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ABSTRACT
This paper presents the performance management of a vir-
tualized web-server hosting a dynamic web page. Firstly,
a dynamic model of the virtualized web-server in the form
of a linear state space model is developed using grey-box
identification technique using input-output data. Secondly,
model validations are presented to justify the efficacy of the
model. Based on the developed model, a state feedback con-
troller is designed for performance guarantees in terms of
the client perceived response time under changing workload
conditions.

Finally, we compare the performance of the state feedback
controller with a fuzzy controller developed based on fuzzy
rule base that represents the expert knowledge of the system.
The real time control experiments are presented to compare
the two control schemes on a virtualized server with KVM
hypervisor.

CCS Concepts
•Computing methodologies→Model verification and
validation;

Keywords
Virtualization, Web-server, State feedback control, Fuzzy
control

1. INTRODUCTION
In server virtualization, a physical server is converted into

several individual and isolated virtual servers also called
virtual machines (VMs) using a hypervisor such as KVM
(Kernel-based Virtual Machine) and Xen etc. Full virtual-
ization, paravirtualization, OS (operating system) virtual-
ization are major server virtualization approaches [9]. Some
of the important advantages of virtualization are improve-
ment in server availability, elimination of server sprawl and
centralized administration.
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Over the past few decades, internet has seen a remark-
able transformation from being a technical curiosity to the
necessity of many people’s lives indicating traffic to various
web-sites. Whenever traffic of a web-site increases, there
is a delay in serving requests due to overloading of servers.
Recently, one of the premier Indian E-commerce company
Flipkart’s “Big Billion Day” sale ran into glitches when the
servers were not able to handle the heavy traffic [10]. Similar
instances of server overload leading to performance degra-
dation can be found in [14].

In this paper, we present the performance management
of a web-server hosted on a virtualized physical machine
(VPM) with a dynamic web page. It is a multi-tier web-
server with the first tier hosting an Apache web-server, a
CGI (Common Gateway Interface) containing an executable
code as the second tier and a database server as the third
tier. For simplicity, all these tiers are installed and config-
ured on each of the VMs of the VPM using XAMPP software
[2].

Earlier work on performance management of servers in-
clude analytical models with optimal control in the work by
authors of [11], self-tuning fuzzy controller in [18], (our ear-
lier work on) state feedback control using pole placement
technique for a web-server hosting a static web-page [17],
hill climbing technique with analytic queuing model [12] and
some others [16]. Compared to the previous approaches
where either analytical modeling or queuing models were
used, we present a grey-box identification technique for mod-
eling and state feedback control for a web-server hosting a
dynamic web page on a virtualized server (henceforth called
the target system).
Apache [15] is the most popular open-source HTTP server
for modern operating systems like Ubuntu and Windows.
For a standalone Apache web-server, performance control
can be achieved by varying KeepAlive(KA) and MaxClients
(MC) [8]. However, for a virtualized system with hosted
web-servers, the performance control is considerably diffi-
cuilt due to the increase in system complexity. The common
issue one faces is that all the web-servers behave in entirely
different as they share some of the common resources of the
virtualized system such as network I/O and last level cache
(LLC) [6].

The novelty of our approach lies in the application of sys-
tem identification technique which has been traditionally ap-
plied to dynamical systems such as process plants, mechani-
cal systems etc. Due to complex nature of the target system,
we seek a data-driven approach [5] for modeling the target
system dynamics. In this approach, the input-output data



Figure 1: Performance management of web-servers

is collected from the target system by exciting it with a pre-
defined pattern of the control input while applying HTTP
(Hypertext Transfer Protocol) workload. This ensures that
the validity of the model under different control input and
HTTP workload patterns [8].

Each of the VM hosting a web-server with a dynamic web
page simultaneously solves a set of ODE’s (ordinary differen-
tial equations) embedded as a CGI script. As HTTP load in-
creases on the web-server there is an increase in the CPU and
memory utlization, the response time and also the through-
put. Therefore, we choose these variables as state variables
in the proposed state space model (explained later in the
paper). We also chose the constraints on CPU and memory
utilization for each of the VM as ≤ 80 % and ≤ 90 % re-
spectively. The constraints are provided so that none of the
incoming requests fail or get delayed due to unavailability of
CPU or memory resources.

The summary of contributions of this paper are as follows:
Firstly, a linear state space model of the target system is de-
veloped using grey-box identification technique, secondly, we
apply state feedback control for performance control of the
web-servers. And thirdly, we compare the performance of
state feedback controller with Fuzzy controller which is de-
veloped based on fuzzy rule base that represents the expert
knowledge of the target system behaviour.

