Type Systems

- Pierce Ch. 3, 8, 11, 15
A Simple Language

\(\langle \tau \rangle ::= \text{true} \mid \text{false} \mid \text{if } \langle \tau \rangle \text{ then } \langle \tau \rangle \text{ else } \langle \tau \rangle \)

\mid 0 \mid \text{succ } \langle \tau \rangle \mid \text{pred } \langle \tau \rangle \mid \text{iszero } \langle \tau \rangle \)

- Simple untyped expressions
 - Natural numbers encoded as \text{succ} \ldots \text{succ} 0
 - E.g. \text{succ succ succ 0} represents 3
- \text{term}: a string from this language
 - To improve readability, we will sometime write parentheses: e.g. \text{iszero (pred (succ 0))}
Semantics (informally)

- A term evaluates to a value
 - Values are terms themselves
 - Boolean constants: true and false
 - Natural numbers: 0, succ 0, succ (succ 0), ...

- Given a program (i.e., a term), the result of “running” this program is a boolean value or a natural number
 - if false then 0 else succ 0 \(\rightarrow\) succ 0
 - iszero (pred (succ 0)) \(\rightarrow\) true
 - Problematic: succ true or if 0 then 0 else 0
Equivalent Ways to Define the Syntax

- Inductive definition: the smallest set S s.t.
 - $\{ \text{true}, \text{false}, 0 \} \subseteq S$
 - if $t_1 \in S$, then $\{ \text{succ } t_1, \text{pred } t_1, \text{iszero } t_1 \} \subseteq S$
 - if $t_1, t_2, t_3 \in S$, then if t_1 then t_2 else $t_3 \in S$
- Same thing, written as inference rules

<table>
<thead>
<tr>
<th>true $\in S$</th>
<th>false $\in S$</th>
<th>0 $\in S$</th>
<th>axioms (no premises)</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1 $\in S$</td>
<td>succ $t_1 \in S$</td>
<td>t_1 $\in S$</td>
<td>pred $t_1 \in S$</td>
</tr>
<tr>
<td>t_1 $\in S$</td>
<td>iszero $t_1 \in S$</td>
<td>t_1 $\in S$ t_2 $\in S$ t_3 $\in S$</td>
<td>if t_1 then t_2 else $t_3 \in S$</td>
</tr>
</tbody>
</table>

If we have established the premises (above the line), we can derive the conclusion (below the line).
Why Does This Matter?

- Key property: for any \(t \in S \), one of three things must be true:
 - It is a constant (i.e., derived from an axiom)
 - It is of the form \(\text{succ} \, t_1 \), \(\text{pred} \, t_1 \), or \(\text{iszero} \, t_1 \) where \(t_1 \) is some smaller term
 - It is of the form \(\text{if} \, t_1 \, \text{then} \, t_2 \, \text{else} \, t_3 \) where \(t_1, t_2, \) and \(t_3 \) are some smaller terms
- The inference rules make this explicit, and make it easy for us to have
 - Inductive definitions of functions over \(S \)
 - Inductive proofs of properties of \(S \)
Inductive Proofs

- Structural induction - used very often
- Suppose P is a predicate over terms (i.e., a function mapping elements of S to truth values)
 - When $P(t)$ is true, we will just write $P(t)$
- For each term t, let t_i be its immediate subterms. Suppose we can prove that
 - Whenever $P(t_i)$ for all t_i, we also have $P(t)$
 - For terms without subterms, $P(t)$ holds
- This means that $P(t)$ for all terms in S
Semantics: Why?

- We need to define the semantics before we can discuss type systems
 - The semantics defines the difference between “good” and “bad” programs
- A type system can help us prove that certain programs are “good”, for all possible inputs
 - Safety (a.k.a. soundness) of a type system: if a program is well-typed, it will not “go wrong”
 - But only for certain bad behaviors: e.g. a type system typically cannot assure the absence of “division by zero” or “array index out of bounds”
Semantics: How?

