
the heat-pump, Ck, at time k. The system dynamics is ex-
pressed in the following equation:

Bk+1 = Bk + (Ek −Bk)
∆t

SCAPe
+ (Ck −Bk)

∆t

SCAPi

= Bk(1− ∆t

SCAPe
− ∆t

SCAPi
)

+ Ek
∆t

SCAPe
+ Ck

∆t

SCAPi
,

(3)

where ∆t is the time interval, and SCAPe and SCAPi are
the external and internal system thermal capacity.

The goal of the controller agent is to then identify a pol-
icy, π(s, a) that determines what action, a = Ck, to select
in each state, s = (Bk, Ek), in order to minimize energy
consumption while also minimizing divergence from the set-
point target temperature, as described below.

3.2 Methodology
In this paper we refer to two general (and not mutually-

exclusive) approaches to formulating and solving decision-
making problems: planning and learning. In planning, which
includes the framework of Model Predictive Control [5, 6, 8],
it is assumed that a complete model of the task environment
is available and the planner induces a policy for choosing the
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Figure 2: Set-back control scenario with standard and adap-
tive set-points; (a) standard set-point target; (b) adaptive
set-point target.

action in each state that achieves optimal performance in
terms of total long term reward. The learning approach, on
the other hand, does not assume the environment is known
ahead of time. Instead, the learning agent has to interact
directly with the environment to gather data about the ef-
fects of actions on the world and their reward value, and
while doing so searches for an optimal policy for action that
maximizes long term reward. This is the classic setting of
reinforcement learning [10, 11, 12, 13, 9].

The learning framework provides a general approach solv-
ing sequential decision-making problems without relying on
a pre-existing model of the task environment, but incurs the
cost of online interaction with the environment, which in
some circumstances may be prohibitively high. We can po-
tentially get the advantages of both approaches through a
hybrid approach in which we use a suitable simulated envi-
ronment for offline training. In this case, the initial policy
learned in simulation is used to ”bootstrap” the learner to
reasonable performance that is then transferred to and fine-
tuned in real-world interaction, often reducing the amount
of costly real-world experience required to achieve high per-
formance [12, 14].

In this work we seek to optimize two potentially conflict-
ing goals, achieving target temperature while also minimiz-
ing power consumption. As has been demonstrated previ-
ously, a good way to reduce overall power consumption is
to adopt a “set-back” strategy in which the set-point con-
troller is only engaged during periods when the temperature-
controlled area is being used [15]. However, because this
method allows the building temperature to drift uncontrolled
during the set-back period, it is possible for the desired
target set-point temperature be very far from the set-back
state when it comes time to reengage temperature control.
A controller that only optimized for minimizing divergence
from the set-point temperature risks expending an enormous
amount of energy to immediately achieve the set-point goal.

Figure 2 demonstrates a scenario with set-back and set-
point control regions. The orange outlined regions high-
light the time interval of the transition from set-back to
set-point. The green line represents indoor temperature,
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Figure 3: Schematic of combined simulation and real-world
reinforcement learning.

the black dashed-line represents the target set-point tem-
perature, which ramps up in the transition from set-back to
set-point phases, and the horizontal gray-dashed lines rep-
resent the window of acceptable target temperatures. As we
detail below, Figure 2(a) shows the results of standard set-
back control, while Figure 2(b) shows that by “smoothing”
the set-point state, power consumption may be reduced.

In the following sections, we explain our overall method,
first describing our simulated reinforcement learning method
for inducing an MPC prior policy, followed by how we for-
mulate the adaptive set-point temperature goal.

3.2.1 Simulated Reinforcement Learning: Hybrid Con-
trol Scheme with Model Predictive prior

In order to minimize the amount of expensive real-world
experience required by the relatively slow Q-learning pro-
cess, we provide a simulated reinforcement learning envi-
ronment to learn an initial, if noisy, policy [12, 14]. Figure 3
shows a schematic of the overall learning process.

In the Simulated Learning phase, the learning controller
is trained by a simulator to learn a preliminary model. The
simulator is less accurate than the real world, but by adapt-
ing the policy to the simulation approximation, we can re-
duce the online training time needed to achieve comparable
performance. In the Online Learning phase, the learning
controller is embedded in and interacting with the actual
environment and continues to improve the performance of
the policy. By interacting directly with the environment in
this phase, the policy can adapt to specific features of the
environment dynamics not represented in the simulation.

