Criteria for Accrediting Computing Programs
Effective for Reviews during the 2012-2013 Accreditation Cycle

INTRODUCTION

This document contains three sections:

The first section includes important definitions used by all ABET commissions.

Definitions

While ABET recognizes and supports the prerogative of institutions to adopt and use the terminology of their choice, it is necessary for ABET volunteers and staff to have a consistent understanding of terminology. With that purpose in mind, the Commissions will use the following basic definitions:

Program Educational Objectives – Program educational objectives are broad statements that describe what graduates are expected to attain within a few years of graduation. Program educational objectives are based on the needs of the program’s constituencies.

Student Outcomes – Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Assessment – Assessment is one or more processes that identify, collect, and prepare data to evaluate the attainment of student outcomes and program educational objectives. Effective assessment uses relevant direct, indirect, quantitative and qualitative measures as appropriate to the outcome or objective being measured. Appropriate sampling methods may be used as part of an assessment process.

Evaluation – Evaluation is one or more processes for interpreting the data and evidence accumulated through assessment processes. Evaluation determines the extent to which student outcomes and program educational objectives are being attained. Evaluation results in decisions and actions regarding program improvement.

The criteria for accreditation are in two sections

General Criteria – General Criteria apply to all programs accredited by an ABET commission. Each program accredited by an ABET commission must satisfy every Criterion that is in the General Criteria for that commission.

Program Criteria – The Program Criteria provide discipline-specific accreditation criteria. Programs must show that they satisfy all of the specific Program Criteria implied by the program title. Any overlapping requirements need be satisfied only once.

All programs seeking accreditation from the Computing Accreditation Commission of ABET must demonstrate that they satisfy all of the following General Criteria.
GENERAL CRITERIA

Criterion 1. Students
Student performance must be evaluated. Student progress must be monitored to foster success in attaining student outcomes, thereby enabling graduates to attain program educational objectives. Students must be advised regarding curriculum and career matters.

The program must have and enforce policies for accepting both new and transfer students, awarding appropriate academic credit for courses taken at other institutions, and awarding appropriate academic credit for work in lieu of courses taken at the institution. The program must have and enforce procedures to ensure and document that students who graduate meet all graduation requirements.

Criterion 2. Program Educational Objectives
The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program’s various constituencies, and these criteria. There must be a documented and effective process, involving program constituencies, for the periodic review and revision of these program educational objectives.

Criterion 3. Student Outcomes
The program must have documented student outcomes that prepare graduates to attain the program educational objectives. There must be a documented and effective process for the periodic review and revision of these student outcomes.

The program must enable students to attain, by the time of graduation:
 (a) An ability to apply knowledge of computing and mathematics appropriate to the discipline
 (b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution
 (c) An ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs
 (d) An ability to function effectively on teams to accomplish a common goal
 (e) An understanding of professional, ethical, legal, security and social issues and responsibilities
 (f) An ability to communicate effectively with a range of audiences
 (g) An ability to analyze the local and global impact of computing on individuals, organizations, and society
 (h) Recognition of the need for and an ability to engage in continuing professional development
 (i) An ability to use current techniques, skills, and tools necessary for computing practice.

Criterion 4. Continuous Improvement
The program must regularly use appropriate, documented processes for assessing and evaluating the extent to which both the program educational objectives and the student outcomes are being attained. The results of these evaluations must be systematically utilized as input for the continuous improvement of the program. Other available information may also be used to assist in the continuous improvement of the program.
Criterion 5. Curriculum
The program’s requirements must be consistent with its program educational objectives and designed in such a way that each of the student outcomes can be attained. The curriculum must combine technical and professional requirements with general education requirements and electives to prepare students for a professional career and further study in the computing discipline associated with the program, and for functioning in modern society. The technical and professional requirements must include at least one year of up-to-date coverage of fundamental and advanced topics in the computing discipline associated with the program. In addition, the program must include mathematics appropriate to the discipline beyond the pre-calculus level. For each course in the major required of all students, its content, expected performance criteria, and place in the overall program of study must be published.

Criterion 6. Faculty
Each faculty member teaching in the program must have expertise and educational background consistent with the contributions to the program expected from the faculty member. The competence of faculty members must be demonstrated by such factors as education, professional credentials and certifications, professional experience, ongoing professional development, contributions to the discipline, teaching effectiveness, and communication skills. Collectively, the faculty must have the breadth and depth to cover all curricular areas of the program.

The faculty serving in the program must be of sufficient number to maintain continuity, stability, oversight, student interaction, and advising. The faculty must have sufficient responsibility and authority to improve the program through definition and revision of program educational objectives and student outcomes as well as through the implementation of a program of study that fosters the attainment of student outcomes.

Criterion 7. Facilities
Classrooms, offices, laboratories, and associated equipment must be adequate to support attainment of the student outcomes and to provide an atmosphere conducive to learning. Modern tools, equipment, computing resources, and laboratories appropriate to the program must be available, accessible, and systematically maintained and upgraded to enable students to attain the student outcomes and to support program needs. Students must be provided appropriate guidance regarding the use of the tools, equipment, computing resources, and laboratories available to the program.

The library services and the computing and information infrastructure must be adequate to support the scholarly and professional activities of the students and faculty.

Criterion 8. Institutional Support
Institutional support and leadership must be adequate to ensure the quality and continuity of the program.

Resources including institutional services, financial support, and staff (both administrative and technical) provided to the program must be adequate to meet program needs. The resources available to the program must be sufficient to attract, retain, and provide for the continued professional development of a qualified faculty. The resources available to the program must be
sufficient to acquire, maintain, and operate infrastructures, facilities and equipment appropriate for the program, and to provide an environment in which student outcomes can be attained.

PROGRAM CRITERIA
All programs seeking accreditation from the Computing Accreditation Commission of ABET must demonstrate that they satisfy all of the specific Program Criteria implied by the program title.

PROGRAM CRITERIA FOR
COMPUTER SCIENCE
AND SIMILARLY NAMED COMPUTING PROGRAMS
Lead Society: CSAB

These program criteria apply to computing programs using computer science or similar terms in their titles.

3. Student Outcomes
 The program must enable students to attain, by the time of graduation:
 (j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices. [CS]
 (k) An ability to apply design and development principles in the construction of software systems of varying complexity. [CS]

5. Curriculum
 Students must have the following amounts of course work or equivalent educational experience:
 a. Computer science: One and one-third years that must include:
 1. Coverage of the fundamentals of algorithms, data structures, software design, concepts of programming languages and computer organization and architecture. [CS]
 2. An exposure to a variety of programming languages and systems. [CS]
 3. Proficiency in at least one higher-level language. [CS]
 4. Advanced course work that builds on the fundamental course work to provide depth. [CS]
 b. One year of science and mathematics:
 1. Mathematics: At least one half year that must include discrete mathematics. The additional mathematics might consist of courses in areas such as calculus, linear algebra, numerical methods, probability, statistics, number theory, geometry, or symbolic logic. [CS]
 2. Science: A science component that develops an understanding of the scientific method and provides students with an opportunity to experience this mode of inquiry in courses for science or engineering majors that provide some exposure to laboratory work. [CS]

6. Faculty
 Some full time faculty members must have a Ph.D. in computer science.