Preliminary Results on an Interactive Learning Tool for Early Algebra Education

Siva Meenakshi Renganathan (now at Apple), Christopher Stewart, Arnulfo Perez, Rashmi Rao & Bailey Braaten

Department of Teaching and Learning + Department of Computer Science and Engineering
The Ohio State University
We designed a web-based learning tool that provides **instant feedback** as students explore pedagogical concepts in early Algebra curriculum.

In 2017, we deployed at 5 schools for 1300 students.

Key principles to support interactive learning tools:
- Co-designing curriculum and systems
- Regulated data transfer between client and server
- Integration with Classroom Management systems
Outline

• Background: STEM curriculum for Algebra I

• Design and Principles for an interactive tool

• Evaluation and Optimizations

• Deployment and Analysis
Outline

• **Background: STEM curriculum for Algebra I**

• Design and Principles for an interactive tool

• Evaluation and Optimizations

• Deployment and Analysis
Science and Engineering Driven Mathematics Curriculum

- Absent and/or negative STEM experience in primary education drives students away in college

- Students struggle to link STEM curriculum to applications in real world
Science and Engineering Driven Mathematics Curriculum

• We designed a new engineering driven Algebra curriculum
 ■ Explores STEM concepts and applications simultaneously
 ■ Engage, Investigate, Model and Apply framework

• Key idea: Teach mathematical concepts alongside STEM applications
 ■ Use a smart classroom portal to link representations of data: *Equations, Graphs and Physical data*
OSU STEM+C Curriculum

1) Guide students to setup the apparatus for scientific experiments
2) Data collection: Run experiments with different inputs and measure corresponding output
3) Interactive visualization: Chart data, plot graph, view equation
4) Update regression curve when data is manipulated; Observe the variation of curve in the graph as the parameters like slope and y-intercept changes
5) Teach different representations of data: physical points, graph and equations
• Experiment: Students measure different current outputs for different input voltages (batteries) and use the graph to find an unknown resistor

• Linear algebra correspondence:
 • \(Y = (m \times X) + c \rightarrow I = (1/R \times V) \)
 • \(I \) is the current in the circuit
 • \(V \) is the voltage in the circuit
 • \(R \) is the resistance in the circuit
 • \(m = 1/R \), is the slope
 • \(c = 0 \), is the y intercept
Outline

- Background: STEM curriculum for Algebra I

- **Design and Principles for an interactive tool**

- Evaluation and Optimizations

- Deployment and Analysis
Curriculum Technical Requirements

- An interactive smart classroom portal where students:
 1. Enter their experimental data
 2. Visualize it on to a graph
 3. Generate regression lines and their equations
 4. Interactively manipulate slope and y-intercept
 5. Update axes to better understand negative slopes
 6. Save work and retrieve it later
 7. Collaborate and share data with other students
 8. Observe **instant feedback**
Response time below 50ms (20 frames per second)

- Data Input
- Data Visualization
- Interactive updates on the visualized graph
- Share data between users in real time
- Save data and session to continue later
- Integration with classroom management systems for easy adoption

- Demo
System Design

- Design Principles:
 - Client-side scripting
 - Curriculum and system co-design
 - Asynchronous transfer between Client and Server
 - Integration with classroom management systems

![Diagram showing cloud with arrows to and from tables, equations, physical representation, and graphical views.]

- Push Student A’s data & activity
- Pull other Students’ data
- Instantaneous update
- Different curriculum representations of the data

Cloud
Equations
Tables
Graphical views
Physical representation

Student A’s experimental Results
Curriculum and System Co-Design

Response time challenges

- Graphing tools like excel does not provide interactive charts
- Primary focus should be curriculum demands more than other features
- Co-design a system with graphing and Interactivity at core that guarantees minimal update times

Client-side Scripting

- JavaScript enabled client that uses D3.js visualization library
- Client visualization enables client to graph data without sending requests to server
- No RTT latency in visualization
- All updates to graphs are processed by client in few milliseconds
Curriculum and System Co-Design

<table>
<thead>
<tr>
<th>Curriculum Requirements</th>
<th>Number of clicks in Excel</th>
<th>Number of clicks in Our system</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input n points</td>
<td>2n</td>
<td>2n</td>
</tr>
<tr>
<td>Insert 1 point in between</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Delete 1 point</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Graph points to a line</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>View equation of line</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Change slope</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Change intercept</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Update point and update graph</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Add a new line to existing graph</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Delete an existing line from graph</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Update 1 extreme axis</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Update all 4 axis</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Sharing Data Between Students/Teachers

<table>
<thead>
<tr>
<th>Problems that slow down response time</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does every update require a page reload?</td>
<td>AJAX (Asynchronous Javascript and XML) can send and receive data without reload</td>
</tr>
<tr>
<td>Must capture ALL interactions from keystrokes to mouse movement.</td>
<td>Batch user interaction and transmit every 60 seconds</td>
</tr>
<tr>
<td>How frequently are shared tables updated? How is data kept consistent?</td>
<td>Add a button. Refresh tables and pull data on demand.</td>
</tr>
</tbody>
</table>
Sharing Data Between Students/Teachers

Problems that slow down response time

- Does every update require a page reload?
 - AJAX (Asynchronous Javascript and XML) can send and receive data without reload

- Must capture ALL interactions from keystrokes to mouse movement.
 - Batch user interaction and transmit every 60 seconds

- How frequently are shared tables updated?
 - How is data kept consistent?
 - Add a button. Refresh tables and pull data on demand.
Outline

• Background: STEM curriculum for Algebra I

• Design and Principles for an interactive tool

• Evaluation and Deployment
Performance Analysis

- **Avg. response time below 10 ms**
 - Graph creation
 - Update equation
 - Add/remove points

- **Tail latency**
 - Slowest requests were initial page loads
 - 99% below 100 ms
 - 99.9% below 150 ms
Deployment and Analysis

- In 2016, piloted with 20 teachers
- Updated curriculum and tool with feedback
- More than 80% adopted our portal for their classes
- In 2017, over 1300 students in 5 schools in Columbus
Deployment and Analysis

- Number of interactions across different classes

![Interaction Chart](image)
Conclusion

- Developed an engineering driven curriculum

- Uncovered principles for interactive curriculum-aware smart classrooms

- Deployed to over 1300 students; Evaluated performance

- Future work: Add more chapters and deep IoT support