- Operational semantics in the general sense: imagine an abstract machine
 - Some notion of the state of this machine
 - Transition function: given the current state, what is the next state?
 - It is possible that the machine gets “stuck” – there is no valid transition
- The semantics we will define for this simple language is a specific form of “small-step” operational semantics
 - state = term; transition = term simplification
 - Later will discuss “big-step” semantics
Semantics: How?

- Initial state: the term whose meaning we are trying to determine
 - i.e., the expression we are trying to evaluate
- One of two things can happen:
 - We reach a state (i.e. a term) which is a semantic value
 - We get stuck
- All of this depends on what we consider to be the set of semantic values
Semantics (formally)

- The domain of values (a subset of the terms)
 - \(\langle v \rangle ::= \langle bv \rangle \mid \langle nv \rangle \)
 - boolean values
 - \(\langle bv \rangle ::= \text{true} \mid \text{false} \)
 - numeric values
 - \(\langle nv \rangle ::= 0 \mid \text{succ} \langle nv \rangle \)

- Operational semantics defined by an evaluation relation on terms: \(t \rightarrow t' \)
 - \(\rightarrow \) is a binary relation: \(\rightarrow \subseteq S \times S \)
 - \(t \rightarrow t' \) means “\(t \) evaluates to \(t' \) in one step”
 - Thus, “small-step” operational semantics
Evaluation Relation: Booleans

- Relation $\rightarrow \subseteq S \times S$ defined with inference rules
 - Just a way of writing an inductive definition

$$\text{if true then } t_2 \text{ else } t_3 \rightarrow t_2$$

$$\text{if false then } t_2 \text{ else } t_3 \rightarrow t_3$$

$$\text{if } t_1 \text{ then } t_2 \text{ else } t_3 \rightarrow \text{if } t'_1 \text{ then } t_2 \text{ else } t_3$$

- These rules get instantiated with concrete terms - to get rule instances
Example

if true then
 (if (if false then false else false) then true else false)
else
 true \rightarrow ? (value i.e. term that is true or false)

Step 1: ... \rightarrow if (if false then false else false) then true else false
Step 2: if false then false else false \rightarrow false
Step 3: if (if false then false else false) then true else false \rightarrow if false then true else false
Step 4: if false then true else false \rightarrow false
More on the Evaluation Relation

- We can generalize to the natural numbers by adding more inference rules
 - Will not go into these details here
- A key issue: what if we reach a term that cannot be evaluated anymore (no inference rule applies), but the term is not a semantic value?
 - Examples: if 0 then 0 else 0 and pred false
 - There is no inference rule that can be used to make “the next step”
 - We get “stuck” – i.e. have a run-time error: the program has reached a meaningless state
Typed Expressions

- **Goal:** without evaluating a term, can we guarantee that it will not get stuck?
 - **Idea:** define *types*, and establish a relationship between terms and types
- **For our simple example:**
 - Type Bool, which is the set of all terms that evaluate to a boolean value
 - Type Nat, which is the set of all terms that evaluate to a numeric value
- **To determine that a term \(t \) has type \(T \) (i.e., \(t \in T \)), we will only look at the structure of \(t \) (i.e., will do a compile-time analysis)
Typing Relation

- Relation: $\subseteq S \times \{\text{Bool, Nat}\}$
 - $t : T$ is the same as $t \in T$

<table>
<thead>
<tr>
<th>true : Bool</th>
<th>false : Bool</th>
<th>O : Nat</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>$t_1 : \text{Bool}$</th>
<th>$t_2 : T$</th>
<th>$t_3 : T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>if t_1 then t_2 else $t_3 : T$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t_1 : \text{Nat}$</th>
<th>$t_1 : \text{Nat}$</th>
<th>$t_1 : \text{Nat}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>succ $t_1 : \text{Nat}$</td>
<td>pred $t_1 : \text{Nat}$</td>
<td>iszero $t_1 : \text{Bool}$</td>
</tr>
</tbody>
</table>
Example:Typing Derivation