In our work, the simulation dynamics are represented in
Eq. 4. The policy π0(s, a) is modeled as

π0(s, a) =
SCAPi

∆t

(
Tk+1 −Bk(1− ∆t

SCAPe
− ∆t

SCAPi
)

− Ek
∆t

SCAPe

)
.

(4)

The model predictive prior π0(s, a) replaces the whole train-
ing phase to provide the initial policy model as the prelimi-
nary policy model.

3.2.2 Adaptive set-point Temperature
The set-back strategy [15] activates the heat pump only

during specified intervals. During these intervals, the set-
point is the target temperature. As the bottom plot of Fig-
ure 2(a) shows, the predominant power usage occurs during
the transition from set-back to set-point state (the interval in
the orange rectangle). Here we have two competing goals:
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Figure 4: Cases for calculating target set-point temperature.

maintain as close to thermal comfort factor (set-point) as
possible, but also minimize power use. We propose to ac-
complish both goals by smoothing the transition between the
set-back and set-point phases. Figure 4 presents a schematic
representation of two conditions, depending on whether the
current temperature is above or below the set-point temper-
ature. The target set-point temperature T ′k is determined
by the previous (Tk−1), current (Tk), and next (Tk+1) set-
points. The transition between states is reduced by the up-
dated set-point temperature T ′k. We call this the adaptive
set-point temperature (ASPT) method. The next step is to
determine by how much to adjust the target set-point, Tadj .
Here we use a heuristic that bases the adjustment on the ob-
servation that a comfortable range of temperature variation
is within ±1◦C [16]. Thus, Tadj = 1.

Based on this, the updated current set-point temperature
T ′k is determined as follows:

T ′k+1 =


Tk − Tadj , Case1

Tk, no change

Tk + Tadj , Case2

(5)

where

Case1 : [(Tk < Tk+1)&(Tk+1 = Tk+2)] or

[(Tk = Tk+1)&(Tk+1 > Tk+2)]

Case2 : [(Tk > Tk+1)&(Tk+1 = Tk+2)] or

[(Tk = Tk+1)&(Tk+1 < Tk+2)].

Using this model, the dominant power usage is reduced un-
der considering the thermal comfort factor. Fig. 2(b) shows
the result of applying this method to the same scenario as
in Fig. 2(a) gaining a 3% savings in energy efficiency.

3.2.3 Algorithm
The complete model predictive prior reinforcement learn-

ing (MPPRL) with the adaptive set-point temperature (ASPT)
algorithm is given in Algorithm 1. The algorithm adopts the
model predictive prior to initialize the preliminary policy
model π0 and then runs the learning agent in the real world
to do the online training. In the learning process, the set-
point temperature is dynamically determined by the action
a of the ASPT method to achieve energy efficient control
during transitions. The evaluation function is the action
value function Qt(st, a), which is determined by the reward
function R(st, a, st+1) and state value function V (st + 1).
The γ is the learning rate. At each time, the optimal ac-
tion amax of the max quality value Qt(st, a) is selected to
maximize the state value V (st + 1). The policy model π is
continuously updated by the optimal action amax to adapt
to environment changes.

Algorithm 1

1: procedure MPPRL
2: Input: π0(s, a)
3: for each t in active time do
4: calculate Action set based on ASPT
5: for each a in Action set do
6: Qt(st, a) = R(st, a, st+1) + γV (st + 1)
7: end for
8: V (st+1) = maxamax Qt(st, a)
9: π(st, amax)

10: end for
11: end procedure

4. SIMULATION RESULTS
Here we compare the performance of the proposed re-

inforcement learning agent in the MPPRL algorithm to a
Model Predictive Control (MPC) and standard reinforce-
ment learning (std RL) agent [10].

4.1 Simulation Setup
In the experiment, the simulated building temperature dy-

namics is modeled by the thermal model of Equation 3. The
parameters of external (SCAPe) and internal (SCAPi) sys-
tem thermal capacity are set as 9.896 and 2.441, based on
[15]. The set-point temperature of the building is 25◦C dur-
ing hours 8 to 22, when the inhabitants are in the building.
The heat pump changes its power set-point temperature ev-
ery hour with 60 discrete actions (0 ∼ 60◦C).

