
1832 . B. Lmkov and J. Wing

subtype. Suppose supertype T provides an equal method and consider a particular

call z. equai(y). The difficulty arises when x and y actually belong to a, a subtype

of ~. If objects of the subtype have additional state, z and y may differ when

considered as subtype objects but ought to be considered equal when considered as

supertype objects.

For example, consider immutable triples z = (O, O, O) and y = (O, 0, 1). Suppose

t,he specification of the equal method for pairs says:

equal = proc (q: pair) returns (bool)

ensures result = (p. fir.st = q. first A p.second = q..second)

(We are using p to refer to the method’s object.) Howeverl we would expect two

triples to be equal only If their first, second, and third components were equal. If a

program using triples had just observed that .r and y differ in their third element,

we would expect z. equal(y) to return “false, ” but if the program were using them

as pairs, and had just observed that them first and second elements were equal, it

would be wrong for the equal method to return false.

The way to resolve this dilemma is to have two equal methods m triple,

pazr-equal = proc (p. pair) returns (bool)

ensures result = (p.first = q first A p second = q.second)

trzple-equal = proc (p: triple) returns (bool)

ensures result = (p. f~rst = q. first A p.second = q second

A p.third = q.third)

One of them (pazr.equal) simulates the equal method for pair; the other

(tr~ple_equal) is a method just on triples.

The problem is not limited to equality methods. It also affects methods that

“expose” the abstract state of objects, e.g., an anpame method that returns a

st,ring representation of the abstract state of its object, x.unparseo ought to return

a representation of a pair if called in a context in which z is considered to be a pair,

but it ought to return a representation of a triple in a context m which c is known

to be a triple (or ~om~ subtype of triple)

The need for several equality methods seems natural for realistic examples. For

example, asking whether el and e2 are the same person is different from asking

if they are the same employee. In the case of a person holding two jobs, the

answer might be true for the question about person but false for the question

about employee.

6.2 Constrained Subtypes

The second type of subtype relation occurs when the subtype is more constrained

than the supertype. In this case, the supertype specification is written in a way

that allows variation in behavior among its subtypes. Subtypes constrain the su-

pertype by reducing the variability. The abstraction function 1s usually into rather

than onto. The subtype may extend those supert ype objects that it slmul ates by

providing additional methods and/or state.

A very simple example concerns elephants. Elephants come in many colors (re-

alistically grey and white, but we will also allow blue ones). However all albino

ACM Transactmns on Pmgrammmg Languages and Systems, Vol 16, No 6, November 1994

A Behavioral Notion of Subtyplng . 1833

elephant

,Oya, A ~,,,no

Fig. 9. Elephant Hierarchy

elephants are white and all royal elephants are blue. Figure 9 shows the elephant

hierarchy. The set of legal values for regular elephants includes all elephants whose

color is grey or blue or white:

invariant eP. color = white V ep. color = grey V eP. color = blue

The set of legal values for royal elephants is a subset of those for regular elephants:

invariant eP color = blue

and hence the abstraction function is into. The situation for albino elephants is sim-

ilar. This simple example has led others to define a subtyping relation that requires

non-monotonic reasoning [Lipeck 1992], but we believe it is better to use variability

in the supertype specification and straightforward reasoning methods. However,

the example shows that a specifier of a type family has to anticipate subtypes and

capture the variation among them in the specification of the supertype.

The bag type discussed in Section 4.1 has two kinds of variability. First, as

discussed earlier, the specification of get is nondeterministic because it does not

constrain which element of the bag is removed. This nondeterminism allows stack

to be a subtype of bag: the specification of pop constrains the nondeterminism. M’e

could also define a queue that is a subtype of bag; its dequeue method would also

constrain the nondeterminism of get but in a way different from pop.

In addition, the actual value of the bound for bags is not defined; it can be any

natural number, thus allowing subtypes to have different bounds. This variability

shows up in the specification of put, where we do not say what specific bound value

causes the call to fail. Therefore, a user of put must be prepared for a failure

unless it is possible to deduce from past evidence, using the history property (or

constraint) that the bound of a bag does not change, that the call will succeed.

A subtype of bag might limit the bound to a fixed value, or to a smaller range.

Several subtypes of bag are shown in Figure 10; mediumbags have various bounds,

so that this type might have its own subtypes, e.g., bag_150.

