
RobinHood: Sharing the Happiness in a Wireless Jungle

Tarun Bansal†, Wenjie Zhou†, Kannan Srinivasan and Prasun Sinha
Department of Computer Science and Engineering, The Ohio State University, Columbus, OH 43210

{bansal, zhouwe, kannan, prasun}@cse.ohio-state.edu
†Co-primary Authors

ABSTRACT

Today’s Enterprise Wireless LANs are comprised of densely
deployed access points. This paper proposes RobinHood,
an interference nulling scheme that leverages the high den-
sity of the access points to enable multiple mobile devices to
transmit simultaneously to multiple access points (APs), all
within a single collision domain. RobinHood also leverages
the capability of the APs to communicate with each other
on the wired backbone to migrate most of the complexity
to the APs, while keeping the design at the mobile clients
simpler. Finally, we leverage the static nature of the ac-
cess points to make RobinHood more practical in networks
where the mobility of clients inhibit the use of traditional in-
terference alignment schemes. Results from our trace-driven
simulations show that RobinHood obtains a throughput im-
provement of 6.08× and 24.2× over omniscient TDMA and
IEEE 802.11, respectively.

1. INTRODUCTION
The recent explosive growth in the number of mobile de-

vices and the data generated by these devices has led to a
decrease in the channel resources available to each individ-
ual device. Network administrators have tried to tackle this
problem by densely deploying the access points. However,
the dense deployment of APs does not scale well with the
throughput demands. In the existing network protocols [13,
18, 26], when one mobile client is transmitting uplink pack-
ets to an access point, the nearby clients have to remain
silent to avoid causing interference to the ongoing transmis-
sion.

This paper proposes RobinHood, that enables multiple
nearby access points to concurrently receive uplink packets
from multiple mobile clients, all within a single collision do-
main. RobinHood does not increase energy consumption on
the clients and executes exactly over two time slots. Robin-
Hood leverages the dense deployment of APs in enterprise
networks (See Fig. 3), the capability of these APs to ex-
change packets with each other over the wired backbone and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ACM HotMobile’14, February 26–27, 2014, Santa Barbara, CA, USA.
Copyright 2014 ACM 978-1-4503-2742-8 ...$15.00.

the immobility of APs resulting in relatively stationary chan-
nels (See Fig. 2). Our proposed technique, RobinHood,
makes use of the energy-rich access points to assist their
clients (mobile devices) in decoding their packets at their
respective access points. In RobinHood, the clients only
participate in the first slot and the access points participate
for the clients in the second slot.

Consider the example enterprise WLAN shown in Fig. 1(a)
where all Access Points (APs) and the three clients are in a
single collision domain. Assume that the three users want
to upload one packet each to the backbone. An omniscient
TDMA scheduling algorithm with global knowledge would
require three time slots to complete this upload. In Robin-
Hood, in the first slot as shown in Fig. 1(a), all users will
transmit at the same time. All the 7 APs will receive a
combination of three transmitted packets. In the second
slot, AP4, AP5 AP6, and AP7 will retransmit the received
signals using zero-force nulling [15] such that the following
two conditions are satisfied as shown in Fig. 1(b): (i) At
AP1, samples corresponding to x2 and x3 are canceled out;
and, (ii) At AP2, samples corresponding to x3 are canceled
out. Decoding happens in multiple steps as follows:

• At the end of the second slot, AP1 simply decodes x1

since it only received a11x1, which are samples corre-
sponding to x1. Then it transmits the decoded packet
over the backbone to both AP2 and AP3.

• AP2 recreates the samples corresponding to x1 and
subtracts them from a12x1+a22x2. After subtraction,
it can decode and obtain x2 from the remaining sam-
ples, a22x2.

• AP2 also transmits the packet x2 to AP3 using the
wired backbone. In the second slot, AP3 receives sam-
ples from all of x1, x2 and x3. It recreates samples for
x1 and x2 and subtracts them from a13x1 + a23x2 +
a33x3. After subtraction, it decodes the remaining
samples, a33x3, to obtain x3.

• Afterwards, AP1, AP2 and AP3 forward x1, x2 and x3

to their destination APs using the wired backbone.