- if (iszero 0) then 0 else (succ 0) : ?

\[
\begin{array}{c}
0 : \text{Nat} \\
\hline
\text{iszero} 0 : \text{Bool} \\
\hline
0 : \text{Nat} \\
\hline
\text{succ} 0 : \text{Nat} \\
\hline
0 : \text{Nat} \\
\hline
\end{array}
\]

if (iszero 0) then 0 else (succ 0) : Nat

- This structure is a derivation tree: the leaves are instances of axioms, the inner nodes are instances of inference rules with premises.
More on the Typing Relation

- A term t is typable (or well typed) if there is some T such that $t : T$
- In this particular simple type system, each term has at most one type
 - In general, a term may have multiple types (e.g. when the type system has subtypes)
- **Progress**: A well-typed term will not be stuck: it either is a value, or it can take a step according to the evaluation rules
- **Preservation**: If a well-typed term takes a step of evaluation, the result is also well typed
More on the Typing Relation

- Safety = Progress + Preservation
 - Safety (a.k.a. soundness) of a type system: if a program is well-typed, it will not “go wrong”
 - For this type system: a well-typed term $t : T$ will not get stuck
 - And will evaluate to a value of type T
 - This property does not work in the other direction: a term which is not well typed may or may not get stuck (conservative analysis)
 - if (iszero 0) then 0 else false
 - if true then 0 else false
An Extended Simple Language

\(<\triangleright> ::= \text{true} | \text{false} | \text{if } \langle\triangleright\rangle \text{ then } \langle\triangleright\rangle \text{ else } \langle\triangleright\rangle \\
| 0 | \text{succ } \langle\triangleright\rangle | \text{pred } \langle\triangleright\rangle | \text{iszero } \langle\triangleright\rangle \\
|\{ \langle\triangleright\rangle , \langle\triangleright\rangle \} | \langle\triangleright\rangle .1 | \langle\triangleright\rangle .2 \)

- Pairs: \textit{pairing} \{ , \} \text{ and projection } .1/.2
 - Need to add \textit{pair values} to the semantics
 - \(<v> ::= \langle bv\rangle | \langle nv\rangle | \{ \langle v\rangle, \langle v\rangle \} \)
 - Generalization to n-tuples is trivial
- For typing: need to add \textit{pair types} \(T_1 \times T_2\)
 - E.g. \(\text{Bool} \times \text{Nat}, \text{Nat} \times \text{Nat}, \text{etc.}\)
Typing Relation Again

- No surprises here ...

\[
\frac{\text{\(t_1 : T_1\)}\quad \text{\(t_2 : T_2\)}}{\{\text{\(t_1, t_2\)}\} : T_1 \times T_2}
\]

\[
\frac{\text{\(t_1 : T_1 \times T_2\)}}{\text{\(t_1.1 : T_1\)}\quad \text{\(t_1.2 : T_2\)}}
\]

- \{if (iszero 0) then 0 else (succ 0),true\}.2 : ?
 - { ... } : Nat × Bool
 - { ... }.2 : Bool
Records

\[\langle t \rangle ::= \ldots \mid \{ l_1 = \langle t \rangle_1 , l_2 = \langle t \rangle_2 , \ldots , l_n = \langle t \rangle_n \} \mid \langle t \rangle . l \]

- Example: \{ \text{sum} = \text{succ} \ 0 , \text{overdraft} = \text{true} \}

- Labels \(l_i \) are from some pre-defined set of labels
 - In any term, all labels must be different

- In the semantics, introduce \textit{record values}

- In the type system, introduce \textit{record types}
 \{ \(l_1 : T_1 \), \(l_2 : T_2 \), \ldots , \(l_n : T_n \) \}
 - E.g. \{ \text{sum} : \text{Nat} , \text{overdraft} : \text{Bool} \}
Typing Relation

