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ABSTRACT
Current schedulers in the cloud computing platform are fac-
ing the performance requirement. However, due to lack
of the theoretical and practical guidance on multi-resource
scheduling, algorithms in the schedulers are neglecting the
difference between resource demand vectors and resource de-
mand flow, resulting into the large resource waste caused by
fragmentation, with all tasks struggling with the same bot-
tleneck resource. We refer the resource demand flow as the
relationship between resource demand and time to build a
more accurate task model from the perspective of resource
consumption. Also, we present the offline sat scheduler, the
reduction algorithm based on the sat solver, to give advice
on the optimisation on scheduling order of the tasks with
various resource demand flow. To make up for the time lim-
it of the sat solver, we provide the price scheduler to optimise
the resource utilisation, while promising a certain degree of
fairness. The simulation shows that the performance of the
sat scheduler beats YARN default scheduler by cutting 30%
of the make span, profiting from SAT powerful calculating
technique, and the price scheduler gets a shorter make span
and higher utilization.
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1. INTRODUCTION
In recent years, cloud computing becomes a very hot topic.

Nowadays, many well-known sites such as Google, Ali, and
Facebook have their own cloud computing clusters, to facil-
itate management services they provided, which can also be
used as the external server rental platform [3]. Cloud com-
puting is facing a high-performance, multi-dimensional high
scalability and on-demand services. Tasks with various type-
s of resources request and various service level requirements
are needed to run on the cloud platform, which challenges
the cloud computing framework, as well as the design for its
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core multi- resource scheduling algorithm. Cloud computing
platforms scheduling algorithms have different optimisation
goals, such as make span, efficiency and fairness. The de-
fault FIFO scheduling on Hadoop platform only targets at
fairness, making it low resource utilisation, long make span.
This paper argues that, in weighing the fairness and make
span, the make span is a more important indicator [1].

FIFO and dominated resource fairness scheduler policies
do not consider the resource utilisation, causing the resource
fragmentation and unnecessary waste. Unfortunately, cur-
rent schedulers don’t take tasks resource demand flow into
the account, too. The ignorance of the future resource de-
mand of tasks leads to the bump of needs on one resource at
a time, which in turns elongate the make span. The multi
resource scheduling problem with specified resource demand
flow is actually the flow shop problem, tasks requesting the
different resources combination in the sequence of phases,
which proves to be NPH [5]. To get the short make span,
we try to use the SAT solver to suggest the scheduling or-
der. The SAT solver is remarkable for its accuracy, but con-
strained by the running time. We propose a more feasible
scheduler named price scheduler to avoid resource fragmen-
tation by finding the smallest resource-wasted task and peek
demand by choosing the quick finished tasks with resource
needed.

The main contributions of this paper can be summarized
in threefold.

• First we elaborated the task model to formally build
problems and analyse its computational complexity.

• Second, faced with different objective functions, we p-
resented the offline SAT scheduler algorithm and the
price scheduler algorithm.

• Third, we built experiment to evaluate its performance.
The result shows our algorithm outperforms other de-
fault algorithm on YARN on the criteria of the make
span and balance between the efficiency and utilisa-
tion.

The rest of this paper is organized as follows. Sec. 2
discusses the motivation of this paper. Sec. 3 presents the
models and scheduler. Sec. 4 conducts the escalations for
the proposed scheduling. We conclude this paper in Sec. 5.

2. MOTIVATIONS

2.1 Resource Inefficiency
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Figure 1: A motivation example: (a) Two tasks and two different resources, each with two phases; (b) FIFO
takes 10 seconds; (c) The reverse way takes 8 seconds.