RobinHood enables the three transmitters with single an-
tenna to upload three packets in two slots, improving the
throughput by 50% compared to omniscient TDMA. In Sec-
tion 2.1, we show that in networks with high enough density
of APs, RobinHood enables N mobile clients to transmit N
uplink packets in two slots resulting in unbounded through-
put. Observe that unlike virtual MIMO [8], RobinHood re-
quires the APs to exchange only the decoded packets instead

C
1

C
2

C
3

x
1
 x

2
 x

3

AP
1

AP
2

AP
3

AP
4

AP
5

S
w

itc
h

AP
6

AP
7

(a) RobinHood: First slot. Clients only need to trans-
mit once in the first slot. x1, x2 and x3 are the three
packets transmitted by C1, C2 and C3, respectively.

AP
1

AP
2

AP
3

AP
4

AP
5

S
w

itc
h

AP
6

AP
7

a
11

x
1
 a

12
x

1
+ a

22
x

2
 a

13
x

1
+ a

23
x

2
 +

a
33

x
3

(b) RobinHood: Second slot. A subset of APs transmit in
the second slot while the rest of the APs receive. aij are
the final channel coefficients after two slots transmissions.

Figure 1: Working of RobinHood in two slots. (a) also shows the network topology. All the devices are in
single collision domain.

of the raw samples. This property is quite useful since for-
warding raw samples can overwhelm the bandwidth of the
wired network [6]. Also, unlike [5] that precodes over an ex-
ponential number of time slots, RobinHood decodes all the
packets in two slots resulting in lower latency. Further, in
contrast with [5], RobinHood requires the mobile clients to
transmit only once resulting in lower energy consumption.

The focus of RobinHood is to increase throughput of the
uplink traffic for clients with single antenna. This is in con-
trast with [16, 10] that focus on downlink traffic. Recently,
the uplink traffic [7, 4] has been growing at a fast rate due to
the emergence of a wide-range of computing paradigms and
applications, such as cloud computing, video conferencing,
online gaming, VoIP, and traffic generated from the mo-
bile devices (e.g., location information or sensor readings).
RobinHood makes extensive use of the wired backbone. Be-
sides transmitting the decoded packets, the channel state
information, which are required to do nulling in the sec-
ond slot, are also exchanged through the backbone. Since
RobinHood migrates most of the complexity from the mobile
devices to the APs, it allows RobinHood to work even when
the channel from clients to APs is rapidly changing due to
client mobility. RobinHood works as long as the APs are
time-synchronized with each other and places very few re-
quirements on the clients. In wireless networks, it is possible
that a client may use a data rate such that no AP is able to
decode the packet. Typically, this requires the client to re-
transmit the packet resulting in higher energy consumption.
RobinHood takes advantage of the receiver and transmit-
ter diversity and increases the probability of decoding such
packets without requiring packet retransmission.

2. ROBINHOOD DESIGN
In this section, we describe the design details of Robin-

Hood. First, the two-slot nulling nulling scheme is described.
Then, we formulate the AP matching problem and propose
a polynomial-time solution.

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S

S
 (

dB
)

(a) Channel between pairs of
APs.

0 5 10 15 20
−80

−70

−60

−50

−40

−30

Time (s)

R
S

S
 (

dB
)

(b) Channel between mobile
client and AP.

Figure 2: Plot of channel measurement shown over a
period of 20 seconds in an office environment. The
channel between APs is relatively stationary com-
pared to channel between AP and mobile client.

2.1 Two Slot Nulling in RobinHood
Before discussing RobinHood in detail, we define a few

notations. All of the clients and APs in RobinHood are as-
sumed to have only one antenna. Let {Ci : i = 1, 2, · · · , N}
be the set of wireless clients and N be the total number of
clients. Let {APj : j = 1, 2, · · · ,M} be the set of APs that

are connected through a wired backbone. Let h
(1)
ij be the

channel state information between Ci and APj in slot 1. In
the second slot, a subset of APs are selected to transmit.