The bag hierarchy may seem counterintuitive, since we might expect that bags

with smaller bounds should be subtypes of bags with larger bounds. For example,

we might expect smallbag to be a subtype of largebag. However, the specifications

for the two types are incompatible: the bound of every largebag is 23Z, which is

clearly not true for smallbags. Furthermore, this difference is observable via the

methods: It is legal to call the put method on a largebag whose size is greater than

or equal to 20, but the call is not legal for a smallbag. Therefore the pre-condition

rule is not satisfied.

Although the bag type can have subtypes with different bounds, it is not a

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994

1834 . B, Liskov and J. Wing

bag

Iargebag mediumbag smallbag

(bound(b) = 232] (100 <= hound(b) c= 1000) (bound(b) = 20)

I
bag_150

(bound(b) = 150)

Fig. 10. A Type Family for Bags

valid supertype of a clynamic.bag type where the bounds of the bags can change

dynamically. Dynamic.bags would have an additional method, change-bound:

change_ bound = proc (n: mt)

requires n > lbPre. elemsl

modifies b

ensures bPO~t.elems = bPre. elems A bPOSt.bound = n

If we wanted a type family that included both dynamic_bag and bag, we would

need to define a supertype in which the bound is allowed, but not required, to vary.

Figure 11 shows the new type hierarchy.

This example points out an interesting difference between the two subtype def-

initions. If we are using the extension map approach, varying.bag would need to

have a change_ bound method that allows the bag’s bound to change, but does not

require it. The method is needed because otherwise the history rule would allow us

to deduce that the bound does not change! The nondeterminisrn in its specification

is resolved in its subtypes; bag (and its subtypes) provides a cha71ge_bound method

that leaves the bound as it was, while dynamic.bag changes it to the new bound.

Note that for bag to be a subtype of varying_bag, it must have a change. -bound

method (in addition to its other methods), even though the method is not interest-

ing.

On the other hand, if we are using the constraint approach, varying-bag and bag

need not have a change-bound method. Instead, varying-bag simply has the trivial

constraint. This means that its users cannot deduce anything about the bounds of

its objects: the bound of an object might change or it might not. Therefore it can

have both bag and dynamic.bag as subtypes. The constraint for bag (that a bag’s

bound does not change) allows users of lts objects to depend on this property.

The varying.bag example illustrates a subtype that reduces variability in the

constraint. The constraint for varying-bag can be thought of as being “either a

bag’s bound changes or it does not”; the constraint for bounded_bag reduces this

variability by making a choice (“the bag’s bound does not change”). A similar

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994

A Behavioral Notion of Subtyping . 1835

varying_bag

(bound may change or stay the same)

dynamic_bag bag

(bound may change) (bound stays the same)

[...as in Fig. 10...]

Fig. 11. Another Type Family for Bags

counter

(value never decreases)

incremented doubler rnukipher

(value never decreases) (vallle doubles) (value multiplies)

Fig. 12. Type Family for Counters

example is a family of integer counters shown in Figure 12. When a counter is

advanced, we only know that its value gets bigger, so that the constraint is simply

constraint co < co

The doubler and multiplier subtypes have stronger constraints. For example, a

multiplier’s value always increases by a multiple, so that its constraint is:

constraint 3n:int. [n>OA Cfl=n *C@]

For a family like this, we might choose to have an advance method for counter (so

that each of its subtypes is constrained to have this method) or we might not, but

this choice is available to us only if we use the constraint method.

In the case of the bag family illustrated in Figure 10, all types in the hierarchy

might actually be implemented. However, sometimes supertypes are not intended

to be implemented; instead they are vzrtuul types that let us define the properties

all subtypes have m common, Varying-bag is an example of such a type.

Virtual types are also needed when we construct a hierarchy for integers. Smaller

integers cannot be a subtype of larger integers because of observable differences in

behavior; for example, an overflow exception that would occur when adding two

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 6, November 1994

1836 . B, Liskov and J. Wing

integer

/\
64-blt-mt regular_int

/\
32-blt-mt 16-blt-mt

Fig 13 Integer Family

32-bit integers would not occur if they were 64-bit integers. Also, larger integers

cannot be a subtype of smaller ones because exceptions do not occur when expected.

However, we clearly would like integers of different sizes to be related. This is

accomplished by designing a virtual supertype that includes them. Such a hierarchy

is shown m Figure 13, where integer is a virtual type Here integer types with

different sizes are subtypes of integer. In addition, small integer types are subtypes

of regularint, another virtual type. Such a hierarchy might have a structure like

this, or it might be flatter by having all integer types be direct subtypes of integer.