The commonly-used schedulers in Hadoop are capacity
and fair schedulers. Neither of them highlight the need to
concern about the difference demand for the resource of the
tasks and the impact brought by multi-resource environmen-
t. For example, there are three tasks, namely, tasks 1, tasks
2 and tasks 3, with resource demand (3CPU, 6GMEM),
(8CPU, 5GMEM) and (2CPU, 5GMEM), who are com-
peting for the current scheduling chance on the (10CPU, 10GMEM)
machine. We note that the default FIFO scheduler will only
be able to schedule task 1, since it does not focus on the
resource consumption vector, implying the poor resource u-
tilisation. Scheduling the task 2 and task 3 is a better choice
in this case. We take the heuristic that picking tasks with
bigger resource consumption greedily will lead to a possible
satisfied utilisation. So, in the price scheduler, we choose
the task that will consume left resources most. To be men-
tioned, it is also an instance of the multi-resource packing
problem analysed in [2] which proposed the cosine function
to choose the task with the maximum similarity. But Tetris
loses its insight when one resource is so adequate that the
weight of it is much bigger than other resources, leading to
fragmentation and waste of the bottleneck resource which
is insufficient. So, it enlightens us of the necessity to re-
duce resource waste, especially for those inadequate ones.
Our insight is laid on the fact that the resource with high
demand should not be wasted. In the price scheduler, we
denote Price, the value to reflect the resource shortage de-
gree, to help weigh the waste of different resources caused
by scheduling the specific task.

2.2 Resource Demand
Tasks in the cloud platform need different resource in d-

ifferent phases. Map reduce can be viewed as the typical
case where the map phase prefers IO resource and the re-
duce phase biases on the network resource. They have the
strict executing order. The scheduling order has hugely im-
pact on the make span. We take 1 as an example. There are
two tasks with two phases. Phase 1 of task 1 requests for
resource A for 5 unit time, and phase 2 of task 1 requests
for resource B for 2 unit time. Phase 1 of task 2 requests
for resource A for one unit time, and phase 2 of task 2 re-
quests for resource B for 3 unit time. We observe that we
can shorten make span by scheduling task 2 first. This prob-
lem belongs to the branch of the flow shop problem, which
is best known for its NPH in the multi-resource situation.

Few heuristic solution exists on some certain condition. We
use SAT solver to solve this kind of problems to analysize
how huge the influence is on the make span, and develop the
tool called SAT scheduler to offer the sub-optimal scheduling
suggestion target at minimising the make span. We observe
that the optimisation may root in favouring on the smal-
l remaining time tasks and balancing the future workload
of different resources. We take this heuristic in the imple-
mentation of the price scheduler. In our design, we combine
resource demand with time to express the concept of work-
load. By choosing the phase characterised by maximising
the rare resource utilisation and short remaining time, we
achieve the utilisation and a good scheduling order.

3. MODEL AND SCHEDULER
In this section, we will describe the problem model, as-

suming that we know the complete information of the tasks
resource demand and its demand flow. In practically, these
variables can be approximated closely by a lot of heuristic
methods.

3.1 Modeling
We construct the cloud platform with n machines. The

wth machine can be expressed by a resource vector:

rw =< k1, k2, . . . , km > w ≤ n, (1)

where m is the number of the resource categories. ki is the
total capacity of the resource i.Also, the total cloud resource
information can be briefly denoted as r.

Define the task va can be formed as:

va =< pa, sa >, (2)

where pa is its priority. sa is the collection of va phases.
The set of all phases is briefly denoted as {phase} or s.
Each phase can be denoted by:

qal =< da,l1 , da,l2 , da,lm , ta,l, a, l >, (3)

where da,li 1 ≤ i ≤ m is demand for resource i of qal , and ta,l

is time needed by the phase qal .
Phases have strict execute order. We define the relation

Before on phases as <:

qai < qaj qai , q
a
j ∈ sa. (4)



Before meaning that qai must be executed and done be-
fore qaj . In addition, we need to define the execution func-
tions:

e : (r, qal , {phase}) 7→ (t, n) (5)

where t is the start execution time of qal , n is the id of the
machine to run the phase on.

To judge whether a phase is running, we have:

isRunning(e, r, qal , s, t) =

{
1 t′ < t ∧ (t′ + ta,l > t)
0 otherwise

(6)

where t′ = (e(r, qal , s))
(1). The tag (1) is the reference to the

correspondent number of the content in the brace. In the
above case, it means referring to the t in (t, n). To define
whether the phase is done, we have:

isDone(e, r, qal , s, t) =

{
1 t′ + ta,l ≤ t
0 otherwise

(7)

Finally, we come to the scheduling function:

h : (t, n) 7→ (r, qal , {phase})∀l, a, t ∈ N (8)

s.t.
∑
a

∑
l

isRunning(h, r, qal , {phase}, t) da,li ≤ ki (9)

h(r, qai , {phase})(1) + ta,l < h(r, qaj , {task})(1) ∀i, j : qai ≤ qaj
(10)

Equation 9 is the constraint of the capacity of all resource
in the given time. Equation 10 is the constraint of the phase
scheduling order. We note the problem is NPH, due to the
following reason. First, the problem is the multi dimensional
bin packing problem obviously, if we consider machines are
bins and phases are objects. Second the problem is also
the flow shop problem, if we consider all resource is unit
resource, then the machine is like operating tasks in the
certain order. Both of them is NPH.