- Similar to the handling of tuples

\[\begin{align*}
 t_1 & : T_1 \\
 t_2 & : T_2 \\
 \vdots & \\
 t_n & : T_n \\
\end{align*} \]

\[\{ l_1=t_1, l_2=t_2, \ldots, l_n=t_n \} : \{ l_1:T_1, l_2:T_2, \ldots, l_n:T_n \} \]

\[\begin{align*}
 t_1 \{ l_1:T_1, l_2:T_2, \ldots, l_n:T_n \} & \\
 t_1.l_k & : T_k \\
\end{align*} \]

- \{\text{sum=\textit{succ 0}}, \text{overdraft=true}\}.\text{sum} : ?
 - \{ \ldots \} : \{ \text{sum:Nat, overdraft:Bool} \}
 - \{ \ldots \}.\text{sum} : \text{Nat}
Ordering of Labels

- Consider \{ \text{sum}=\text{succ 0}, \text{overdraft}=\text{true} \} and \{ \text{overdraft}=\text{true}, \text{sum}=\text{succ 0} \}
 - Are they the same value?
- Consider \{ \text{sum}:\text{Nat}, \text{overdraft}:\text{Bool} \} and \{ \text{overdraft}:\text{Bool}, \text{sum}:\text{Nat} \}
 - Are they the same type?
- In our type system, labels are ordered
 - Similarly to tuples: \{0,\text{true}\} is not \{\text{true},0\}
- Will this typecheck in C?
 - \text{struct\{int x;int y;\}} a,b; \text{struct\{int y;int x;\}} c;
 - a.x = 1; a.y = 2; b = a; c = a;
Lists

\[\langle t \rangle ::= \ldots \mid \text{nil}[\langle T \rangle] \mid \text{cons}[\langle T \rangle] \langle t \rangle \langle t \rangle \]
\[\mid \text{isNull}[\langle T \rangle] \langle t \rangle \mid \text{head}[\langle T \rangle] \langle t \rangle \mid \text{tail}[\langle T \rangle] \langle t \rangle \]

- Example: \(\text{cons}[\text{Bool}] \) (\(\text{isNull}[\text{Nat} \times \text{Bool}] \) \(\text{nil}[\text{Nat} \times \text{Bool}] \)) (\(\text{cons}[\text{Bool}] \text{ false nil}[\text{Bool}] \))
 - The value is a list of size 2: \(\text{cons}[\text{Bool}] \text{ true} \) (\(\text{cons}[\text{Bool}] \text{ false nil}[\text{Bool}] \)) i.e. (true false)
- In the semantics: list values
 - \(\langle v \rangle ::= \ldots \mid \text{nil}[\langle T \rangle] \mid \text{cons}[\langle T \rangle] \langle v \rangle \langle v \rangle \)
- In the type system: list types
 - \(\text{List} \ T \) - e.g. \(\text{List} (\text{List} \text{Nat} \times \text{Nat}) \)
Typing Relation

- Example 1: \(\text{cons}[ext{Bool}] \) (\(\text{isnil}[ext{Nat} \times \text{Bool}] \) \(\text{nil}[ext{Nat} \times \text{Bool}] \)) (\(\text{cons}[ext{Bool}] \) false nil[\text{Bool}]])
- Example 2: \(\text{cons}[ext{Bool}] \) false true
- Example 3: \(\text{isnil}[ext{Bool}] \) nil[\text{Nat} \times \text{Bool}]
Let Bindings

\[\text{let id = } \langle t \rangle \text{ in } \langle t \rangle \]

