CIS 778

Computer-Aided Design and Analysis of VLSI Circuits

P. Sadayappan
Course Information

- Taught every Autumn, MWF 12:30-1:16; 4 credits
- Around 25 students, mix of CSE-UG/G, ECE-UG/G
 - AU04: 7 cse-ug, 9 cse-g, 4 ece-ug, 5 ece-g
- Course covers both “low-level” and “high-level” design (two separate graduate-level courses in ECE)
 - Low-level: Transistor-level design and layout; used for creating building blocks like adders, shifters, registers etc.
 - High-level: Hardware Description Language (Verilog); used for system design
Low-Level Design

- Topics:
 - CMOS circuit design techniques
 - Layout design, extraction
 - Effect of transistor size on performance
 - Simulation for functional testing and timing characterization
Coursework

• First half: Low-level design
 – 2 Labs, 2 HW’s, 1 Design Project
 – Design project (individually done) emphasizes iterative design to achieve circuit performance goals
 – Use simple analytical model to develop initial design; implement circuit, create layout, extract and simulate to characterize performance; identify performance bottleneck and redesign; iterate several times till optimal performance is achieved.
 – Written Project Report describing initial design and documenting design iterations.

• Mid-term

• Second half: High-level design using HDL’s
 – Group project (2 students): design/verification of simple system (e.g. Soda-machine controller; Digital alarm clock)
 – Group presentation (oral, ~ 20 minutes)
Capstone Criteria 1 & 2 & 3

• **Criteria 1 & 2**
 – Is at the senior level
 – Pre-requisites CSE 560, CSE 675, ECE 561 (no 601)

• **Criterion 3: Design component**
 – Design is a significant focus in course: 2 labs and 2 projects
 – Project 1 illustrates design iteration
Criterion 4: Course Content

• Realistic constraints
 • Performance constraints

• Standards
 • Verilog is an IEEE standard
 • Layout design rules (not a standard)

• Maintainability
 • ???

• Ethical, social issues
 • ???
Criterion 5: Documentation

- Written project reports for project 1 & 2
- Project designs are documented in project reports, but no formalized model for the documentation - ad hoc
Criterion 6: Oral Presentation

• Each group makes an oral presentation (about 20 minutes; 10 minutes by each partner)
 – Topic is either Design Project 2, or
 – Any other pre-approved topic pertaining to course matter

• Feedback & Peer Evaluation
 – Students fill out feedback forms
 – Good attendance (offered a small amount of extra credit)

• Presentation on Design Project vs. Other topics
 – Few groups chose to present their Project 2 design
 – Alternative topic presentations were much more interesting
 • e.g. Pentium Arch; Itanium Arch; Phase-Locked Loops; Commercial CAD Tools; CAD Synthesis
Criteria 7: Teamwork

- Project 2 was done in 2-person teams
- Oral presentation required presentation by both team members
- Team choice was left to students
 - Considered mixing CSE and ECE, but not quite balanced in count
- Nothing formalized regarding work partitioning and team interaction; nothing explicitly reported
 - For project 2, the overall effort is definitely reduced by partitioning design work: teams divided up work by dividing up component modules of design
 - For oral presentation, typically two coordinated and linked presentations
Criterion 8: Course-size

- Cap: 30
- Enrolment over last few years has been around 25