1. (4 points). Rewrite the following s-expressions using the list notation of LISP/Scheme; if it cannot be done for a particular s-expression, explain why not; if it can done partially, do so as much as possible:

 a. (4 . NIL)
 b. ((3 . NIL) . (4 . NIL))
 c. (3 . ((4 . NIL) . (5 . NIL)))
 d. (3 . (4 . 5))

2. (4 points). Rewrite the following lists using the dot notation; if it cannot be done for a particular list, explain why not; if it can done partially, do so as much as possible:

 a. (7)
 b. (7 8)
 c. (7 (8))
 d. ((7) 8)

3. (4 points). Write down the results for each of the the following function applications; if any of them is erroneous, indicate what the problem is:

 a. CAR[(() . 4)]
 b. CDR[(() . 4)]
 c. CONS[(a), (b)]
 d. NULL?[CDR[(a)]]

4. (8 points). Define a function, call it ‘CHECK’ that takes an integer as its first argument, a list of integers as its second argument and returns the count of how many times the first argument appears in the second. Thus:

 CHECK[3, (2 0)] = 0
 CHECK[3, (2 3)] = 1
 CHECK[3, (3 1 3)] = 2

Important Note: Use only the notations, conventions, and primitives we have introduced in class.

Important Note 2: The second mid-term will be on Monday, Nov. 21. Topics for the mid-term will be everything we discuss in class before the exam (and since the first mid-term).