
Version: 9/7/09 1

Software Engineering Course Group 
Report 

Date of report: Sep. 7, 09 

 

Software Engineering Group 

Course no. Title Credit
Hours 

Reqd - Core (R)/ 
Reqd - Option (O)/ 
Elective (E) 

Capstone?

CSE 502 Object-Oriented Programming 
for Engineers and Scientists 3 E  

CSE 560 System Software Design, 
Development, and Documentation 5 R  

CSE 601 Social and Ethical Issues in Computing 1 R  

CSE/ECE 668 Applied Component-Oriented Programming for 
Engineers and Scientists 3 E  

CSE 757 Software Engineering 3 O  

CSE 758 Software Engineering Project 4 E Yes 

CSE/ECE 767 
Applied Use-Case-Driven 
Object-Oriented Analysis and Design for 
Engineers and Scientists 

3 E  

CSE/ECE 769 Applied Enterprise Distributed Computing for 
Engineers and Scientists 3 E  

CSE 794J Enterprise Architecture I 3 E  

CSE 794K Enterprise Architecture II 3 E  

 

1. Summary 
Software engineering is a core area in the discipline of computer science.  Over the last 
decade, software and information technology have been primary drivers of economic 
growth in the US.  Developing reliable software, however, remains a challenge.  A recent 
NIST report (June 2002) estimates that software errors cost the US economy 59.5 billion 
dollars annually.  Also, the practice of software engineering is evolving, with the 
emergence of agile practices, the need to consider technology management, legacy 
software integration, organizational management, as well as deployment and 
infrastructure issues instead of a focus on just developing software. The software 
engineering course group plays a pivotal role in addressing this challenge by teaching 



Version: 9/7/09 2

good engineering practices, and in developing the appropriate professional and social 
ethics. 

The software engineering course group consists of two sets of courses:  

1. Required and primary elective courses, or the “core” sequence - CSE 560, CSE 
601, CSE 757, and CSE 758: These courses are intended for computer science 
majors and are either required for the major (560 and 601), required for the 
software systems option (757), or strongly encouraged (758).  

2. The "Applied Software Engineering" sequence - CSE 502, CSE/ECE 668, 
CSE/ECE 767, and CSE/ECE 769: These courses are intended for students from 
other science and engineering majors, but with an interest in state-of-the-practice 
software engineering principles. They form a cohesive curricular unit, with CSE 
502 serving as the prerequisite to CSE/ECE 668, and CSE/ECE 668 serving as a 
prerequisite to both CSE/ECE 767 and CSE/ECE 769. It is important to recognize 
that all these courses except CSE 502 are appropriate for CSE/CIS majors to 
enhance their software engineering backgrounds.  

3. A new pilot course sequence (CSE 794J and CSE 794K) on Enterprise 
Architecture. 

The first course in the core sequence is CSE 560 ("System Software"). CSE 560 is the 
keystone course of the CSE curriculum: it is a required course for all CSE students and it 
serves as a prerequisite for the majority of upper-level courses. The technical content of 
this course centers on the tools (e.g., compilers, assemblers, linkers, loaders, operating 
systems) that bridge the semantic gap between the machine-level view of instruction 
execution and the applications developer view of programs. This course expands 
significantly on several topics that were first introduced in the software spine: teamwork, 
design, and technical writing.  

Required in this group is CSE 601 ("Social and Ethical Issues in Computing"), a required 
course on the social, ethical, and legal issues that arise in the practice of the computing 
profession as well as in the application of computer technology. This course is structured 
around student presentations and debates on current issues in the field such as privacy 
rights, security rights, copyright laws, and antitrust laws. Emphasis is placed on oral 
communication and on the ability to hold and defend reasoned opinions.  This course is a 
prerequisite for all Capstone courses, and hence for CSE 758 (see below). 

CSE 560 is followed by CSE 757 ("Software Engineering") where principles of 
requirements, analysis, architecture, design, implementation, validation, deployment and 
management of computer software are taught. Over the last year, an emphasis on 
“enterprise” software engineering is being incorporated in the course. 