 0

 0.25

 0.5

 0.75

 1

 60 100 140 180

C
D

F

Number of APs

Number of APs

Figure 3: Shows the CDF of number of APs ob-
served at a point. The data was collected at multiple
places including OSU Medical Center (a large hos-
pital), OSU Central library and a nearby apartment
complex.

Let this set be {APk : k = N + 1, N + 2, · · · ,M}. Let h
(2)
kj

be the channel state information between APk and APj in
slot 2. Let xi be the signals sent by Ci in slot 1. In the
following discussion, we neglect the presence of the noise
since noise is unpredictable and thus, difficult to cancel out.
However, we do take noise into account in our analysis (See

Section 2.2.2). Let y
(1)
ik be the component of xi received by

APk in slot 1. We have:

y
(1)
ik = h

(1)
ik xi (1)

Let vk be the precoding coefficient for APk in the second

slot. Let y
(2)
ij be the component of xi received by APj in

slot 2. We have:

y
(2)
ij =

M
∑

k=N+1

h
(2)
kj vky

(1)
ik =

M
∑

k=N+1

h
(2)
kj vkh

(1)
ik xi (2)

In the example network shown in Fig. 1, we want to ensure
that components of x2 and x3 at AP1 is nulled. Similarly,
we want x3 to be nulled at AP2. Thus,

y
(2)
21 =

M
∑

k=4

h
(2)
k1 vkh

(1)
2k x2 = 0 (3)

y
(2)
31 =

M
∑

k=4

h
(2)
k1 vkh

(1)
3k x3 = 0 (4)

y
(2)
32 =

M
∑

k=4

h
(2)
k2 vkh

(1)
3k x3 = 0 (5)

Since, the right side of Eq. 3,4,5 are all 0, instead of 3, at
least 4 variables (vk) are required to obtain non-zero solu-
tions. Thus, a total of 7 APs are required to support 3
clients as in Fig. 1. In general, for a system with N clients,
we need to cancel (N − 1) signals at the first receiving AP,
(N − 2) signals at the second receiving AP, and zero signal
at the last receiving AP. In our technical report [1], we show

that that the total number of APs required is: N2+N+2
2

.
In RobinHood, for the network shown in Fig. 1(a), at the

end of slot 1, APs 4, 5, 6 and 7, solve Eq. 3, 4, 5 to obtain
precoding vectors which are then used during slot 2 (See
Eq. 2). Although this computation (done at the beginning
of slot 2) may take time (due to communication among APs
over backbone), it is not a problem for RobinHood since
the channel between APs changes relatively slowly (See Fig.
2(a)).

2.2 Packet Decoding in RobinHood
In the example network discussed in Sec. 1, we assumed

that AP1, AP2 and AP3 decode x1, x2 and x3, respectively.
It is possible that a different mapping (or matching) be-
tween the APs and the packets may give different perfor-
mance results. In the next subsection, we explain the effect
of matching on the network performance.

2.2.1 Why matching is important

Consider the sample network shown in Fig. 1(a) with
three clients and seven APs. Here, a matching of (APi, Cj)
indicates that APi decodes the packet from Cj . To illus-
trate, we compare two possible matchings: M1 ={(AP3, C1),
(AP2, C3), (AP1, C2)}; and, M2 ={(AP1, C1), (AP2, C2),
(AP3, C3)}.

Observe that at the end of slot 1, AP4 will receive x1 at
high signal-to-noise ratio (SNR) due to its closeness to C1.
Similarly, in the second slot, AP1 will receive C1 with high
SNR due to its closeness to AP4. At the same time, AP2

will receive x2 with high SNR due to its proximity to AP5

and AP6 that receive x2 at high SNR. Thus, M2 is a better
matching than M1 since in M2, each AP decodes that packet
which it received with high SNR. Our trace-driven simula-
tions (detailed discussion in Sec. 3) show that M1 gives a
throughput of 7.55 Mbps while M2 gives a throughput of
12.38 Mbps.

