
Zoolander: Efficiently Meeting
Very Strict, Low-Latency SLOs

Christopher Stewart and Aniket Chakrabarti
The Ohio State University

Rean Griffith
VMWARE

Funded in part by NSF EAGER 123077

Slide 2

● For Internet services, slow response times cost
100-400ms delay reduces searches per session
[Google '09]

100ms delay drops revenue by 1% [Crocker et al. '12]

● Revenue >> Hardware Costs
● To profit: Revenue > Hardware + Salaries + Benefits etc.

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 3

● As arrival rate grows, processing tiers scale out

● As data grows, data tiers scale out

● In big-data era, frequent data access per request

– TripAdvisor: each request causes 20-40 memcached accesses
[Gelfond, 2011]

– Map-reduce services and graph processing issue 103--105

Front End
Apache

Business logic
Jboss,

Websphere

Data Lookup
Memcached, Redis,

Cassandra

Data Archives
Hadoop, Tape

Scales with: Request arrivals Data size

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 4

– Each user request sees 99th percentile
● 1 slow outlier out of 100 causes 1% revenue drop

– Service level objective: Ensure that 99.9% of data
accesses complete within 15ms

– Traditional scale-out approaches struggle to reach
such strict, low-latency SLOs

● Slow response times cost 2.6B in lost sales
(about 2% of market cap) [Flaherty,2012]

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 5

Replication for predictability is a dumb idea whose time
has come --- Line borrowed from [Mogul, 2003]

– Old, dumb idea → more resources ≠ more throughput

– Time has come → more resources = stronger SLO

Data Caching LayerZ
o

o
lan

d
er

Data access

First reply

Naive Approach:
Replicate data to D nodes
Send accesses to all D
Take first response

Scaling out via replication for predictability:

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 6

– Zoolander is middleware for key value stores
● Meets strict SLOs efficiently using traditional

approaches and replication for predictability

– This talk: Modeling and managing SLOs
● New way to think about predictability & scale out

Front End Business logic Data Lookup
e.g., memcached

SLO, Data size
Request arrivals

Z
o

o
lan

d
er . . .

Datapath for Zoolander

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Systems plane:

Management plane:

Slide 7

● Not this talk, but in the paper

● Zoolander contributes novel system designs

– Treat existing stores as PODS for scale out and full read/write

– Reuses existing code & features (e.g., fault tolerance)

– Hi-bandwidth reads reuse existing replicas for fault tolerance

– Persistent TCP connections and fast-read bypass for low overhead

– Support a range of consistency semantics: Causal consistency
[NSDI '13], Read your own write, and eventual

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 8

● Revived under many aliases in recent literature:

Replication for predictability [Trushkowsky, FAST '10]

Cloning [Ananthanarayanan, NSDI '13; Dean, OSDI '04]

Redundant execution [Dean & Barroso, Comm ACM '13]

● Things they do that Zoolander doesn't:

– Wait for timeout and resend [Dean & Barroso, Comm ACM '13]

● Our model extends to this case
● Things Zoolander does that they don't:

– Scale out to D duplicates, support consistent writes, manage SLO

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 9

– Can we use replication for predictability to meet strict SLOs?
● Study access-time tails in key value stores
● Model replication for predictability on SLOs

– Should we scale out this way?
● Model-driven study: Rep. for pred. vs Other approaches
● Case study: Zoolander at scale

Cost Effective Scaling 1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions

Slide 10

● Fat/Heavy Tail: Outliers are way
out; not captured by normal or
exponential distributions

● Org. BigTable: 99.9th percentile
was 31X mean [dean '12]

● Same result: memcached, Redis,
Cassandra; private, EC2

● Root cause: OS, background jobs,
and performance bugs

0.1 1 10 100 1000

0%

25%

50%

75%

100%

Writes ZK=3

Access time (ms)

C
D

F

3-node Zookeeper on 4 core
2.4Ghz, data size = 1 GB,
100K writes issued serially

99th % > 99X mean

Fat Tails in Key Values 1. Statistical Properties
 2. Core Model
 3. Model Validation

Slide 11

● Each point reflects a request's
percentile in test #1 and #2

● Almost every quartile touched;
statistical independence

● In-memory key value stores

– Extremely fast; many OS
operations can cause delays

– Other workloads → Future work

0% 50% 100%

0%

50%

100%

Cross-Execution
Independence

Percentile in
execution #1

P
e

rc
e

nt
ile

 in

ex
ec

u
tio

n
 #

2

2 Zookeeper tests performed on
different servers. Requests sent
in the same order for each test

Fat Tails in Key Values 1. Statistical Properties
 2. Core Model
 3. Model Validation

Slide 12

● What is the probability that first reply exceeds 15ms?

(1 – Φ(15ms)) x (1 – Φ(15ms)) x (1 – Φ(15ms))

Φ = Cumulative distribution function of access times

● At scale (D), Service Level = 1 – (1 – Φ(τ))D

Data Caching LayerZ
o

o
lan

d
er

Data access

First reply

SLO: ?% of data accesses complete within 15ms(τ)

Fat Tails in Key Values 1. Statistical Properties
 2. Core Model
 3. Model Validation

0.1 1 10 100 1000

0%

25%

50%

75%

100%

Writes ZK=3

Slide 13

Core model: Service Level = 1 – (1 – Φ(τ))D

99.5%99%98%97%96%95%94%93%92%91%

0

1

2

3

4 Zoolander
Prediction
Observed

Target Latency Bound (τ)
(shown as a percentile of the single-node distribution)

A
ch

ie
ve

d
S

er
vi

ce
 L

ev
el

(n
um

be
r

of
 n

in
es

)

3-Node Zookeeper Groups (0.0001)

(0.0002)(0.0007)

(0.001)(0.0016)

(0.001)

(0.0028) (0.0011)(0.0001)

(0.0006)

Test #1: Is the model accurate as τ varies?