The heat-pump thermostat is assumed to be equipped
with sensors to measure the environment temperature; in
our model, these measurements are based on the TMY3
Tucson International Airport dataset [17]. This simulation
assumes two cases of the thermal model for the building: an
ideal case and a practical case. In the ideal case, we assume
the thermal model equation 3 is exactly the same as true
thermal dynamic behavior of the building. In the practical
case, errors are introduced between the equation 3 and the
true behavior of the building; in our experiment, these er-
rors were set to be 20% above in external (SCAPe) and 20%
below in internal system thermal capacity (SCAPi).

In the proposed learning agent, the Q-learning learning
rate γ (line 7 of Algorithm 1), and the weighting of the
energy consumption we of Equation 2, were both set to 0.8.
The standard learning agent uses the same learning rate but
there is no energy consumption term in the reward function.

4.2 Evaluation Results
The experiments evaluated the temperature variation as

the thermal comfort factor (C.F.) and the power consump-
tion, as measured by energy E, of the three control strate-
gies: MPC, std RL, and MPPRL. Smaller C.F.means smaller
temperature variation and implies that human inhabitants
are more comfortable.

The quality of initial model of the MPPRL is an impor-
tant factor of the performance. If the initial model is closer
to the behavior of the real system, MPPRL will have the
better performance. In order to have the same baseline in
the evaluation between MPC and MPPRL, we set the pre-
dictive model of MPC as the same as the initial model of
MPPRL.

The evaluation considers the ideal and practical cases in



Tabel 1: Summary of Performance Evaluation of MPC, std RLC, and proposed RLC

(a) MPC: C.F. = 0.1◦C, P = 774.0 kW (d) MPC: C.F. = 0.59◦C, P = 962.8 kW

(b) Std RL: C.F. = 0.12◦C, P = 769.3 kW (e) Std RL: C.F. = 0.32◦C, P = 906.2 kW

(c) Proposed RLC: C.F. = 0.27◦C, P = 727.5 kW (f) Proposed RLC: C.F. = 0.37◦C, P = 889.3kW

Figure 5: The performance evaluation in a winter week under the ideal (left column, (a), (b) and (c)) and practical (right
column, (d), (e), and (f)) thermal model cases.



winter and summer days separately. Table 1 shows the ex-
perimental results for the three controllers. Comparing to
the MPC, MPPRL reduced power consumption by 6.3% dur-
ing the winter and 11% during the summer in the ideal case.
In the practical case, the saving rate is approximately 7.6%
during the winter and 8.7% during the summer.

In the ideal case, the comfort factor (C.F.) of MPC is
the optimal performance of 0.1◦C in winter and 0.9◦C in
summer. Std RL provides a near optimal C.F. of 0.12◦C
for winter and 0.16◦C for summer. MPPRL keeps the C.F.
about 0.3◦C. The profiles of the building temperature and
the power consumption of a week in the winter are shown in
Figures 5(a)-(c).

In the practical case, the learning agents are able to adapt
to the noise better than MPC, which is based on the prior
assumed model. The C.F. of MPC changes are larger and
even worse than the learning agents. The power consump-
tion of the MPPRL algorithm is lower than MPC by about
7.6% in the winter and 8.7% in the summer. The profiles of
the building temperature and the power consumption of a
week in the winter are shown in Figures 5(d)-(f).

The building temperature profile of the MPPRL is smoother
than that of the MPC and std RL controllers in the region
of the state change. This reduces the most significant part
of the power consumption of each day.

5. CONCLUSION AND FUTURE WORK
We have proposed and evaluated a reinforcement learning

controller for a heat-pump thermostat with a model predic-
tive prior and incorporated an adaptive set-point tempera-
ture heuristic. The proposed method combines the strengths
of two controller synthesis method, gaining the adaptivity of
reinforcement learning while reducing online training cost
through the use of a prior policy induced in offline simula-
tion [7, 12, 14]. We demonstrated that the adaptive set-point
temperature reduces the most significant part of power con-
sumption, in the transition interval between set-back and
set-point control. The proposed learning agent is an effi-
cient and robust controller for a heat-pump thermostat of a
building. We are currently working on extending the adap-
tive set-point heuristic to determine the degree of set-point
adjustment as part of optimization, and are also extending
the MPPRL control framework to distributed, multi-grid
energy system optimization.
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