3.2 The SAT Scheduler
Faced with two thorny problems, we want to take advan-

tage of general NPC solution to reduce the make span. Be-
cause the sat solver is an advanced technique which is widely
used, we choose it as our powerful tool [4]. However, a prob-
lem occurs when we want to allocate the resource to phases
of tasks. The sat solver can only express the boolean value,
which means the allocation should be based on the unit re-
source. If a phase of a task needs 10 cores, while 100 cores
are available, it need to choose 10 out of 100, that means
there are around C10

100 probabilities. To calculate it is not
practical. We avoid it by averaging the workload among the
all the same kind of resource. The allocation algorithm is
simple but useful. Every time, we choose the machine with
the least workload on it and distribute the demand among
the unit resource which have less workload. After the re-
source distribution, we have to give constraints to cut down
impossible answers. We denote Qal as the ID of qal , and Ral
is the set of the resource ID the phase qal demanding for.We
use A[r, t, Qal ] to indicate whether allocating resource r to
phase qal at time t.

Then we get the first constraint, Task Demand Flow Rule
(pre-phases must be finished first):

A[r, t, qal ]→ ∨t′<t ∧max l′:qa
l′<q

a
l
∧r′∈Ra

l′
A[r′, t′ − ta,l

′
, Qal′ ]

(11)

Equation 11 describes that if the succeed phase is scheduled,
the prerequisites must be scheduled before.

Next, we get the Resource Not Allocated Twice Rule:

A[r, t, Qal ]→ (∧a′ 6=a∧l′ 6=l 6 A[r, t, Qa
′
l′ ] ∧ (∧l′ 6=l 6 A[r, t, Qal′ ]))

(12)
Equation 12 describes that if one phase is scheduled, other
phases demanding for the same unit resource must not be
scheduled at that time.

Application All finished Rule:

∨t≤TIME ∧a ∧max l ∧r∈Ra
l
A[r, t, Qal ] (13)

Task Not Interrupted Rule:

¬A[r, t−1, Qal ]∧A[r, t, Qal ]→ ∧1≤δt<ta,lA[r, t+δt,Qal ] (14)

Equation 14 means once we allocate the resource to one
phase, we will allocate that resource to it until its end. We
use the binary search method to find the minimum TIME,
satisfying all rules above, which should be the shortest make
span to the problem. We notice that the reduction method
takes O((|phase||resource| ∗ TIME)2) time to generate all
the clause.

3.3 Price Scheduler
We use the sat solver to analyse the influence of the re-

source demand flow on the make span and suggest the sched-
ule order offline. However, it become extremely slow when
the scale of the problems is large. So, we develop a kind of
the heuristic method to make up for this shortcoming. We
present the price scheduler, which is based on the idea that
reducing resource waste and balancing the workload of dif-
ferent resources can help shorten the make span. Reducing
resource waste can increase the resource utilisation, which
will in turn shorten the make span. However, maximising
utilisation currently is not the necessary and sufficient condi-
tion for yielding the shortest make span in the multi-resource
environment, while tasks conform with problem model in
3.1. We need to balance the workload of resource demand
now and future, too. We refer this kind of resources for
which tasks have huge demand as rare resources. We prefer
choosing tasks needing rare resources to balance the their
workloads. We denote the value of scheduling a task as ua,
which may be the reflection of its priority or the its urgency
to show the different service requirement of the tasks in the
cloud. We want to distribute its value into different phas-
es. Normally, each phase is given the same amount value
denoted as Ua,l, if all phases are equally important. Then
we need to define the price of the task at the certain time t:

Price(r, t) =

∑
l∈{S}da,l

r >0
Ua,l

DISCOUNT (l) ∗ kr
(15)