Fat Tails in Key Values 1. Statistical Properties
 2. Core Model
 3. Model Validation

Slide 14

Core model: Service Level = 1 – (1 – Φ(τ))D

Test #2: Is the model accurate as D varies?

1 2 4 8

90.0%

92.5%

95.0%

97.5%

100.0%

0.000

0.002

0.004

0.006

0.008

0.010

Observed
Estimated
Absolute
Error

Servers Used

A
ch

ie
ve

d
S

er
vi

ce
 L

ev
el

Writes Accesses

P
redic tion E

rror

Fat Tails in Key Values 1. Statistical Properties
 2. Core Model
 3. Model Validation

Duplicates Used

Slide 15

– Can we do it?
● Study access-time tails in key value stores
● Model replication for predictability on SLOs

– Should we use replication for predictability to scale?
Is it cost effective?

● Use our performance model to compare rep. for pred.
against competing scale out approaches

● Case study: Zoolander at scale

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 16

● Challenges: Duplicates share DC network and go through Zoolander

● Also, duplicates process requests at the same rate

– Suffer the same queuing delay; Well modeled

– Traditional scale out attacks queuing delay;“Divide the Work”

Queue
 Delay= 4

Q= 2

Q= 2

Before
Scale Out

Best Case
Partitioning

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Q= 3

Q= 1.2

Real world
Partitioning

Only scale out via
rep. for pred.

Captured by M/G/1 Hot spots, convoy,
Consistency, etc.

Slide 17

– Replication for predictability affects service times;
traditional “divide the work” affects queuing delay

● When is replication for predictability definitely better?

R is number of replicas in traditional scale out

– Post-queuing latency bound τPQ = τ - queuing delay

arrival rate=
global arrival rate

R

queuing delay=F (arrival rate)x service time

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

0.1 1 10 100 1000

0%

25%

50%

75%

100%

Writes ZK=3

Slide 18

Full model: Service Level = 1 – (1 – Φ(τPQ))D

Service Level = 1 – (1 – Φ(τ –))DF (
global arrival rate

R
)

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 19

0 0.2 0.4 0.6 0.8 1

95%

96%

97%

98%

99%

100%

RP

TP

Mix

Normalized Arrival Rate Per Node
(4 nodes max)

E
xp

ec
te

d
 S

e
rv

i c
e

L
ev

e
l

4 Duplicates
1 Duplicate
2 Duplicates

Too large D

Too small D

- Does rep. for pred.
strengthen SLOs?
Yes. Traditional scale

out is limited by service
time dist.

Best approach depends
on arrival rate

Heavy arrivals per node =
still a dumb idea

Moderate arrivals =
Mixed strategy works well

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 20

– Should we use replication for predictability to scale?
Is it cost effective?

● Case study: Zoolander at scale

● Zoolander is real middleware that currently works
with Zookeeper, Cassandra, Redis, and memcached

● TripAdvisor released details of its memcached
[Gelfond '12]

– We leased 144 EC2 units to test Zoolander under
TripAdvisor's scale

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 21

● Challenges:

– Scale Zoolander to support 40M accesses per hour

– Adapt Zoolander at night; accesses drop to 20M

– Strengthen SLO if possible—Be cost effective!

● Competing, adaptive approaches

– Make no changes at night

– Turn off servers at night,

– Replicate for predictability at night

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 22

0.0001 0.0010 0.0100 0.1000 1.0000
0%

50%

100%

150%

200%

Private Cloud w/o Migration
Private Cloud, Zoolander
Public Cloud, Zoolander

Cost of SLO Violations (x1000)

R
el

at
iv

e
C

os
t

Service Level Objective: Ensure 20 requests complete with 150ms

Zoolander is cost effective
for private clouds

EC2 favors energy saving,
save energy + hardware

Zoolander reduced SLO
violations by 32%!

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 23

0.0001 0.0010 0.0100 0.1000 1.0000
0%

50%

100%

150%

200%

Private Cloud w/o Migration
Private Cloud, Zoolander
Public Cloud, Zoolander

Cost of SLO Violations (x1000)

R
el

at
iv

e
C

os
t

Service Level Objective: Ensure 20 requests complete with 150ms

TripAdvisor
Ad revenue / Visitors * 1%

Cost = $0.068 per 1000

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Slide 24

● Fat tails are common, expected, and hard to remove in key-
value stores

● Zoolander uses redundant execution to mask outlier access
times and to meet SLOs cost effectively at scale

● Traditional approaches and replication for predictability
should be used for scale out. Analytic models can capture
the benefits of both!

Meeting Strict SLOs
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

	Title Page
	main-Cost Effective Scaling
	subs-Traditional Scale Out
	subs-Big Data Challenges
	subs-The Time has Come
	suba-The Time has Come
	subs-Contributions
	subb-Contributions
	subc-Contributions
	main-Fat Tails in Key Values
	subs-Statistical Properties
	suba-Core Model
	subs-Model Validation
	suba-Model Validation
	main-Meeting Strict SLOs Cost Effectively
	subs-Queuing
	subs-Model Driven Study
	suba-Model Driven Study
	subb-Model Driven Study
	subs-Zoolander at Scale
	subc-Zoolander at Scale
	subb-Zoolander at Scale
	Slide 23
	suba-Conclusion

