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ABSTRACT
Existing secret key extraction techniques use quantization
to map wireless channel amplitudes to secret bits. This pa-
per shows that such techniques are highly prone to environ-
ment and local noise effects: They have very high mismatch
rates between the two nodes that measure the channel be-
tween them. This paper advocates using the shape of the
channel instead of the size (or amplitude) of the channel.
It shows that this new paradigm shift is significantly ro-
bust against environmental and local noises. We refer to
this shape-based technique as Puzzle. Implementation in
a software-defined radio (SDR) platform demonstrates that
Puzzle has a 63% reduction in bit mismatch rate than the
state-of-art frequency domain approach (CSI-2bit). Exper-
iments also show that unlike the state-of-the-art received
signal strength (RSS)-based methods like ASBG, Puzzle is
robust against an attack in which an eavesdropper can pre-
dict the secret bits using planned movements.

1. INTRODUCTION
For wireless communications, there has been a great in-

terest in generating shared secrets from the physical layer
as a complementary approach to the traditional methods of
cryptography. The interest stems from the open nature of
the wireless medium and the infrastructure constraints as-
sociated with key management in mobile scenarios. There
are two main approaches for secret-sharing in wireless. One
is based on information-theoretic principles of exploiting the
secrecy capacity between Alice and Bob compared to Alice
and Eve [1]. The main drawback of this approach is that
secrecy is dependent on rather strong assumptions about
eavesdropper’s capability. Equally importantly, even a mod-
est increase in the spatial density of eavesdroppers harms the
secrecy rate of the approach dramatically [9].

The other approach is based on channel reciprocity. Chan-
nel reciprocity refers to the physical principle whereby near-
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simultaneous observations of the channel by two commu-
nicating parties are identical due to the channel paths be-
tween them being symmetrical. Fig. 1 in Section 3 shows
this reciprocity in our testbed. The time for which the wire-
less channel remains correlated is called the coherence time.
By extracting channel state information (CSI) from the ob-
served signals, Alice and Bob can share bits by transmit-
ting signals to each other within the coherence time. Fur-
thermore, extensive theoretical analysis and experimenta-
tion have shown that observations of the wireless channel
over distances larger than half-the-wavelength of the carrier
frequency are uncorrelated [10]. In a 2.4GHz ISM band, for
instance, at any location farther than 6cm away from Bob,
Eve will observe Alice’s signal through an uncorrelated chan-
nel. Channel reciprocity and spatial decorrelation together
make the wireless channel an excellent random source for
generating shared secret keys.

There is significant prior work that exploits channel reci-
procity for secret extraction. One set of techniques use the
received signal strength (RSS) as the secret source [2, 4, 7,
8, 14]. These techniques measure the RSS over different co-
herent intervals to generate a sequence of RSS. They choose
a threshold and transform the signal strength sequence into
1s (if above that threshold) and 0s (if below the thresh-
old). The largest drawback with these techniques is that
large variations can be easily introduced by an attacker by
blocking transmission every now and then. These variations
make the secret predictable since the attacker knows the ex-
act moments at which the signal-to-noise ratio (SNR) will
drop or increase. Section 4 presents this attack and shows
this vulnerability.

Another set of techniques use the fine-grained temporal
[12, 6, 13] or frequency [5] components contained in re-
ceived signals as the secret source. The temporal techniques
use ultra-wideband transmissions (≈ GHz bandwidth) to
capture this fine-grained temporal information. Therefore,
these techniques are not applicable for narrowband systems
such as Wi-Fi (with only 20MHz bandwidth). Furthermore,
another challenge in temporal techniques is that temporal
information is sensitive to sampling offset which leads to a
high rate of secret disagreement. In contrast, the frequency
technique of Liu et al [5] is applicable to narrowband systems
and is not sensitive to sampling offset. The authors quan-
tize the frequency response in each subcarrier in OFDM and
map them to secret bits. In Section 4, we dispute the au-
thors’ claim of high secrecy rate and show that the secrets
generated from their method is very limited.



Overall, this paper takes the stand that the amplitude
(the size) of a signal –in time or frequency– is prone to
perturbations from the environment as well as hardware im-
perfections. This leads to quantization errors at nodes and
high mismatch in secrecy bits generated by wireless nodes.
Instead, this paper proposes to use the shape of a signal
to deduce secrecy bits. Specifically, we make the following
contributions.