{S} is the set of phases needed to be scheduled. We de-
rive the function to score the scheduling of a phase. First,
we consider the gain of the scheduling a phase is its value
Ua,l. Next, we want to maximise the utilisation. We take
the heuristic to prefer the phase which could consume the
maximum amount of resource. We have:

Waste(r, t, a, l) =
∑

T≤t<T+ta,l

Price(r, t)(kr − da,lr ) (16)

T is the current time. Last, to prevent the job hunger, we
give the compensations to those phases losing the scheduling



chance:

Welfare(a, l)+ = welfareRate ∗ Ū/NUM OF TASKS
(17)

The welfareRate is used to adjust the fairness level, if the
welfareRate is high, the scheduler will focus on the fair-
ness factor. The Ū is the chosen phase value. So the score
function will be:

score(r, t, a, l) = Ua,l −Waste(r, t, a, l) +Welfare(a, l)
(18)

It takesO(NUM OF TASKS2) to calculate the price. Then
we use the O(NUM OF TASK) to choose the maximum
score phase. So it takes O(NUM OF TASK2) time to
choose next scheduling phase.

4. EXPERIMENTS
The test focuses on the performance in different situations,

as resources are relatively abundant or scare. We will use
our algorithm again FIFO algorithm which is carried out
by YARN itself. The result of the efficiency tests shows
that our sat solver scheduler outperforms it by 20%, in the
most situation, mainly due to the high computation ability
of sat solver. The running time suggests the range of feasible
problem size. Similarly, we deploy the price scheduler in this
environment. The result shows that the sat scheduler beats
FIFO scheduler by 30% make span.

4.1 Experimental Setup
We use a certain amount of random data to simulate the

real world situation, to highlight the performance of algo-
rithm on various possible condition. The kinds of data to
simulate are: 1)the number of machines in the cloud plat-
form, 2)the resource amount on the certain machine, 3)the
number of tasks and their values symboling for their service
levels, 4)the phase of tasks and the amount of resources and
time required for each phase.

4.2 Comparison Baselines
We use the FIFO algorithm as the comparison baseline.

The FIFO scheduler is a simple algorithm, which schedules
the first coming task. If it can’t be scheduled due to the
lack of available resource, it will wait. We generate another
scheduler, the capacity scheduler, which schedules the phase
which has the smallest resource consumption. The priority
scheduler which schedules the largest service level task first
is also used in our comparison.

4.3 SAT Scheduler Results
We set the background environment as follows. There are

two kinds of resource denoted as bandwidth and IO. Both
of them are 100 units, distributed equally in 2 machines.
The number of tasks is set to 10. The task randomly gets
one to three phases. The maximum resource demand of
each phases is limited to ten percents of the total available
resource. The longest phase is four times longer than the
shortest phase. Obviously the resource is abundant. The
result showed by Fig. 2 is quite trivial. In this case, our
sat solver is better than the FIFO algorithm by 20%, in
term of the make span. We think the method benefits from
two factors. First we distribute workloads equally into unit
resources. Second, we make use of the powerful sat solver to
generate the reasonable scheduling order that can maximise
utilisation in the whole make span rather than currently.

Figure 2: Makespan comparisons under sufficient re-
sources.

Figure 3: Makespan comparisons under limited re-
sources.

In another background environment setting, the resource
amount available in the cloud keeps the same. The task
size becomes 30, and every of them gets 1 to 5 phases. The
maximum resource demand of each phases is limited to thir-
ty percents of the total available resource. The longest phase
is nine times longer than the shortest phase. The schedul-
ing becomes a little harsh for the sat solver, because the
resource is not enough sometimes and the tasks differ from
each other largely. In this case, our scheduler outperforms
FIFO by 30% as shown in Fig. 3. It is the right choice of
the sat solver to bias on the time or the resource demand in
the different situation that harvests such good performance.

4.4 Discussions on Overhead of SAT Solver
The sat solver becomes helpless when the problem size

is large. We need to test the sat solver overhead to in-
dicate the right problem size. In our model, the problem
size is direct ratio to nm ∗max km ∗NUM OF TASKS2 ∗
MAX TIME LIMIT OF TASK. The relation is depict-
ed in Fig. 4. We find that the time tends to be exponential
when the input setting is large. In our case, the second
setting costs us around 30 minutes to get the answer. The
feasible problem size may be limited within several tasks,
hundreds of unit resources and the executing time differs at
most 5 times.