Thus, to maximize the SNR, RobinHood needs to solve
the following problem statement:

max
f

N
∑

i=1

fij × SNRij (6)

such that

M
∑

j=1

fij = 1, ∀i ∈ {1 · · ·N} (7)

N
∑

i=1

fij ≤ 1, ∀j ∈ {1 · · ·M} (8)

||vk × y
(1)
k ||2 ≤ P0, ∀k ∈ {1, 2, · · ·M} (9)

Here, f is a matching function such that fij = 1 indicates
that APj will decode packets from Ci (Otherwise, fij is 0).
SNRij denotes the SNR of xi at APj during the second
slot transmission. Eq. 7 constraints that each client must
be decoded at exactly one AP. Eq. 8 prevents a single AP
from decoding multiple clients. Eq. 9 puts a constrain on
the transmission power level of each AP to comply with the
FCC standard. This matching problem is combinatorial in
nature and is NP-Hard to solve as we show in our technical
report [1].

2.2.2 Computing the best matching

To determine matching between APs and packets, we need
to compute the SNR of each packet to be received at each
AP. The exact value of the SNR depends on the precoding
vectors which in turn depends on the rest of the matching.
This makes the problem combinatorial in nature. We sim-
plify it by computing the expected SNR of a given packet
(say xi) at a given access point (say APj).

Let n
(1)
k be the channel noise at APk in the first slot. Let

n
(2)
j be the channel noise at APj in the second slot and N

(2)
j

be the total noise (including the received noise) at APj in

slot 2. Then, N
(2)
j is the sum of the noise received from other

APs in slot 2 and the channel noise. We estimate N
(2)
j and

its power as follows:

N
(2)
j =

M
∑

k=N+1

h
(2)
kj vkn

(1)
k + n

(2)
j (10)

||N
(2)
j ||2 =

M
∑

k=N+1

||h
(2)
kj vkn

(1)
k ||2 + ||n

(2)
j ||2 (11)

Observe that, here we do not need to consider interference
from other clients at APj since either the transmissions from
other clients would be canceled atAPj due to joint precoding
by other APs (e.g. x2 is canceled at AP1) or their samples
will be subtracted from the received samples by APj (e.g.
AP2 subtracts x1 from the received samples).

If P0 is the transmission power level and y
(2)
ij is defined as

before (Eq. 2), then, we can estimate the RSS of xi at APj ,

RSSij = ||y
(2)
ij ||2 = ||

M
∑

k=N+1

h
(2)
kj vkh

(1)
ik ||2 × P0 (12)

In [1], we show:

|vk| ≈
1

∑N

i=1 h
(1)
ik

(13)

So, using Eq. 12, Eq. 11 and Eq. 13, the SNR of xi at APj

can be estimated as:

SNRij =
RSSij

||N
(2)
j ||2

(14)

Using the above equation, RobinHood computes the ex-
pected SNR of all clients at all APs. If Ri denotes the data
rate chosen by Ci, then the throughput of Ci at APj can be
computed as follows:

Tij =

{

Ri, if SNRij ≥ τi
0, otherwise

(15)

Here, τi represents the minimum SNR required to decode
xi. The value of τi depends on the physical layer data
rate chosen by Ci. To determine which AP should decode
which packet, RobinHood solves a polynomial-time maxi-
mum weight bipartite matching problem between the set of
APs (AP1, AP2, · · · , APM) and the set of packets (x1, x2,
· · · , xN). During this computation, the weight of the edge
(xi, APj) is set to Tij . The result of the bipartite matching
indicates which AP should decode which packet.

2.2.3 Computing the Packet Decoding Order

Having determined the matching, we also need to deter-
mine the order in which the APs decode the packets. In the
above discussion, we assumed that joint precoding leaves no
residual noise. However, in practice, joint precoding is not
always perfect and leaves some residual noise. Lets say APj

decodes the ith packet in the decoding sequence. Observe
that decoding of ith packet will experience residual noise
from (N − i) other packets that are canceled out at APj

using joint precoding. Thus, packets decoded sooner experi-
ence higher residual noise (assuming that noise from nulling
is higher than the noise from the packet cancellation).