- Give names to sub-expressions
 - `let z=true in cons[Bool] z (cons[Bool] z nil[Bool])`
- Semantics: evaluate the first expr, “bind” `z` to that value, and evaluate the second expr
- Use a type environment \(\Gamma \) (a.k.a. typing context)
 - Sequence of (name,type) pairs
 - \(\Gamma, x:T \) means “\(\Gamma \) appended with the pair \((x:T)\)”
 - Name `x` should not already be bound by \(\Gamma \)
- Ternary typing relation: \(\Gamma \vdash t : T \)
 - “Term \(t \) has type \(T \) under the bindings in \(\Gamma \)”
Typing Relation

\[
\begin{array}{c}
\Gamma \vdash t_1 : T_1 \\
\Gamma, x : T \vdash t_2 : T_2 \\
\hline
\Gamma \vdash \text{let } x = t_1 \text{ in } t_2 : T_2
\end{array}
\]

- \text{let } z = \text{true in cons[Bool]} z \ (\text{cons[Bool]} z \ \text{nil[Bool]}) : ?
- \varnothing \vdash \text{true} : \text{Bool}
- z : \text{Bool} \vdash \text{cons[Bool]} z \ (\text{cons[Bool]} z \ \text{nil[Bool]}) : ?
- z : \text{Bool} \vdash z : \text{Bool} \\
- z : \text{Bool} \vdash \text{nil[Bool]} : \text{List Bool}
- z : \text{Bool} \vdash \text{cons[Bool]} z \ \text{nil[Bool]} : \text{List Bool}
- z : \text{Bool} \vdash \text{cons[Bool]} z \ (\text{cons[Bool]} z \ \text{nil[Bool]}) : \text{List Bool}
- \varnothing \vdash \text{let } z = \text{true in cons[Bool]} z \ (\text{cons[Bool]} z \ \text{nil[Bool]}) : \text{List Bool}
- \text{Note: } \varnothing \vdash t : T \text{ is typically written simply as } \vdash t : T
Extended Typing Relation

- Need to include Γ in all rules; e.g.

\[
\Gamma \vdash \text{true} : \text{Bool} \\
\Gamma \vdash t_1 : T_1 \quad \Gamma \vdash t_2 : \text{List } T_1 \\
\Gamma \vdash \text{cons} [T_1] t_1 t_2 : \text{List } T_1
\]

- Γ also needed for functions and function applications (function body should be evaluated under bindings for the function parameters)
 - But, we have no time for this discussion

- In this generalized type system, as before, each term has at most one type, and a well-typed term will not get stuck (safety)
Subtypes

- Subtypes play an important role in many languages (e.g. object-oriented ones)
- \(S \) is a **subtype** of \(T \), written \(S <: T \), if any term of type \(S \) can be safely used in any situation where a term of type \(T \) is expected
 - **Principle of safe substitution**
 \[
 \frac{\Gamma \vdash t : S \quad S <: T}{\Gamma \vdash t : T}
 \]
 subsumption rule
- Simple interpretation is that the elements of \(S \) form a subset of the elements of \(T \)
- We will define the **subtype relation** \(<:\) with the help of inference rules
Subtype Relation

- Reflexivity: $S <: S$
- Top Type: $S <: \text{Top}$
- Transitivity: $S <: U \quad U <: T \quad \therefore \quad S <: T$

For records:

\[
\begin{align*}
S_1 & <: T_1 \\
S_2 & <: T_2 \\
& \vdots \\
S_n & <: T_n \\
\{ l_1:S_1, l_2:S_2, \ldots, l_n:S_n \} & <: \{ l_1:T_1, l_2:T_2, \ldots, l_n:T_n \}
\end{align*}
\]

Depth Subtyping for Records

\[
\begin{align*}
\{ l_1:T_1, l_2:T_2, \ldots, l_n:T_n, l_{n+1}:T_{n+1} \} & <: \{ l_1:T_1, l_2:T_2, \ldots, l_n:T_n \}
\end{align*}
\]

Width Subtyping for Records

Example: $\{x:\text{Nat}\}$ is the set of all records that have a field $x:\text{Nat}$, and some other fields. $\{x:\text{Nat}, y:\text{Bool}\}$ is the set of all records that have a field $x:\text{Nat}$, a field $y:\text{Bool}$, and some other fields. Thus, $\{x:\text{Nat}, y:\text{Bool}\} <: \{x:\text{Nat}\}$
The rule says that the order of labels (fields) in a record does not matter: e.g. \(\{x:\text{Nat}, y:\text{Bool}\}\) is a subtype of \(\{y:\text{Bool}, x:\text{Nat}\}\) and vice versa.