Figure 4: The running time with increasing problem
size.

Figure 5: Compared with others, our scheduler
achieves high throughput and has similar guarantee
for service levels of different tasks.

4.5 Price Scheduler Results
We set up the test environment similarly with the sat

solver scheduler, but in a large scale. There are two kinds
of resource denoted as bandwidth and IO. Both of them are
100 units, distributed equally in 2 machines. The number
of tasks is set to 100. The task randomly gets one to five
phases and their service levels is uniform distribution in one
to five. The maximum resource demand of each phases is
limited to ten percents of the total available resource. The
longest phase is four times longer than the shortest phase.

The efficiency in Fig. 5 means total service levels finished
at the time t. Utilisation metric is the ratio of used re-
source accounting for total resource. The fairness denotes
the variance of the tasks progress. In our perspective, if
the scheduling policy is fair, tasks have the same chance to
be scheduled, which means their variance should be close to
zero.

Fig. ?? and 10 show that the price scheduler outperform-
s other schedulers such as FIFO, priority and capacity in
terms of efficiency, utilisation and fairness matrix. From ef-
ficiency matrix, the price scheduler is much better than the
priority scheduling algorithm and other algorithms due to
his preference on high service level tasks . For comparison
with the capacity scheduler, the price scheduling algorithm

Figure 6: Price scheduler has the shortest makespan
and maximum utilisations due to its least waste pol-
icy.

Figure 7: Price scheduler has the highest fairness
due to the welfare factor to compensate for those
losing scheduling chance tasks.

outperforms by 12 percents through avoiding the resource
fragmentation and balancing different resources workloads.
From the equity point of view, the presence of welfare fac-
tors ensures that the price scheduler will not cause the task
starvation and its choice based on the adaption to the left
resource offers every task a chance to be scheduled. The
highest point of the price scheduler is higher than other
scheduling algorithms, which is also a proof to its fairness.

We test the price scheduler in a more harsh situation, and
the results are shown in Fig. 8-10. The maximum resource
the task requires consumes three-fifths of the total resource.
From the experimental results, resource scheduling algorith-
m based on pricing , is far better than other scheduling algo-
rithms. From an efficiency point of view, the price scheduler
better than the priority scheduling method lies in the fac-
t that priority-based scheduling algorithm will cause some
fragmentation of resources, leading to the block of further
scheduling, while the price scheduler reasonably trade-off
each task service levels and waste of resources, to a greater
extent, increase the efficiency of the unit resources . From
the perspective of resource utilisation , resource scheduling
algorithm based pricing has been ahead of other scheduling
algorithms , thanks to its advanced scheduling strategies,



Figure 8: Our price scheduler outperforms others
schedulers in terms of throughput and guarantee for
service levels.

Figure 9: Price scheduler has the shortest makespan
and maximum utilisations due to its least waste pol-
icy.
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Figure 10: Price scheduler has the highest fairness
due to the welfare factor to compensate for those
losing scheduling chance tasks.

by selecting the largest remaining resources tasks , ensuring
high availability. From the equity point of view, the presence
of the welfare factor promises each tasks will be scheduled
eventually.

5. CONCLUSION
This paper discusses the scheduling policy in multi-resource

environment. We find that tasks in the cloud platform have
the resource consumption pattern, which we denoted as re-
source demand flow of tasks. We observe there are two
problems theoretically existing this model. One is the bin
packing problem. The other is the flow shop problem. We
take the heuristic solution to bin packing problem, which is
to choose the maximum fit object. For the multi-resource
condition, we use the price to function as the weight of dif-
ferent resource. Price is used to measure the level of rarity.
We note that the resource with huge demand on should be
more cherished than the sufficient resource. For the flow
shop problem, our insights are laid on to balance workload-
s of different resource and preference on the short needing
time task first. We combine these heuristic method and in-
sights together to generate the price scheduler. It can avoid
task starvation and reflect service levels. In addition, to
get the possible optimal makespan, we take advantage of
the sat solver to generate the sat scheduler to give the sug-
gested scheduling order. The random simulation shows that
our schedulers beats the default YARN scheduler by around
20%, in the term of make span, proving their superiority.
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