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● For Internet services, slow response times cost
100-400ms delay reduces searches per session              
[Google '09]

100ms delay drops revenue by 1% [Crocker et al. '12]

● Revenue >> Hardware Costs
● To profit: Revenue > Hardware + Salaries + Benefits etc.
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● As arrival rate grows, processing tiers scale out

● As data grows, data tiers scale out 

● In big-data era, frequent data access per request

– TripAdvisor: each request causes 20-40 memcached accesses 
[Gelfond, 2011]

– Map-reduce services and graph processing issue  103--105

Front End
Apache

Business logic
Jboss, 

Websphere

Data Lookup
Memcached, Redis,

Cassandra

Data Archives
Hadoop, Tape

Scales with: Request arrivals Data size
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– Each user request sees 99th percentile
● 1 slow outlier out of 100 causes 1% revenue drop

– Service level objective: Ensure that 99.9% of data 
accesses complete within 15ms

– Traditional scale-out approaches struggle to reach 
such strict, low-latency SLOs

● Slow response times cost 2.6B in lost sales              
(about 2% of market cap) [Flaherty,2012]
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Replication for predictability is a dumb idea whose time 
has come --- Line borrowed from [Mogul, 2003]

– Old, dumb idea → more resources ≠ more throughput

– Time has come → more resources = stronger SLO
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Data access

First reply

Naive Approach:
Replicate data to D nodes
Send accesses to all D 
Take first response

Scaling out via replication for predictability:
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– Zoolander is middleware for key value stores
● Meets strict SLOs efficiently using traditional 

approaches and replication for predictability

– This talk: Modeling and managing SLOs
● New way to think about predictability & scale out

Front End Business logic Data Lookup
e.g., memcached

SLO, Data size
Request arrivals
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Datapath for Zoolander
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● Not this talk, but in the paper

● Zoolander contributes novel system designs

– Treat existing stores as PODS for scale out and full read/write

– Reuses existing code & features (e.g., fault tolerance)

– Hi-bandwidth reads reuse existing replicas for fault tolerance

– Persistent TCP connections and fast-read bypass for low overhead

– Support a range of consistency semantics: Causal consistency 
[NSDI '13], Read your own write, and eventual
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● Revived under many aliases in recent literature:

Replication for predictability [Trushkowsky, FAST '10] 

Cloning [Ananthanarayanan, NSDI '13; Dean, OSDI '04]

Redundant execution [Dean & Barroso, Comm ACM '13]

● Things they do that Zoolander doesn't:

– Wait for timeout and resend [Dean & Barroso, Comm ACM '13]

● Our model extends to this case
● Things Zoolander does that they don't:

– Scale out to D duplicates, support consistent writes, manage SLO

Cost Effective Scaling  1. Traditional Scale Out
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– Can we use replication for predictability to meet strict SLOs?
● Study access-time tails in key value stores
● Model replication for predictability on SLOs

– Should we scale out this way?
● Model-driven study: Rep. for pred. vs Other approaches
● Case study: Zoolander at scale

Cost Effective Scaling  1. Traditional Scale Out
 2. Big Data Challenges
 3. The Time has Come
 4. Contributions
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● Fat/Heavy Tail: Outliers are way 
out; not captured by normal or 
exponential distributions

● Org. BigTable: 99.9th percentile 
was 31X mean [dean '12]

● Same result: memcached, Redis, 
Cassandra; private, EC2

● Root cause: OS, background jobs, 
and performance bugs
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Fat Tails in Key Values  1. Statistical Properties
 2. Core Model
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● Each point reflects a request's 
percentile in test #1 and #2

● Almost every quartile touched; 
statistical independence

● In-memory key value stores

– Extremely fast; many OS 
operations can cause delays

– Other workloads → Future work
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● What is the probability that first reply exceeds 15ms?

(1 – Φ(15ms) ) x  (1 – Φ(15ms) ) x (1 – Φ(15ms) )

Φ = Cumulative distribution function of access times

● At scale (D), Service Level = 1 – (1 – Φ(τ))D
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Data access

First reply

SLO: ?% of data accesses complete within 15ms(τ)

Fat Tails in Key Values  1. Statistical Properties
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Core model: Service Level = 1 – (1 – Φ(τ))D
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Test #1: Is the model accurate as τ varies?
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Core model: Service Level = 1 – (1 – Φ(τ))D

Test #2: Is the model accurate as D varies?
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– Can we do it?
● Study access-time tails in key value stores
● Model replication for predictability on SLOs

– Should we use replication for predictability to scale?     
Is it cost effective?

● Use our performance model to compare rep. for pred. 
against competing scale out approaches

● Case study: Zoolander at scale

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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● Challenges: Duplicates share DC network and go through Zoolander

● Also, duplicates process requests at the same rate

– Suffer the same queuing delay; Well modeled

– Traditional scale out attacks queuing delay;“Divide the Work”

Queue
 Delay= 4

Q= 2

Q= 2

Before 
Scale Out

Best Case
Partitioning

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale

Q= 3

Q= 1.2

Real world
Partitioning

Only scale out via 
rep. for pred.

Captured by M/G/1 Hot spots, convoy,
Consistency, etc.
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– Replication for predictability affects service times; 
traditional “divide the work” affects queuing delay

● When is replication for predictability definitely better? 

R is number of replicas in traditional scale out

– Post-queuing latency bound τPQ =  τ - queuing delay

arrival rate=
global arrival rate

R

queuing delay=F (arrival rate)x service time

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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Full model: Service Level = 1 – (1 – Φ(τPQ))D

Service Level = 1 – (1 – Φ( τ –                                   ))DF (
global arrival rate

R
)

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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– Should we use replication for predictability to scale?     
Is it cost effective?

● Case study: Zoolander at scale

● Zoolander is real middleware that currently works 
with Zookeeper, Cassandra, Redis, and memcached

● TripAdvisor released details of its memcached 
[Gelfond '12]

– We leased 144 EC2 units to test Zoolander under 
TripAdvisor's scale

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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● Challenges:

– Scale Zoolander to support 40M accesses per hour

– Adapt Zoolander at night; accesses drop to 20M 

– Strengthen SLO if possible—Be cost effective!

● Competing, adaptive approaches

– Make no changes at night

– Turn off servers at night, 

– Replicate for predictability at night

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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Service Level Objective: Ensure 20 requests complete with 150ms

Zoolander is cost effective 
for private clouds

EC2 favors energy saving, 
save energy + hardware

Zoolander reduced SLO 
violations by 32%!

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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Service Level Objective: Ensure 20 requests complete with 150ms

TripAdvisor
Ad revenue / Visitors * 1%

Cost = $0.068 per 1000

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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● Fat tails are common, expected, and hard to remove in key-
value stores

● Zoolander uses redundant execution to mask outlier access 
times and to meet SLOs cost effectively at scale

● Traditional approaches and replication for predictability 
should be used for scale out.  Analytic models can capture 
the benefits of both!

Meeting Strict SLOs 
Cost Effectively

 1. Queuing
 2. Model Driven Study
 3. Zoolander at Scale
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