7 COMPARING THE TWO DEFINITIONS

In this section, we compare the two definitions and show why we prefer the con-

straint approach.

The constraint approach is appealing because it is simple and direct. The speci-

fication visually highlights a type’s history properties that must be preserved by its

subtypes, Showing that an implication holds is more straightforward than showing

the diamond diagram holds.

Explicit constraints allow us to rule out unintended properties that happen to be

true because of an error in a method specification. Having both the constraint and

the method specifications is a form of useful redundancy: If the two are not consis-

tent, this indicates an error in the specification. The error can then be removed (by

changing either the constraint or some method specification). Thereforel including

constraints in specifications makes for a more robust methodology.

Exphclt constraints also allow us to state the common properties of type families

directly With the explanatlou approach, it 1s sometimes necessary to introduce

extra methods in the supertype to ensure that history properties that do not hold for

subtypes cannot be proved for supertypes. An example was given m Section 61 when

we discussed the varying-bag type. Being able to state everything declaratively

seems like a particularly important advantage of the constraint approach.

The constraint approach is more permissive than the explanation approach. The

explanation approach requires that the pre-condit,ions of the inherited methods

be identical to those of the corresponding supertype methods; with the constraint

approach, a subtype’s method’s pre-condition can be weaker than that of the suPer-

type. For example, consider the northeasterly-rnovmg windows discussed in Sec’uon

5.3.2. It may be that the specifier of this type did not Intend to have such a strong

constraint on these windows. With the constraint approach, the intention is stated

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994

A Behavioral Notion of Subtyplng . 1837

explicitly, e.g., the constraint might have been “true” in this case. But with the

explanation approach the stronger pre-coudition rule is needed to ensure that any

history property that might be proved about the supertype can be proved about

the subtype.

A disadvantage of the constraint approach is the loss of the history rule. Users

are not permitted to use the history rule because if they did, they might be able

to prove history properties that a subtype did not ensure. Since there is no history

rule associated with the type specification, the specifier must be careful to define

a strong enough constraint. For example, suppose the definer of fat-set mistakenly

gives the following constraint:

Users would then be unable to deduce that once an element is added to a fatset

it will always be there (since they are not allowed to use the history rule). How-

ever, although specifiers have to be more careful, getting the constraint part of the

specification “right” is no more difficult than getting the rest of the specification

“right .“ And, in our experience the desired constraint is usually obvious.

The explanation approach has the advantage that it may be more appealing

to programmers because it is more intuitive and because it is operational. An

explanation is just a program and many people are better at thinking operationally

than definitionally. The explanation approach is especially nice in a common case:

the subtype adds some extra methods but does not change any of the existing ones.

Note that in this case the stricter pre-coudition rule will automatically be satisfied.

In summary, having an explicit constraint is attractive because the subtype re-

lation is simple, it allows us to state properties of type families declaratively, and

the constraint acts as a check on the correctness of a specification. The drawback

is that if some property is left out of the constraint, there is no way users can make

use of it.

One final point: Any system (whether on-line or not) in which types are specified

and subtype relations are defined must settle on just one of the two approaches.

Our own preference would be the constraint approach. However, someone designing

a type family may find it useful to keep both definitions in mind. For example, the

explanation approach may be easier to use when developing specifications of new

subtypes. It seems natural to debug the specifications of the extra methods in this

way, i.e., there is a mistake in the subtype hierarchy if an extra method cannot be

explained.

8. RELATED WORK

Some of the research on defining subtype relations is concerned with capturing

constraints on method signatures via the contra/covariance rules, such as those

used in languages like Trellis/Owl [Schaffert, Cooper, Bullis, Kilian, and Wilpolt

1986], Emerald[Black, Hutchiuson, Jul, Levy, and Carter 1987], Quest [Cardelli

1988], Eiffel [Meyer 1988], POOL [America 1990], and to a limited extent Modula-3

[Nelson 1991]. Our rules place constraints not just on the signatures of an object’s

methods, but also on their behavior.

Our work is most similar to that of America [1991], who has proposed rules for

determining based on type specifications whether one type is a subtype of another.

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 6, November 1994.

1838 . B. Liskov and J. Wing

Meyer [1988] also uses pre- and post-condition rules similar to America’s and ours.

Cusack’s [1991] approach of relating type specifications defines subtyping in terms

of strengthening state invariants. However, none of these authors considers the

problems introduced by extra mutators nor the preservation of history properties.