To ensure proper delivery of messages, we first compute
how much residual noise can a packet tolerate. Consider
client Ci that transmits packet xi at data rate Ri. Let APj

be the receiving AP that decodes xi. If τi is the minimum

 0

 30

 60

 90

 120

 150

 180

 210

 0 4 8 12 16

T
h
ro

u
g
h
p
u
t
(i
n
 M

b
p
s
)

Number of Clients

RobinHood
ZGM

Omni-TDMA
IEEE 802.11

(a) Total Throughput

 0

 0.25

 0.5

 0.75

 1

 0 4 8 12 16

J
a
in

’s
 F

a
ri
n
e
s
s
 I
n
d
e
x

Number of Clients

RobinHood
ZGM

Omni-TDMA
IEEE 802.11

(b) Jain’s Fairness

Figure 4: Trace-Driven Simulation Results.

SNR required to decode xi, then the residual noise that can
be tolerated at APj during the decoding is given by [1]:
RSSij

τi
− ||N2

j ||
2. Using this, RobinHood computes the max-

imum residual noise that each packet can tolerate. Finally,
the decoding order is chosen by arranging the packets in an
non-increasing order of the maximum noise they can toler-
ate. This ensures that packets that experience maximum
residual noise have high noise tolerance, resulting in higher
decoding probability.

3. TRACE-DRIVEN SIMULATION
To validate the performance of RobinHood, we imple-

mented RobinHood in a simulator. We set up a field of
size 60m × 60m. Apart from implementing RobinHood, we
also implemented three other algorithms:

1. Zeroforce nulling + Greedy matching (ZGM): We
present a simple greedy algorithm, denoted as ZGM. Like
RobinHood, ZGM also uses all APs to simultaneously de-
code multiple uplink packets. However, unlike RobinHood,
ZGM simply tries to match each client to its nearest AP.
However, since an AP can only be paired with at most one
client, this algorithm solves a corresponding matching prob-
lem. The weight between a client and AP is inversely propor-
tional to the channel loss from the client to the AP. Finally,
the matching between the clients and the APs is obtained
by solving a bipartite matching problem.

2. Omniscient TDMA algorithm: This algorithm uti-
lizes a central server that is aware of (i) packet queue at dif-
ferent clients; and, (ii) the channel between all clients and all
APs. In each slot, it schedules one client (in a round-robin
fashion) to send a packet to its nearest AP.

3. IEEE 802.11 (without RTS/CTS).

In our trace-driven simulation, for both RobinHood and
ZGM, a subset of APs compute the precoding matrix such
the interfering transmissions at the receiving APs are can-
celed out. However, due to different matching algorithms,
the SNR of packets at the receiving APs may be different
(See Sec. 2.2.1). We plot various metrics with varying num-

ber of clients. The number of APs were set to N2+N+2
2

where
N is the number of clients. To ensure that the simulation
parameters reflect realistic environments, we used the SNR
values from an existing testbed [19] and used those values
to generate the channels in our simulation.

1. Total Throughput: Fig. 4(a) shows the variation in
total throughput with variation in number of clients. By
carefully matching the APs with the clients based on chan-
nel values, on an average, RobinHood is able to achieve

1.55× throughput as compared to ZGM. In RobinHood mul-
tiple packets can be simultaneously decoded using the wired
backbone and thus the average throughput of RobinHood is
6.08× compared to the average throughput of TDMA. The
throughput for both RobinHood and ZGM increases with
increase in number of clients, since both of these algorithms
allow multiple clients to transmit simultaneously. Finally,
transmitters in IEEE 802.11 experience very low through-
put due to backoffs and collisions. Compared to 802.11,
RobinHood has an average throughput of 24.2×.

2. Fairness: Using simulations, we observed that the av-
erage value of Jain’s fairness index for RobinHood, ZGM,
TDMA and 802.11 was 0.93, 0.79, 0.80 and 0.19, respec-
tively (See Fig. 4(b)). The fairness index of RobinHood
is higher than other algorithms since RobinHood allows all
clients to transmit. On the other hand, in 802.11, some
clients may get starved due to their location with respect
to other clients and APs in the network. RobinHood has
higher fairness than TDMA since RobinHood performs pre-
coding over transmissions from all clients. Thus, even the
clients that are far away from all APs may experience high
throughput due to zero-force nulling from multiple APs.