• We propose and implement a shape-based secret ex-
tracting algorithm called Puzzle that we show to be
robust to noise and device imperfections. In particu-
lar, no online or offline device calibration is required.

• We prove that the power spectrum density (PSD) of
random data can be used to extract CSI. This implies
that no modification is needed for the higher layers
of the wireless communication, such as transmitting
special training data.

• Our experiments show that Puzzle produces a 5-bit
secret per packet and has a 63% improvement in bit
mismatch rate than the frequency domain approach
mentioned above.

2. SYSTEM MODEL
Consider two wireless nodes, Alice and Bob, that wish to

create a shared secret S within a coherence time, during
which the channel is stable. An adversary, Eve eavesdrops
the communication between Alice and Bob. Our goal is
to develop a secret extraction algorithm that introduces as
little communication and computation overhead as possible
and ensures that Eve obtains little information about S.

Jamming is also a primary threat to wireless protocols. It
is true that external interference can alter the shape of the
CFR in a subtle way that Puzzle fails to produce an agreed
secret while the received signal is still decodable. But in
reality, the more probable case is that both of them fail.
So jamming is more of a DoS threat to the underlying data
communication which puzzle is built upon. Therefore the
treatment of this threat is out of scope of our paper.

2.1 Physical Layer Model
2.1.1 Channel model
Assume Alice and Bob operate in a Time-Division Duplex-

ing (TDD) system. If they talk to each other in coherence
time, the observed signals of Alice and Bob are represented
by

yA(t) = (h ∗ xA)(t) + nA(t) (1)

yB(t) = (h ∗ xB)(t) + nB(t) (2)

where h(t) is the channel impulse response, which is iden-
tical in both directions by virtue of channel reciprocity, xA

and xB are the signals transmitted by Alice and Bob respec-
tively, nA(t) and nB are additive white Gaussian noise with
the same variance N , and “∗” indicates convolution. In the
frequency domain, the equations above are rewritten as

YA(f) = H(f) ·XA(f) +NA(f),
−W
2

+ fc < f <
W
2

+ fc

(3)

YB(f) = H(f) ·XB(f) +NB(f),
−W
2

+ fc < f <
W
2

+ fc

(4)
where W is the transmission bandwidth, fc is the center
frequency, and H(f) is the channel frequency response.

2.1.2 Channel Frequency Response
In this section, we propose two ways to extract the channel

frequency response H(f).
Direct calculation: By using pre-defined training sig-

nals or decoding the received signals, Alice and Bob know
the frequency components XA(f) and XB(f) of the trans-
mitted signals. Therefore, they can calculate H(f) easily,
assuming that noise can be ignored.

PSD-based method: Let { x0, x1, ..., xN−1 } be a com-
plex sample sequence. Since the sequence is stationary and
random, the auto-correlation of the sequence is

R(t1, t2) =
P
N
× δ(t2 − t1) (5)

where P is the power contained by the signal sequence.
Then, the PSD of the sequence is

F [R(τ )] =

∫ +∞

−∞

P
N
× δ(τ )e−jωτdτ =

P
N

(6)

From Equation 6, we know that

XA(f) =
PA

W
, XB(f) =

PB

W
(7)

Combining Equations 3 through 7 we get

YA(f) ≈
H(f) · PA

W
+N, YB(f) ≈

H(f) · PB

W
+N (8)

According to the above equations, we conclude that the
PSD of yA(t) is the same as that of yB(t) as long as PA =
PB . It is worth noting that even if PA %= PB , the shape
of Alice’s and of Bob’s PSD are still similar. This prop-
erty is remarkable because it can be extended to the case in
which Alice and Bob experience different levels of transmis-
sion power, noise or cross-band interference. Even in such
cases, the shapes still don’t change significantly.

2.2 Threat Model
Eve is motivated to derive the shared secret generated by

Alice and Bob. There are two main ways of achieving this.