Therefore, they allow certain subtype relations that we forbid (e.g., intset could be

a subtype of fatset in these approaches).

The emphasis on semantics of abstract types is a prominent feature of the work

by Leavens. In his Ph.D. thesis Leavens [1989] defines types in terms of algebras and

subtyping in terms of a stmulatzon relat~on between them. His simulation relations

are a more general form of our abstraction functions. However, for most practical

purposes, abstraction functions are adequate (compared to relations) and have the

advantage that we can freely use equality in assertions. The work by Bruce and

Jtregner [1990] is similar; like Leavens, they base their work on algebras, but like

us, they use coercion functzons with the substitution property. Leavens considered

only immutable types. Dhara [Dhara 1992; Dhara and Leavens 1992; Leavens and

Dhara 1992] extends Leavens’ thesis work to deal with mutable types, but rules

out the cases where extra methods cause problems; the rules are defined just for

individual programs that have no aliasing between objects of related types, and

therefore state changes caused by a subtype’s extra methods cannot be observed

through the supertype. Because of this restriction on aliasing they allow some

subtype relations to hold where we do not. For example, they allow mutable pairs

to be a subtype of immut able pairs whereas we do not,

In addition, these algebraic approaches are not constructive, i.e., they tell you

what to look for, but not how to prove that you got it, lJtting [1992] does provide

a constructive approach, but he bases his work in the refinement calculus language

[Morgan 1990], a formalism that we believe is not very easy for programmers to deal

with. Utting is not concerned with preserving history properties in the presence of

extra methods and he also does not allow data refinement between supertype and

subtype value spaces.

Others have worked on the specification of types and subtypes. For example,

many have proposed Z as the basis of specifications of object types [Cusack and

Lai 1991; Duke and Duke 1990; Barrington, Duke, Duke, King, Rose, , and Smith

1989]; Goguen and Meseguer[1987’] use FOOPS; Leavens and his colleagues use

Larch [Leavens 1991; Leavens and Weihl 1990; Dhara and Leavens 1992]. Though

several of these researchers separate the specification of an object’s creators from

its other methods, none has identified the problem posed by the missing creators,

and thus none has provided an explicit solution to this problem

In summary, our work is similar in spirit to that of America, Meyer, and Cusack,

because they take a specification-based approach to defining a behavioral notion of

subtyping. It complements the algebraic model-based approach taken by Leavens,

Dhara, and Bruce and Weguer. Of the work that deal with mutability, none has

addressed the need to preserve history properties. Only we have a technique that

works in a general environment in which objects can be shared among possibly

concurrent users.

ACM TransactIons on Programming Languages and Systems, Vol 16, No 6, November 1994

A Behavioral Notion of Subtyping . 1839

9. SUMMARY

This paper defines a new notion of the subtype relation based on the semantic

properties of the subtype and supertype. An object’s type determines both a set

of legal values and an interface with its environment (through calls on its meth-

ods). Thus, we are interested in preserving properties about supertype values and

methods when designing a subtype. We require that a subtype preserve the be-

havior of the supertype methods and also all invariant and history properties of its

supert ype. We are particularly interested in an object’s observable behavior (state

changes), thus motivating our focus on history properties and on mutable types

and mutators.

The paper presents two ways of defining the subtype relation, one using con-

straints and the other using the extension rule. Either of these approaches guaran-

tees that subtypes preserve their supertypes’ properties. Ours is the first work to

deal with history properties, and to provide a way of determining the acceptability

of the “extra” methods in the presence of mutability.

The paper also presents a way to specify the semantic properties of types formally.

One reason we chose to base our approach on Larch is that Larch allows formal

proofs to be done entirely in terms of specifications. In fact, once the theorems

corresponding to our subtyping rules are formally stated in Larch, their proofs are

almost completely mechanical—a matter of symbol manipulation—and could be

done with the assistance of the Larch Prover[Garland and Guttag 1989].

In developing our definitions, we were motivated primarily by pragmatic. Our

intention is to capture the intuition programmers apply when designing type hier-

archies in object-oriented languages. However, intuition in the absence of precision

can often go astray or lead to confusion. This is why it has been unclear how to

organize certain type hierarchies such as integers. Our definition sheds light on

such hierarchies and helps in uncovering new designs. It also supports the kind

of reasoning that is needed to ensure that programs that work correctly using the

supertype continue to work correctly with the subtype.