4. RELATED WORK
Although RobinHood builds on prior work done in the

field of Wireless Networking, it differs from them in various
ways.

Backbone usage: The idea of using the wired back-
bone to increase wireless throughput is not new. In Mega-
MIMO[16], multiple APs cooperatively precode the trans-
missions such that each client receives only the packets in-
tended for it while the other transmissions are canceled out.
However, MegaMIMO requires that transmitters exchange
packets among themselves and thus, it works only for the
downlink transmissions. On the other hand, RobinHood
improves the throughput for the uplink traffic. Also, in
contrast to MegaMIMO and OpenRF [10], transmitters in
RobinHood perform joint nulling without knowing the ac-
tual contents of the packets.

A recently proposed protocol Symphony [4] also focuses
on uplink traffic. However, in contrast to RobinHood, Sym-
phony improves the network throughput only when the APs
are in different collision domains. In Epicenter[7], authors
propose that APs should exchange coarse representations
of symbols to decode corrupted bits. Similarly, authors in
[12, 23] also propose that APs exchange bits or raw samples
on the backbone to facilitate packet decoding. In all these
algorithms, the APs cooperate to decode the same packet
whereas in RobinHood, APs encourage transmitters to col-
lide and then cooperate to decode multiple packets simulta-
neously without exchanging the raw samples.

Interference Alignment: Previously, researchers (see [8]
and references therein) have used interference alignment to
improve the capacity of wireless networks. However, unlike
RobinHood, they either require APs to exchange samples
over the backbone [3], work only for the downlink traffic [20],
assume presence of significant number of clients [14], require
multiple antennas at transmitters or receivers [6], require the
antennas to be physically moved [2] to a certain point, re-
quire the channel to change from one slot to another [5],
precode over exponential number of time slots [5], or pro-
vide limited throughput gain [2, 6]. These assumptions are

not practical in nature since if the client is stationary, the
channel may not change [21] from one packet to another.
In contrast to the previous works, RobinHood works even if
the channel stays stationary.

Wireless Relays: Researchers [17, 9] have also looked
at the problem of using special relay nodes to assist high
speed communication between specific pairs of source and
destination nodes. In contrast, the focus of RobinHood is to
leverage the high density of APs and the wired backbone to
carefully select the set of destination APs, determine which
AP decodes which packet, and to use the wired backbone to
migrate all the complexity away from the clients. Further,
with previous works, it is possible that the destination AP
is unable to decode a packet due to low SNR. However, in
RobinHood, APs leverage the wired backbone to perform
decoding over multiple rounds (See Sec. 5), thereby ensuring
that the transmitted packets are eventually decoded.

5. CONCLUSIONS AND FUTURE WORK
In the previous sections, we discussed RobinHood: an in-

terference alignment scheme that leverages the high density
of access points to enable multiple mobile devices to transmit
simultaneously. Using trace-driven simulations, we showed
that on an average, RobinHood gives a throughput improve-
ment of 6.08× and 24.2× over omniscient TDMA and IEEE
802.11, respectively. However, there are multiple other chal-
lenges that need to solved to make RobinHood practical:

1. Multi-Collision domain: The previous discussion as-
sumes that all clients and all APs can hear each other di-
rectly. However, this may not be true for all networks. We
are currently exploring extensions of RobinHood to multi-
collision domain. One of the possible approaches is to divide
the network into manageable smaller groups [25, 4] where
each group works independently. Another possible solution
is to combine RobinHood with Symphony[4], which focuses
on uplink traffic in multi-collision domain. Symphony could
be used first to decode packets from different collision do-
mains, reducing the problem to several small single collision
domains, which could be solved using RobinHood.

2. Datarate adaption: In RobinHood, the SNR of a client
at its decoding AP depends not only on the relative channels
between the different devices but also on the precoding vec-
tors chosen by APs. The precoding vectors in turn, depend
on the set of clients that are transmitting at the same time.
Thus, it is not possible for a client to determine the best
datarate to use. Further, traditional history based datarate
adaptation algorithms such as Auto Rate Fall-back (ARF)
are ineffective for RobinHood as the historical Packet Error
Rate (PER) is no longer a good estimate for future PER.
Thus, we need a new mechanism that helps clients in deter-
mining the best physical layer data rate to be used.