2.2.1 Eavesdropping
Eve can attempt to derive ChAB from ChAE or ChBE ,

where ChAB , ChAE , and ChBE denote the channel from
Alice to Bob, Alice to Eve, and Bob to Eve, respectively.
This may be possible if Eve has full knowledge of the envi-
ronment. In general, however, full knowledge of the environ-
ment is a rather unrealistic assumption, even with multiple
eavesdroppers involved, so we do not regard it as the main
threat to our system. Instead, we focus on the threat of spa-
tial correlation of the secrets produced by our algorithm. We
assume that Eve cannot stalk Alice or Bob to being within
half of a wave length of either of them. This assumption is
reasonable since close eavesdroppers suffer from a high ex-
posure risk. Recall that theory [10] supports that channels
decorrelate beyond half a wavelength.

2.2.2 Planned movement
Eve can move in between Alice and Bob to block and

unblock their transmissions. Planned movements can thus
introduce predictable increase or decrease of RSS at Alice
and Bob. Note that while this attack is harmful to RSS-
based methods, without the full knowledge about the en-
vironment, Eve cannot, however, predict the impact of the
planned move on the frequency response of the channel.

3. SECRET GENERATION



Note from Fig. 1 that although channel reciprocity is clearly
apparent for the naked eye, the frequency response curves
are more or less shifted or zoomed versions at correspond-
ing frequencies. Moreover, distinct local fluctuations exist.
These discrepancies are unavoidable because they sponta-
neously result from the hardware imperfections and envi-
ronment interferences. This shows that direct quantization
and mapping of the frequency response can lead to high mis-
match rates. We, therefore, develop a shape-based approach
to solve the encoding problem.

Algorithm 1: CurveCoding

Input:
complex samples a[0, · · · , n];
number of segments m;
Output:
code [C1, C2, · · · , Cm]
Initialization
divide a[0, · · · , n] into m segments b1,b2,· · · ,bm;
peak = { Max1(a[0, · · · , n]) - Min1(a[0, · · · , n])}
PatternGeneration(&n/m',m, peak):

generate 3 patterns of size &n/m': p1,p2,p3;
for i← 1 to m do

temp = ∞;
for j = 1→ 3 do

dis = Fréchet(bi,pj);
if temp > dis then

temp = dis;
Ci = j;

end

end

end

Algorithm 2: PatternGeneration

Input:
k, m, peak;
Output:
3 patterns p1[1, · · · , k], p2[1, · · · , k], p3[1, · · · , k]
for i← 1 to k do

p1[i] = peak × i
k × m

;

p2[i] = − peak × i
k × m

;

p3[i] = peak
m × 2

;

end

3.1 Curve Smoothing
As mentioned above, even though local details of a power

spectral density pair are significantly different, channel reci-
procity manifests itself by the similarity of the overall shapes
between the pair. By plotting smoothed points, confor-
mal information about the overall shape is extracted de-
spite the local variations. In our algorithm, we adopt Lo-
cally Weighted Scatter Plot (Lowess) smoothing [3], a curve
fitting method that calculates the smoothed value by apply-
ing locally weighted regression over a span. Fig. 1 depicts
two PSD curves obtained by two communicating wireless
nodes and their corresponding curves after applying Lowess
smoothing with a span of 0.4. From Fig. 1, we can see that
the Lowess curves coincide with each other almost exactly
and the overall shapes are preserved, even though the origi-
nal ones differ from each other in most of the locations.
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(a) Lowess curve by Alice
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(b) Lowess curve by Bob

Figure 1: Lowess curves derived by Alice and Bob. Lowess
curves are much more similar to each other than the original
PSD curves as local variations are removed.
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Figure 2: An example of curve encoding.

3.2 Curve Encoding
By using curve smoothing, we obtain two highly similar

curves. To solve the encoding problem, let us first briefly
consider several alternative methods: 1) encode in accor-
dance with an approximation function that describes the
curve; 2) encode in accordance with the statistical proper-
ties of the curve; 3) encode by describing the shape of the
response. We adopt the third one for the following reason.
As mentioned in Section 3.1, channel reciprocity is readily
seen by the similarity of the overall shapes between curves.
Hence, encoding by describing the shape should preserve
most of the information shared by the two ends. By way
of contrast, extracting secrets from the statistical proper-
ties definitely suffers from losing much of the mutual infor-
mation. And the approximation function does not tolerate
even small deviations, but measurement error and interfer-
ence make such deviations quite common. Fig. 2 gives an
example of curve coding. The curve obtained in a certain
band is treated as a block, which can be divided into varying
number of segments of equal length, and then the segments
are mapped to one of three curve patterns which are of the
same length, as shown in Fig. 2. These three patterns are
indexed as 0, 1, and 2. The three “predetermined” patterns
describe the ascending, descending and steady trend of the
curves respectively. By “predetermined”, we mean that the
indices and the shapes of the patterns are well known to all
wireless nodes. The gradient of the ascending and descend-
ing lines, however, is decided by each node according to the
maximum and minimum values of the smoothed curve, and
the length of the segment. We have designed that pattern
generation thus to tolerate measurement errors and different
device settings. For example, two communicating nodes may