The rest of the paper is organized as follows: Section 2
of this paper presents the modelling of the web-server sys-
tem. Section 3 explains working and default control scheme
of Apache web server. Section 4 and Section 5 describe
the State feedback controller and fuzzy controller respec-
tively. Comparison of both controllers are illustrated in
Section 6. Section 7 consists the conclusion including future
work. Throughout the paper each VM represents a single
web server so these texts will be used interchangeably.

2. VIRTUALIZED WEB-SERVER SYSTEM
In this section, a grey-box model of the target system is

presented. It is a linear state space model with four state
variables and a control input (explained in the following sub-
section). The unknown parameters of the proposed model
are estimated using linear regression technique [13]. The
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Figure 2: Response of hosted web-server with in-
creasing workload with two running VMs

validation of identified model is performed with real time
test data. Figure 1 shows the block diagram for performance
management of a virtualized web-server. A load balancer
distributes the load among the existing and newly added
VMs hosting the web-server. The manipulation of virtual
machines is done by the proposed controllers (explained later
in the paper).

2.1 Experimental Testbed
Our experiments have been conducted with two server ma-

chines with Ubuntu (Linux) as the operating system, one
for emulating the client (8 core, 16 GB RAM and 3.2 GHz
CPU), and the other server (called the hosting server with
8 core, 32 GB RAM and 3.2GHz CPU) for hosting web-
server with a dynamic web page. Each of the VMs in the
hosting server consists of XAMPP software to create a multi-
tier web application. XAMPP provides Apache web-server,
ProFTPD server and the MySQL server.

A synthetic workload generator tool called httperf [4] is
used for emulating a large number of client requests. HAproxy
[3] is used as the load balancer to distribute HTTP load
across the web-servers. The two servers are connected by 1
Gbps LAN (Local Area Network).

Web-server Configuration: Apache web-server is com-
posed of workers consisting of threads or processes. Each
worker has three states: busy, wait and idle. Whenever a
request arrives, it looks for workers in idle state and if they
are available then it is served, otherwise it waits for a worker
to become idle.

The timeout parameter gives the maximum wait time of
the requests. Connections fail (not served) if they are not
served before the timeout. After receiving a request, worker
goes to busy state and after completion, it waits for the
requests to come from same client for a time known as
KeepAlive. For more on Apache web-server configuration
readers may refer to [15]. Figure 2 shows the open loop
response of the Apache web-server with the state variables



(explained in the next subsection). It is clear from the plot
that as the workload increases the memory and CPU in-
creases. For workload upto 2200 req/sec, the response time
is below 10ms after which it start increasing due to satu-
ration. Similarly, the throughput is satisfactory upto 2200
req/sec. However, as the workload increases further, the dif-
ference between the incoming requests and served requests
increases (incoming requests fail beyound 2200 req/sec that
are to be served). This can be observed from the throughput
plot, which becomes almost flat after 2200 req/sec.

2.2 Linear state space model
Model Assumptions: The proposed state space model is

developed with the following assumptions:

• The incoming HTTP requests are considered as distur-
bance/exogenous input to the model while the number
of VMs used for serving them are considered as the
control inputs.

• The relevant data for solving a set of ODEs as a CGI
script is stored in the MySQL server.

• Default setting of all Apache web-server are unaltered
while retries, maxconn, contimeout, clitimeout, srv-
timeout parameters of load balancer are tuned appro-
priately.

• Values of the CPU and memory utilization obtained
from each web-server hosted on the VMs are averaged.

2.2.1 State Variables
The exogenous input for our model is the HTTP workload

WOR(k) (requests/sec) and the control input is the num-
ber of virtual machines V IR(k). The state variables of the
model are the average CPU utilization CPU(k) in % (of all
the running VMs), memory usage MEM(k) in % (of all the
running VMs), response time RES(k) in ms and through-
put TRPT (k) in req/sec.
The model is expressed as

x(k + 1) = A x(k) +B u(k), y(k) = C x(k) (1)

where x = [CPU MEM RES TRPT ]′, u = [uc ud]′ =
[V IRWOR]′. x(k) is the state vector, uc is the control input
and ud is the exogenous input. Since the output and state
variables are the same, therefore C is the identity matrix.
The target system dynamics in state space form is given by:

x(k+1) =


a11 a12 0 0
a21 a22 0 0
a31 a32 a33 0
a41 a42 0 a44

 x(k)+


b11 b12
b21 b22
b31 b32
b41 b42

[uc(k)
ud(k)

]

where all alm and bln, where l = 1, 2, 3, 4,m = 1, 2, 3, 4, n =
1, 2 are to be estimated.