One of the possible approaches is that access points first
compute the best physical layer datarate for each client and
then they let the transmitters know the data rate to be used.
Another possible approach involves clients predicting their
data rate based on combination of history and the number
of other clients that are transmitting simultaneously.

3. Decoding a packet with insufficient SNR: Even
with a data rate adaption algorithm, it is possible that some-
times APs may not be able to decode packets from the
clients due to low SNR. Traditional networks resolve this

problem by requiring the clients to retransmit. However, in
RobinHood, we can take a different approach that leverages
the transmitter and receiver diversity without requiring the
clients to retransmit. We illustrate that with an example:
Consider a network with 4 clients and 11 APs such that
three of the packets are canceled at one AP, two at another
AP and one packet is canceled at the third AP (a total of
6 cancellations). Let us assume that APs are unable to de-
code any of the four packets due to insufficient SNR. In that
case, instead of requiring the clients to retransmit, ten of
the 11 APs can retransmit the received samples with differ-
ent choices of precoding vectors such that the 11th AP only
receives samples corresponding to one client while the other
three clients are canceled (a total of only 3 cancellations).
The 10 APs can utilize transmitter and receiver diversity to
choose the precoding vectors such that the SNR of the single
packet at the 11th AP is maximized, thereby increasing the
probability of decoding. Once one of the packets is decoded,
then APs can subtract that packet from their received sam-
ples and try to decode the remaining packets. With only
three unknowns remaining, the probability that APs can si-
multaneously decode all three of them also improves. As
a future work, we plan to design algorithm for picking the
“right AP” and the “right client” to bootstrap this process.

4. Inconsistency in the AP density: To decodeN pack-

ets, RobinHood requires N2+N+2
2

access points nearby. How-
ever, the actual number of APs present may be higher or
lower than this number. If the number of available APs are
higher, then RobinHood can make use of all of them and
select precoding vectors such that the total SNR is further
increased. On the other hand, if the number of available
APs are smaller, than a mechanism is required to suppress
some of the clients. This ensures that the packets transmit-
ted can all be decoded by the given number of APs. The
suppressing algorithm [4] should take both throughput and
fairness into account.

5. Channel Estimation: To compute the precoding vec-
tors, the APs in RobinHood require the knowledge of chan-
nel between all clients and APs as well as the channel be-
tween all APs. The problem of computing the channel from
clients to APs has been well-studied in the context of MIMO
networks [6, 24]. To compute the channel values, we are
planning to use PN sequences to estimate the channel from
multiple transmitters simultaneously[11, 22].

6. REFERENCES
[1] RobinHood. Tech. rep. http://sites.google.com/site/

bansaltarun/RobinhoodTechRep.pdf.
[2] Adib, F., Kumar, S., Aryan, O., Gollakota, S., and

Katabi, D. Interference Alignment by Motion. In Proc. of
ACM MobiCom 2013.

[3] Annapureddy, V. S., El Gamal, A., and Veeravalli,
V. V. Degrees of Freedom of Interference Channels with
CoMP Transmission and Reception. IEEE Transactions on
Information Theory 58, 9 (2012), 5740–5760.

[4] Bansal, T., Chen, B., Sinha, P., and Srinivasan, K.
Symphony: Cooperative Packet Recovery over the Wired
Backbone in Enterprise WLANs. In Proc. of ACM
MobiCom 2013.

[5] Cadambe, V. R., and Jafar, S. A. Interference Alignment
and the Degrees of Freedom for the K User Interference
Channel. IEEE Transactions on Information Theory
(2007).

[6] Gollakota, S., Perli, S. D., and Katabi, D. Interference
Alignment and Cancellation. In Proc. of ACM SIGCOMM
2009.

[7] Gowda, M., Sen, S., Roy Choudhury, R., and S., L.
Cooperative Packet Recovery in Enterprise WLANs. In
Proc. of IEEE INFOCOM 2013.

[8] Jafar, S. A. Interference Alignment: A New Look at
Signal Dimensions in a Communication Network. Now
Publishers, 2011.