wish to use different tx/rx gains that would amplify the sig-
nals differently. Since each pattern is related to the locally
received signals, it describes the shape correctly without the
need to negotiate with the other node. We set the gradient of
the ascending pattern to be relative to max−min

# of segments
, and like-

wise for the descending pattern is relative to − max−min
# of segments

.
The segment is then mapped to the most similar of the three
patterns by measuring the discrete Fréchet distance [11] δdF
between the segment and the patterns, which measures the
similarity of two polygonal curves while taking the location
and ordering of the points along the curves into considera-
tion. The smaller the distance, the more is the similarity
the two curves share. The complete algorithm is presented
in Algorithm 1 and Algorithm 2.

4. EXPERIMENTAL VALIDATION
In this section we study four important metrics to measure

the performance of Puzzle.

• Entropy: Entropy measures the unpredictability of a
random variable X. It is defined as

H(X) = −
n
∑

i=1

p(xi) log2 p(xi)

where x1, · · · , xn are possible values of X.
• Bit Mismatch Rate: Bit mismatch rate is defined as

the ratio of the number of bits between Alice and Bob
that do not match and the number of bits extracted
from the shape of the spectrum.

• Correlation: Correlation ρx,y is defined as

ρx,y =

n
∑

i=1

(xi − x̄)(yi − ȳ)

√

n
∑

i=1

(xi − x̄)2
n
∑

i=1

(yi − ȳ)2

We use correlation to measure the dependence of codes
generated by Puzzle relative to different distance be-
tween Bob and Eve.

• Leakage: Letting pmis be the mismatch rate between
Alice and Eve, we define the leakage between them as

leakage =

{

1− pmis

0.5
if pmis < 0.5

0 otherwise

4.1 Environment and System
The measurement environment is a lab where there are 6

cubicles. Data were collected during daytime (from 7:00 am
to 6:00 pm). Human activities introduced a certain level of
interference in the channel, but generally speaking, the en-
vironment is quite stable. We conducted the experiment in
such a stable environment because we wanted to see clearly
the performance comparisons without risking mismatches
caused by the changes of the channel itself. In theory, fur-
ther implementation in mobile environment would give both
higher mismatch rate and higher secret bit extraction rate.

The communication system consists of three SDRs. Each
of their RF chains contains an XCVR2450 (RF front end),
an NI-5781 (data converter module) and an NI PXIe-7965R
(a Xilinx Virtex-5 FPGA). Two of the three transceivers
transmit at 2.45 GHz with 20MHz bandwidth. We call
these two transceivers Alice and Bob. The third transceiver,
Eve, overhears the communication. During reception, each
transceiver records the I and Q samples at a sampling rate of

100 MHz and down converts to the baseband. The received
samples are then sent to the NI PXIe-8133, an RTOS-based
controller. Except for the experiment done in Section 4.2.1,
all the results of Puzzle are obtained based on the PSD of
10240 received samples with QPSK modulation.

4.2 Performance Evaluation

4.2.1 Entropy and mismatch rate
We first compare Puzzle with the frequency domain secret

key generation method with 2-bit quantization [5], which in
the rest of this paper is referred as the CSI-2bit. We choose
CSI-2bit as the basis for bit mismatch rate and entropy com-
parison because, to the best of our knowledge, it achieves the
highest bit generation rate along with a low mismatch rate.
We conducted an experiment where packets were transmit-
ted over coherence time using OFDM in a 20MHz band, with
each OFDM symbol consisting of 72 subcarriers. A channel
frequency response is extracted from each OFDM subcar-
rier. The same CFR was used in both Puzzle (to construct
curves) and CSI-2bit (to quantize the response). By dividing
the curve composed of the 72 channel frequency responses
into a certain number of segments of even length for Puzzle,
and by selecting a certain number of frequency responses
evenly from all the 72 subcarriers for CSI-2bit, we extracted
the respective secrets from each packet for the two methods,
thus obtaining secrets of different lengths. Note that in puz-
zle certain segment is matched to one of three cases. How-
ever, in CSI-2bit each segment is encoded into four states.
We calculate the number of extracted bits based on the ex-
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Figure 3: Bit Mismatch Rate and Entropy