We believe that programmers will find our approaches relatively easy to apply

and expect them to be used primarily in an informal way. The essence of a subtype

relationship (in either of our approaches) is expressed in the mappings. JVe hope

that the mappings will be defined as part of giving type and subtype specifications,

in much the same way that abstraction functions and representation invariants are

given as comments in a program that implements an abstract type. The proofs can

also be done at this point; they are usually trivial and can be done by inspection.

ACKNOWLEDGMENTS

Special thanks to John Reynolds who provided perspective and insight that led us

to explore alternative definitions of subtyping and their effect on our specifications.

We thank Gary Leavens for a helpful discussion on subtyping and pointers to related

work. In addition, Gary, John Guttag, Greg Morrisett, Bill Weihl, Eliot Moss, Amy

Moormann Zarernski, Mark Day, Sanj ay Ghemawat, and Deborah Hwang gave use-

ful comments on earher versions of this paper. We thank our associate editor, John

Mitchell, and the anonymous referees for their extremely useful feedback during the

review process.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994

1840 . B, Liskov and J. Wing

lJiews and conclusions contained in this document are those of the authors and

should not be interpreted as necessarily representing official policies or endorse-

ments, either expressed or implied, by the U.S. Government.

REFERENCES

AMERICA, P. 1990. A parallel object-oriented language with inheritance and subtyping. SIG-

PLAN 25, 10 (Oct.), 161-168.

AMERICA. P. 1991. Designing an object-oriented programming language with behaviouraf sub-

typing. In J. W. DE BAKKER, W. P. DE ROEVER, AND G. ROZENBERG (Eds.), Foundaftons

of Object -Or’tented Languages, RE.Y Sch@ol/Wor’ksh op, Noordu’!]k erhout, The Netherlands,

JIay/June 19.90, Volume 489 of LNCS, pp. 60–90. NY: Springer-Verlag.

BLACK, A. P., HIJTCHINSON, N., JUL, E., LEV~, H. M., ANO CARTER, L. 1987. Distribution

and abstract types in Emerald. IEEE TSE 13, 1 (Jan.), 6.5–76.

BRLTCE, K. AND W EGNER, P. 1990. An algebraic model of subtype and inheritance. In F. BAN-

CILHON AND P. BLTNEMAN (Eds.), Advances tn Dtitabas? PToyrummLng Ltinguage, pp. 75–96.

Addison-W’esley, Reading, MA

CARDELLI, L. 1988. A semantics of multiple inheritance. lrzjomnafton and C’om,oufutlon 76,

138–164.

BARRINGTON, D,, Du~E, D., DUKE R., KING, P., ROSE, G., , AND SMITH, P. 1989. Object-

Z: An object oriented extension to Z. In FORTE89, Internaizona[ConfeTencc on Forma{

Descmptton Technzquts.

CUSAC1<, E. 1991, Inheritance in object oriented Z. In Proc.ed!n(s of EC’OOP ‘9f. Splinger-

Verlag.

CUSACX, E. ANLJ LAI, hI. 1991. Object-oriented specification in LOTOS and Z, or my cat really

is object-oriented! In J. W. DE BAKKER, W. P. DE ROEVER, AND G ROZENBERG (Eds.),

Foundaftons of Ob]ect Orhented Languuges, pp. 179-202. Springer Verlag. LNCS 489.

DAHL, O.-J., MYRHAUG, B., AND NYGAARD, K. 1970. SIhfULA common base language, Tech-

rucal Report 22, Norwegian Computing Center, Oslo, Norway.

DHARA, K. K. 1992. Subt yping among mutable types in object-oriented programming lan-

guages, Iowa State ClmveIslty, Ames, Iowa. LIaster’s Thes]s.

DHARA, K. K. AND LEA\JENS, G. T. 1992. Subtyping for mutable types in object-oriented

PI ogl amming languages. Technical Report 92-36 (Nov.), Department of Computer Science,

Iowa State University, Ames, Iowa.

DUKE, D AND DUKE, l%. 1990. A history model for classes in object-Z In Proccedtngs of VDM

’90: VDM u nd Z. Springer- Verlag.

GARLAND, S. AND GUTTAG, J, 1989. An ot,er~riew of LP, the Larch Prover, In P~oceedtngs

of the Thzrd Intern atzooal (70nfere{hce on Rewrttzng Techniques and App1zcatron5, Chapel

Hill, NC, pp. 137–151. Lecture Notes in Computer Science 355.