2.2.2 System Identification
In order to cover a larger input space (control input)

the number of VMs are varied in a sinusoidal manner with
changing workload. The amplitude of the sine wave is se-
lected such that it covers the range of the possible values
of the control input. We chose a sampling time of 1 second
for identification, validation and control experiments. The
sampling time is chosen based on our exploratory experi-
ments which conclude that for a larger sampling time the
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Figure 3: Validation plot: The real time data
(blue or solid lines) obtained from the experimental
setup is compared with the model prediction (red or
dashed lines)

model may not be accurate, whereas smaller sampling time
introduces noise in the measurement data.

The state space model after parameter estimation using
linear regression technique is given by:

A =


0.7309 0.0457 0 0
−0.0003 0.989 0 0

2.635 1.152 0.676 0
0.305 0.121 0 0.958



B =


0.5912 0.0006
0.0887 0.0005
−37.18 0.0383

2.34 0.0437

 (2)

2.2.3 Model Validation
Figure 3 shows the validation plot i.e. experimental data

vs model predicted data. The HTTP workload is changed
in traingular manner while the VMs are changed arbitarily
to observe change in state variables. It can be observed that
the validation plots of the CPU, memory, the response time
and the throughput closely follow the actual plots from the
target system. Even though the response time behaviour
is stochastic in nature, the model prediction shows good
tracking with respect to the actual data.

3. STATE FEEDBACK CONTROL
In state feedback control, pole locations are selected ac-

cording to required dynamic response. The objective of con-
trol is to ensure QoS (Quality of Service) i.e to keep the
response time below a certain value (50 ms in our case).

In order to implement to apply state feedback control the
target system represented by (1) must be controllable. The
controllability matrix is given by

C =
[
B AB ... An−1B

]
(3)



Figure 4: Block Diagram of feedback controller

where n is the number of states in the system.
A linear time-invariant system is controllable if and only

if C is invertible [7]. The controllability matrix of the target
system (2) is invertible, hence it is controllable.

3.1 Evaluation of state feedback gain
Figure 4 shows the block diagram of the closed loop sys-

tem. We design a state feedback controller for web-servers
for acheiving desired performance. The desired value of re-
sponse time is 10 ms. The key requirement is that controller
should be able to achieve this objective with changing work-
load. The state feedback gain is obtained by using pole
placement technique for which transient specifications are
chosen as: settling time of 30 sec and overshoot less than 5%.
Therefore, the dominant poles according to desired specifi-
cations are 0.87± 0.12 i. The other poles are chosen as 0.7
and 0.6. The control law u = −Kx provides the number of
VMs to serve the requests.

The control interval is choosen to be 10 seconds, which
means the number of VMs serving the requests are varied
every 10 seconds according to control law.

Experimental Results: In Figure 5, the performance of
the state feedback control under varying workload is shown.
We observe that the CPU and the memory are bounded
above within desired limits. The set value of response time
is taken to be 10 ms for the state feedback controller. It can
be observed that the response time stays well below the set
value most of the time under changing workload.

4. FUZZY CONTROLLER
A fuzzy controller unlike traditional controllers is based

on fuzzy logic/rule base. A fuzzy logic is a mathematical
logic that attempts to solve problems by assigning values to
an imprecise spectrum of data in order to arrive at the most
accurate conclusion possible [18]. The benifits of fuzzy logic
are its simplicity and its flexibility.

In the case of web-servers as the workload varies unpre-
dictably, the response varies in a stochastic manner. If no
control is applied to the system (see Figure 2 for open loop
response), the performance degrades as the workload in-
creases. Whenever workload increases abruptly, it saturates
the server, during which some requests are served while the
remaining requests are rejected. As the fuzzy controller is
based on the expert knowledge of the target system such
as the CPU and memory utilization bounds in addition to
the response time (being controlled), it can serve as a better
choice in comparision to the state feedback control. How-
ever, as stated earlier, it requires through knowledge of the
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Figure 5: Performance of feedback controller. The
red line(dashed) are the prediction of model and the
blue lines(solid) are experimental data.

Figure 6: Block Diagram of Fuzzy Controller

target system.
In our experimental test case, the fuzzy controller is used

to adjust the number of VMs according to fuzzy logic so that
the desired performance is met. The fuzzy logic is based on
a set of membership functions to capture the overall target
system dynamics.

