
1

BASIC TRANSACTION
CONCEPTS

Basic Definitions

• A Transaction: logical unit of database
processing that
– includes one or more access operations (read -retrieval,

write – insert or update, delete).

• A transaction (set of operations) may be stand-
alone specified in a high level language like SQL
submitted interactively, or may be embedded
within a program.

• Transaction boundaries: Begin and End
transaction.

• An application program may contain several
transactions
– separated by the Begin and End transaction boundaries.

Simple Model of a Database
(for purposes of discussing transactions):
• • A database - collection of named data items
• • Granularity of data - a field, a record , or a

whole disk block
• (Concepts are independent of granularity)
• Basic operations are read and write

– read_item(X): Reads a database item named X into a
program_variable. To simplify our notation, we assume
that the program variable is also named X, i.e X=r(x)

– write_item(X): Writes the value of program variable X
into the database item named X.

2

Read Operations

• Basic unit of data transfer from the disk to the
computer main memory is one block. In general, a
data item (what is read or written) will be
– Field/record/block.

• read_item(X) command includes the following
steps:
– 1. Find the address of the disk block that contains item

X.
– 2. Copy that disk block into a buffer in main memory

(if that disk block is not already in some main memory
buffer).

– 3. Copy item X from the buffer to the program variable
named X.

Write Operations

• write_item(X) command includes the following
steps:
– 1. Find the address of the disk block that contains item X.
– 2. Copy that disk block into a buffer in main memory (if

that disk block is not already in some main memory
buffer).

– 3. Copy item X from the program variable named X into
its correct location in the buffer.

– 4. Store the updated block from the buffer back to disk
(either immediately or at some later point in time).

Concurrent Transactions

• What is the motivation: PERFORMANCE

• Potential Problems
– Lost Update Problem

– Temporary Update Problem

– Incorrect Summary Problem

3

Lost Update Problem

• Initial val X =4

• N =2, M=3

• Final value of X is 7

• X= 2 was lost!

Temporary Update Problem

T1 has updated X but has not
committed.

T2 has read the updated X.
T1 fails and needs to undo

the write to X
Problem: T2 has read this

value so it needs to undo
as well.

DIRTY READ PROBLEM

Incorrect Summary Problem

• Calculate some values
before they are
updated (Y)

• Calculate some values
after they are updated
(X)

4

Need for Recovery Techniques

• Causes
– Computer failure (crash)

– Transaction/System error (overflow/underflow)

– Local errors/exception errors
• E.g. Insufficient funds in a banking transaction

– Concurrency control enforcement
• Serializability conflicts (will cover later)

– Disk failure

– Physical problems

Additional Operations
• BEGIN_TRANSACTION
• READ OR WRITE
• END_TRANSACTION
• COMMIT_TRANSACTION

– This is when the transaction is deemed executed and
cannot be retracked

• ROLLBACK (or ABORT)
– Effects of transaction must be undone

• UNDO
– Rollback to a single operation

• REDO
– Certain transaction operations must be redone to ensure

that all the operations of a committed transaction have
been applied successfully to the database

System Log
• Keeps track of all transaction operations that

affect values of database items
• Log is kept on disk and periodically backed up to

guard against catastrophy.
– Transaction ID
– [start, TID]
– [write_item, TID, X, old_val, new_val]
– [read_item, TID, X]
– [commit, TID]
– [abort, TID]
– Protocols that use cascading rollbacks need all the

above. More on this later.

5

Recovery Using Log Records

• Chapter 21 for details. Basic idea
– UNDO: current value of X = 5

• Suppose you want to undo.
• Log contains TID, write, X, old_val, new_val(=5)
• Change X to old_value
• Basically backtrace through the log file and undo the relevant

operations

– REDO:
• One can redo the effect of the WRITE operations of a

transaction T by tracing forward through the log and setting all
items changed by a WRITE operation of T (that did not get
done) to their new values.

Commit Point of a Transaction
• Commit Point Criteria

– All operations have executed successfully
– All operations have been logged

• Beyond Commit Point, Transaction is considered
permanently committed which is logged [commit, TID]

• Roll back
– Applies to those transactions that have a [start,TID] entry in the

log but no [commit,TID]

• Redoing
– May apply to transactions that have both start and commit

entries in the log. When recovering from a crash one may need
to redo the effect of a transaction.

• This presumes only information that has been written back to disk before
the crash.

Commiting (contd.)

• Force Writing a Log
– Many systems require that before a transaction

reaches it s commit point any pertion of the log
that has not been written tot the disk yet is
written to the disk. This process is referred to as
force-writing the log file before committing a
transaction.

6

ACID:Desirable TransactionProperties

• Atomicity
– A transaction is either completely done or not done at all.

There is no notion of partial transaction.

• Consistency Preservation
– A correct execution must take the database from one consistent

state to another.

• Isolation: (ideally)
– A transaction should not make its updates visible to other

transactions till commit point. Under strict enforcement this
• Avoids temporary update problem
• Avoids cascading rollbacks

• Durability or Permanancy
– Once committed, transaction effects should never be lost.

Transaction Schedules

• When transactions are excecuting concurrently,
the order of operations from various transactions
forms a transaction schedule.
– They can be interleaved

– Two operations in the same transaction must appear in
the schedule in the same order that they appear in the
transaction

– (T1,op1), (T2,op1), (T2,op2), (T1,op2), (T2,op3): valid
– (T1,op1), (T2,op2), (T1,op2), (T2,op1): invalid

Recoverable schedule

• One where no
transaction needs to be
rolled back. Is
guaranteed if
– No transaction T in S

commits until all
transactions T’ that
have written an item
that T reads has
committed

Start T1
Start T2
R(x) T1
W(y) T2
R(y) T1
Commit T1
R(x) T2
……
(Recoverable?)

Start T1
Start T2
R(x) T1
R(y) T1
W(y) T2
Commit T1
R(x) T2
……
(Recoverable?)

NO YES
If T2 aborts here then T1 would have to be
aborted after commit violating Durability of ACID

7

Cascadeless Schedules

• Those where every transaction
reads only the items that are
written by committed
transactions

• Cascaded Rollback Schedules
– A schedule in which

uncommitteed transactions that
read an item from a failed
transaction must be rolled back

Start T1
Start T2
R(x) T1
W(x) T1
R(x) T2
R(y) T1
W(x) T2
W(y) T1
……

Start T1
Start T2
R(x) T1
W(x) T1
R(y) T1
W(y) T1
Commit T1
R(x) T2
W(x) T2

If T1 were to abort here then T2 would
Have to abort in a cascading fashion.
This is a cascaded rollback schedule

Cascadeless
Schedule

Strict Schedules

• A transaction can
neither read or write
an item X until the last
transaction that wrote
X has committed.

(say x = 9)
Start T1
Start T2
R(y) T2
R(x) T1
W(x) T1 (say x = 5)
R(y) T1
W(y) T1
W(x) T2 (say x = 8)For this example

Say T1 aborts here
Then the recovery process will restore the value of x to 9
Disregarding (x= 8). Although this is cascadeless it is not
Strict and the problem needs to be resolved: use REDO