act number of states. For example, in Puzzle, a 5-segment
band will produce a secret of 5×log(3) ≈ 8bits. We compare
this secret with a 8-bit secret generated by CSI-2bit. En-
tropy of the agreed secrets is calculated in accordance with
the distribution of those secrets produced by two ends.

Fig. 3a shows that Puzzle outperforms CSI-2bit in bit mis-
match rate for bit generate rates from 8bit/pkt to 56bit/pkt.
On average, Puzzle has a 63% lower bit mismatch rate than
CSI-2bit. It is worth noting CSI-2bit has an option of on-
line device calibration but that procedure requires the two
communicating nodes collect CSI over hundreds of coherence
intervals, therefore it has high overhead and is not practical
for fast secret sharing. Fig. 3b shows that in both methods,
the entropy of the generated bits does not increase linearly
with the number of bits used to encode them. This is caused
by the fact that neighboring subcarriers are correlated. For
example, for a 14-bit code generated by Puzzle or CSI-2bit,
the real secret contained in it, is not longer than 5-bit. Also
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the entropy is saturating as the bit generation rate increases.
Therefore, the claim made by Liu et al [5] that, CSI-2bit
can generate 60-bit secret per packet by using 30 subcarri-
ers in a 20MHz band, is not correct. Furthermore we can
see that Puzzle produces a comparable amount of entropy as
CSI-2bit. This implies that Puzzle does not produce more
correlated bits than CSI-2bit.

4.2.2 Correlation of codes relative to distance
To evaluate the resistance to eavesdropping, we establish

the correlation of bits generated by two receivers at different
distances. We performed an experiment where we fixed the
distance between one transmitter and one receiver, and then
placed another receiver at a certain distance away from the
first receiver along 6 orientations as shown in Fig. 4a. Each
frequency response curve is segmented into 4 pieces. We
measured the correlation between the codes produced by the
two receivers at distances ranging from 5cm to 45cm. From
Fig. 4b, we can see that the correlation decreases rapidly as
the distance between two receivers increases. In practice, it
is reasonable to assume that eavesdroppers are beyond one
meter away, otherwise they suffer from high risk of expo-
sures. Therefore Puzzle is robust against eavesdropping.

4.2.3 Leakage
Towards validating the resistance to the planned move-

ment attacker (cf. Section 2), we compared the leakage per-
formance of the state-of-the-art RSS-based method ASBG
and Puzzle by moving an object across the transmission
path between Alice and Bob, while placing an eavesdrop-
per near Bob, as shown in Fig. 5a. Since ASBG like many
other RSS-based methods asks the two communicating ends
to drop some RSS values based on certain thresholds and
to exchange the indices of those values, Eve knows exactly
which RSS probe is used by Bob but dropped by herself.
In this case, we assume that Eve makes a random guess as
to the quantization result with a success rate of 50%. We
calculate the mismatch rate of Eve’s and Bob’s bits to be
the combination of the actual mismatch rate between them
and the failure rate of the random guess. And again, we seg-
ment the frequency response curves into four pieces. Fig 5b
shows the leakage of our algorithm against that of ASBG
over a distance from 10 cm to 50 cm. It is clear that Puz-
zle is much more insensitive to the threat of planned move-
ment. Furthermore, due to the fact that Puzzle has a much
higher secret generation rate (4∗ log(3) ≈ 6.3 bits/pkt) than
ASBG (1 bits/pkt), the non-leaked secret produced by Puz-
zle is much larger, as shown in Fig 5c. Note that although
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Figure 5: Performance: Leakage

4 wavelength might not sound like a large distance in prac-
tice, our blocking object is not large either. The variations
induced by larger obstacles, like a train passing by, might
impact a much larger distance in practice.
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