GOGUEN, J. A. AND MESEGUER, J. 1987. Unifying functional, object-oriented and relational

programming with logical semantics. In B. SHRII,ER AND P W’EGNER (Eds.), Research

Dtrecttons zn Ob]ect O,zentcd Progwmrnlng. MIT Press.

GUTTAG, J V , HORNING, J J , ~ND WING, J. LI 1985. The Larch family of specification

lan~ua~?s. IEEE To ftu(zre Z, 5 (S@),21–36.

HALBERT, D. C. AND O’BRIEN, P. D. 1987 Using types and inheritance in object-oriented

programming. IEEE Software ~, 5 (Sept.), 71–79.

HAMMER) M. AND MCLEOD, D 1981. A semantic database model. A C’flI Tmns. Database

Systrms 6, 3, 351-386.

HOARE, C. 1972. Proof of correctness of data representations. Actu Info rmatzca 1, 1,271–281.

~APUR, D. 1980. Towards a theory of abstract data types Technical Report 237 (June), MIT

LC’S. Ph.D. Thesis.

LEAVENS) G. 1989. Verifying object-oriented prograsm that use subtypes. Technical Report 439

(Feb.), MIT Laboratory for Computer Science. Ph.D. thes,s.

ACM Transactions on Programmmg Languages and Systems, Vol 16, No 6, November 1994

A Behaworal Notion of Subtyping . 1841

LE?AVENS, G. T. 1991. Modular specification and verification of object-oriented programs. IEEE

s’o~tware 8, 4 (July), 7z–80.

LEAVENS, G. T. AND DHARA, K. K. 1992. A foundation for the model theory of abstract data

types with mutation and aliasing (preliminary version). Technical Report 92-35 (Nov.),

Department of Computer Science, Iowa State University, Ames, Iowa.

LEAVENS, G. T. AND WEIHL, W. E. 1990. Reasoning about object-oriented programs that use

subtypes. In ECOOP/OOPSL.4 ’90 Proceedings.

LIPEC~, U. 1992. Semantics and usage of defaults in specifications. In Foundations of Informa-

tion Systems Specajicatzon and Destgn. Dagstuhl Seminar 9212 Report 35.

LISKOV, B. 1992. Preliminary design of the Thor object-oriented database system. In PTOC.

of the Sojtware Technology Conference. DARPA. Also Programming h[ethodology Group

LIemo 74, MIT Laboratory for Computer Science, Cambridge, MA, LIarch 1992.

LISKO\r, B., ATKINSON, R., BLOOM, T., Nfoss, E., SCHAFFERT, J., SCHEIFLER, R., AND SNYDER,

A. 1981. CL U Rejei-ence il{an ual. Springer-Verlag.

LISKOV, B. AND GUTTAG, J. 1985. Abstraction and 5p.cijicat%on in Program Dtslgn. MIT Press.

LISKOV, B. AND WING, J. 1992. Family values: A semantic notion of subtyping. Technical

Report 562, MIT Lab. for Computer Science. Also available as CMU-CS-92-220.

MAIER, D. AND STEIN, J. 199o. Development and implementation of an object-oriented DBMS.

In S. ZDONIK AND D. IVJAIER (Eds.), Readzngs an oh]ecf-onent,d” Database Systems, pp.

167–185. Nforgan Kaufmann.

MEYER, B. 1988. Ob]ect-oriented So~tuare Construction. Prentice Hall, New York.

MORGAN, C. 1990. Projrummzny from Spec~ji.utzons. Prentice Hall.

NELSON, G. 1991. Systems Programming wtth Modula-3. Prentice Hall.

SCHAFFERT. C.. COOPER, T., BULLIS, B., KILIAN, M., AND WILPOLT, C. 1986. An introduction

to Trellis/Owl. In Procecdzngs of OOP,$’LA ’86, pp. 9–16.

SCHEIEI, J. AND HOLTSBERG, S. 1992. Ina Jo specification language reference manual. Technical

Report ThI-6021/001 /06 (June), Paramax Systems Corporation, A Umsys Company.

STROUSTRUP, B. 1986. The C++ Progr-ammtng La nguug.. Addison-Wesley.

UTTING, M. 1992. An object-oriented refinement calculus with modular reasoning, Ph. D. thesis,

University of New South JVales, Australia.

WING, J. M. 1983. A two-tiered approach to specifying programs. Technical Report 299 (June),

hfIT Laboratory for Computer Science. Ph.D. thesis.

Received July 1993; revised April 1994; accepted May 1994.

ACM TransactIons on Programmmg Languages and Systems, Vol 16, No 6, November 1994