[9] Kuhn, M., Berger, S., Hammerstrom, I., and
Wittneben, A. Power Line Enhanced Cooperative
Wireless Communications. IEEE Journal on Selected Areas
in Communications 24, 7 (2006), 1401–1410.

[10] Kumar, S., Cifuentes, D., Gollakota, S., and Katabi,
D. Bringing Cross-Layer MIMO to Today’s Wireless LANs.
In Proc. of ACM SIGCOMM 2013.

[11] Li, T., and et al . CRMA: Collision-Resistant Multiple
Access. In Proc. of ACM MobiCom 2011.

[12] Miu, A., Balakrishnan, H., and Koksal, C. E.
Improving Loss Resilience with Multi-Radio Diversity in
Wireless Networks. In Proc. of ACM MobiCom 2005.

[13] Murty, R., Padhye, J., Chandra, R., Wolman, A., and
Zill, B. Designing High Performance Enterprise Wi-Fi
Networks. In Proc. of USENIX NSDI 2008.

[14] Nazer, B., and et al . Ergodic Interference Alignment. In
Proc. of IEEE ISIT 2009.

[15] Peel, C., Hochwald, B., and Swindlehurst, A. A
Vector-Perturbation Technique for Near-Capacity
Multiantenna Multiuser Communication-Part I: Channel
Inversion and Regularization. IEEE Transactions on
Communications 53, 1 (2005), 195–202.

[16] Rahul, H., Kumar, S., and Katabi, D. MegaMIMO:
Scaling Wireless Capacity with User Demand. In Proc. of
ACM SIGCOMM 2012.

[17] Rankov, B., and Wittneben, A. Spectral Efficient
Protocols for Half-Duplex Fading Relay Channels. IEEE
Journal on Selected Areas in Communications 25, 2 (2007),
379–389.

[18] Shrivastava, V., and et al . CENTAUR: Realizing the Full
Potential of Centralized WLANs Through a Hybrid Data
Path. In Proc. of ACM MobiCom 2009.

[19] Stanford Information Networking Group (SING).
SING Datasets. http://sing.stanford.edu/srikank/
datasets.html.

[20] Suh, C., Ho, M., and Tse, D. N. Downlink Interference
Alignment. IEEE Transactions on Communications 59, 9
(2011), 2616–2626.

[21] Vutukuru, M., Balakrishnan, H., and Jamieson, K.
Cross-Layer Wireless Bit Rate Adaptation. In Proc. of
ACM SIGCOMM (2009).

[22] Weikert, O., and ZÃűlzer, U. Efficient MIMO Channel
Estimation With Optimal Training Sequences. In Proc. of
the Workshop on Commercial MIMO-Components and
Systems (CMCS 2007).

[23] Woo, G. R., Kheradpour, P., Shen, D., and Katabi, D.
Beyond the Bits: Cooperative Packet Recovery Using
Physical Layer Information. In Proc. of ACM MobiCom
2007.

[24] Xie, X., Zhang, X., and Sundaresan, K. Adaptive
Feedback Compression for MIMO Networks. In Proc. of
ACM MobiCom 2013.

[25] Zhang, X., Sundaresan, K., Khojastepour, M. A.,
Rangarajan, S., and Shin, K. G. NEMOx: Scalable
Network MIMO for Wireless Networks. In Proc. of ACM
MobiCom 2013.

[26] Zhou, W., Li, D., Srinivasan, K., and Sinha, P.
DOMINO: Relative Scheduling in Enterprise Wireless
LANs. In Proc. of ACM CoNEXT 2013.

http://sites.google.com/site/bansaltarun/RobinhoodTechRep.pdf
http://sites.google.com/site/bansaltarun/RobinhoodTechRep.pdf
http://sing.stanford.edu/srikank/datasets.html
http://sing.stanford.edu/srikank/datasets.html

	Introduction
	ROBINHOOD Design
	Two Slot Nulling in RobinHood
	Packet Decoding in RobinHood
	Why matching is important
	Computing the best matching
	Computing the Packet Decoding Order

	Trace-Driven Simulation
	Related Work
	Conclusions and Future Work
	References