4.1 Design of Fuzzy controller
The inputs to the fuzzy controller are CPU utilization,

memory utilization, the response time and the workload.
The values of all metrics obtained at sampling instances are
time averaged over control interval and are fed to fuzzy con-
troller. The output of controller is the number of VMs given
by the fuzzy rule base. One can also take input of controller
as difference between the desired value and output values
at sample instances and average it over control interval. As
fuzzy is based on qualitative knowledge, both types of inputs
are equivalent.

We use MATLAB [1] to evaluate the if-then rules for fuzzy
controller. The block diagram of fuzzy control of system is
shown in Figure 6. The or logic is implemented across differ-
ent input variables. For example, “if CPU is ρ1 or MEM is
ρ2 or WOR is ρ3 or RES is ρ4 ,then the number of VMs is
ρ5”, where ρi are numerical values. A membership function



Figure 7: Membership function for workload

Figure 8: Membership function for CPU

Figure 9: Membership function for Response time

Figure 10: Membership function for Memory
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Figure 11: Performance of fuzzy controller

associated with a given fuzzy set maps an input value to
its appropriate membership value. For the fuzzy controller,
we have used generalized bell membership function, however
traingular or trapezoidal or other membership functions can
also be used. Generalized bell membership function is spec-
ified by three parameters which determine its shape. It has
one more parameter than the Gaussian membership func-
tion, therefore, one more degree of freedom to adjust the
steepness at the crossover points. The advantage of using
this membership function is it is smooth and nonzero at all
points while it has one disadvantage that it lacks asymme-
try. As each VMs have an overhead memory usage, so the
membership functions for the memory are distributed ac-
cordingly.
The plot of membership functions for the different metrics
are shown in the figures 7, 8, 9 and 10. The output of a fuzzy
controller mainly depends on the distribution of membership
functions, so care should be taken while distributing them.
As described earlier, the main concern is to get desired per-
formance from the target system using sufficient number of
VMs. This is achieved by assigning different weights in the
if-then rules. Weights are assigned because our prime con-
cern is/are one or two metrics not the all metrics,so higher
weight for a metric implies more priority than others. Hence
in our case RES is provided highest weight then TRPT after
that CPU and MEM . The fuzzy controller has the control
interval of 10 seconds. This control interval is chosen be-
cause it is required that the desired properties are achieved
even for random change in workload. If it is assured that
workload change is not abrupt then control interval can be
increased to higher value.

Experimental Results: In Figure 11, the implemention of
fuzzy control with increasing workload is shown. The set
value of response time is chosen to be 10 ms. We observe
that as the workload increases the numbers of VMs changes
based on the fuzzy rule base to achieve the desired perfor-
mance. In addition, the CPU and the memory utilizations
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Figure 12: Comparison of State feedback and fuzzy
controllers with increasing workload

are within the desired limits even for higher workload. It
can also be observed that the response time is well below
the set value most of the time under increasing workload.

5. COMPARISON OF STATE FEEDBACK
AND FUZZY CONTROLLER

The implementation of the state feedback controller re-
quires system dynamics (model) whereas for fuzzy control
knowledge of system dynamics may not be required.
Figure 12 and 13 shows the comparison of fuzzy controller
and state feedback controller under two different workload
patterns. In Figure 12 the workload in monotonically in-
creasing, whereas in the Figure 13, the workload is random
in nature. The red coloured lines in these plots show the
response due to fuzzy controller, whereas the blue coloured
plots show the response due to state feedback controller.
Both the controllers provide desired performance. By ob-
serving plots, fuzzy control appears slightly better in term
of utilization of CPU while the state feedback controller ap-
pears slighty better in term of usage of memory. For re-
sponse time as well as for throughput both of the controller
perform satisfactorily. It can be observed that fuzzy con-
troller is good at determining the optimum number of virtual
machines while providing better performance than the state
feedback controller under changing workload conditions.

6. CONCLUSIONS
In this paper, we firstly develop a linear state space model

of the target system using grey-box identification technique
followed by model validation, secondly, we apply state feed-
back control based on the obtained model. A fuzzy controller
is then designed based on the knowledge of the target system
using fuzzy rule base. Finally, we compare the performance
of state feedback controller with fuzzy controller.
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Figure 13: Comparison of State feedback and fuzzy
controllers with random workload

In future work, we would like to extend our approach to
performance control of virtualized servers over distributed
network and locations, such as the cloud.
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