Problem: this is bad for run-time performance.

- If we fix the order at compile time, we would know, at compile time, the offset of the field with label \(l_n\) - allows efficient access for \(t.l_n\)
- But with permutation, at run time need to "search" in memory for the actual location of \(l_n\)
Functions and Subtypes

- Function types: $T_1 \rightarrow T_2$
 - For a term of type T_1, the result of applying the function on this term is of type T_2
 - Subtyping: contravariant for the parameter, covariant for the result

\[\begin{align*}
T_1 & <: S_1 \\
S_2 & <: T_2 \\
S_1 \rightarrow S_2 & <: T_1 \rightarrow T_2
\end{align*} \]

- Function f of type $S_1 \rightarrow S_2$ accepts an argument of S_1, so it should be OK with an argument of T_1. Returns a value of S_2, so $f(\ldots)$ can be which can be used anywhere where T_2 is expected. So, f is also of type $T_1 \rightarrow T_2$
Tuples and Lists

- n-tuples can be thought of as a special case of records with labels 1, 2, ..., n
 - Essentially, same typing rules
- Lists

\[
\begin{array}{c}
S_1 <: T_1 \\
\hline
\text{List } S_1 <: \text{ List } T_1 \\
\end{array}
\]

- Allows the creation of heterogeneous lists: e.g.
 \[
 \text{cons} \{x:\text{Nat}\} \{x=0\} \ (\text{cons} \{x:\text{Nat}, y:\text{Bool}\} \{x=0, y=true\} \\
 \text{nil} \{x:\text{Nat}, y:\text{Bool}\})
 \]
- For the inner expression: cons ... : List \{x:\text{Nat}, y:\text{Bool}\}
- Subsumption rule: give it type List \{x:\text{Nat}\}
- Only then we can type the outer cons ...
Casting

- \((T) \vdash t\) in Java and C++
- **Up-cast**: a term is “forced” to a supertype of the type the typechecker would choose for it

\[
\Gamma \vdash t : T \\
\overline{\Gamma \vdash (T) t : T}
\]

If \(\Gamma \vdash t : S\) and \(S <: T\), use this and the subsumption rule to derive \(\Gamma \vdash (T) t : T\)

- **Down-cast**: force a type that cannot be determined statically
 - The programmer says to the typechecker:
 - “I know this will be the type; trust me”
 - “trust but verify” e.g. run-time checks in Java
Polymorphism

- Poly = many, morph = form
- A piece of code has multiple types
- Example 1: **subtype polymorphism**
 - Subsumption rule: a term has multiple types
 - Typical for object-oriented languages
- Example 2: **parametric polymorphism**
 - E.g. \(f(x) = x \) has types \(\text{Bool} \rightarrow \text{Bool}, \text{Nat} \rightarrow \text{Nat}, \ldots \)
 - Use a type parameter \(T \) and type \(T \rightarrow T \)
 - Examples: generics in C++ and Java, ML-style polymorphism in functional languages
- Example 3: **ad hoc polymorphism** - e.g. overloading
Terminology

- **Statically typed language**: compile-time analyses
 - Prove the absence of certain type-related bad run-time behaviors (C, C++, Java, ML, Haskell,...)
 - **Type safety**: all bad behaviors of certain kinds are excluded (e.g. Java, but not C)

- **Dynamically typed language**: run-time checks to catch bad behaviors (e.g. Lisp, Scheme, Perl)

- **Language safety**: cannot “break” the fundamental abstractions (type-related and otherwise); e.g. no buffer overflows, seg faults, return address overriding, garbage values due to type errors, etc.
 - C: unsafe; Java: safe, static+dynamic checking; Lisp: safe, dynamic checking