The final course in the core sequence is CSE 758 ("Software Engineering Project") that 
fulfills CSE Capstone requirements. The major objective of this course is to ready 
students for the marketplace by exercising--through a significant, large-scale project--the 
knowledge they have gained in previous software and software engineering courses. 



Version: 9/7/09 3

Course projects typically involve practical (real) problems for a larger client community. 
Specifically, upon completing this course, students will have applied, in a real project, 
with a real customer, their knowledge about the software development lifecycle (SDLC), 
including requirements, analysis, architecture and design, project management, 
implementation, testing and deployment using a range of software development tools and 
technologies.  

In the Applied Software Engineering sequence, the first course, CSE 502, has largely 
traditional content. It is required to get engineering and science students with non-object-
oriented-computing backgrounds “up to speed” in using an object-oriented language to 
develop programs. It focuses on standard introductory object-oriented concepts and 
programming language features that are routinely taught to undergraduate computing 
majors. Students who have this background already may skip this course.  
 
The next three courses, CSE/ECE 668, CSE/ECE 767, and CSE/ECE 769, teach and 
apply software engineering processes based on modern industry-standard technologies 
such as UML; iterative and incremental development; use-case analysis; component-
based software engineering; Java technologies including Java Beans, reflection, and class 
loading; C# and .NET technologies from Microsoft; and distributed systems based on 
standards such as EJB, JSP, XML, SOAP Web Services, WS-* specifications, the 
Enterprise Service Bus (ESB) and “cloud” computing.  
 
The pilot 2-course sequence CSE 794J and K is on Enterprise Architecture, i.e. how 
complex organizations are structured and how technology supports the business. This 
course should ideally fit in the Applied Software Engineering sequence, as an important 
course for computer science graduates seeking to enter professional practice, because of 
the relevance of organizational design and management, technology management, project 
and program management and vendor management to professionals. 
 
Finally, 2 other courses – CSE 421 Software Development in Java, and CSE 616 – 
Object-Oriented Systems Analysis are being considered for incorporation into this course 
group. This report will be extended to include this courses when this happens. 
 
Overall, students and faculty are generally satisfied with the courses in the software 
course group. CSE 560 remains one of the most challenging and intense courses in the 
curriculum, but it is also perceived by the students as one of the most relevant for their 
future professional careers. The initial offerings from the Applied Software Engineering 
course sequence have been well-received, although enrollment from outside the 
department has not been as robust as we might like.  The Enterprise Architecture course 
is primarily taken by graduate students. 

2. Detailed Analysis 
Section  2.1 describes the individual courses in the group. Section 2.3 explains how the 
group is related to the rest of program. Section 2.4 explains how the group helps achieve 
a number of CSE Program Outcomes. Section 2.5 describes the feedback we have 



Version: 9/7/09 4

received from students, recruiters, etc., about the courses in the group. Section 2.6 
summarizes the main changes we have made in the courses since the previous report. 
Section 2.7 discusses some continuing and emerging concerns involving these courses 
and our plans to address them.  

2.1 Summary of the courses 

CSE 560: This is a five-credit course that serves as the keystone of the curriculum. It is a 
prerequisite to almost all upper-level courses and students generally take this course 
during their sophomore or junior year. The class meets for 4 lecture hours/week. The 
extra credits reflect the heavy lab component of the course and the need for periodic 
design review meetings with the instructor and grader.  

The technical content of the course centers on system software (e.g., compilers, linkers, 
loaders, interpreters). The emphasis of the course, however, is as much on design, 
documentation, implementation, testing, teamwork, and communication skills as it is on 
the pragmatics of system software.  

Over the course of the quarter, students design, document, implement, and test several 
projects. These are large programming assignments, some taking as many as 6 weeks to 
complete, depending on the instructor. Students are given a description of the abstract 
machine for which they are building the system software and a good description of the 
required functionality for each particular assignment (e.g., an assembler). Like many real-
world engineering situations, however, the assignment specifications are somewhat 
incomplete and occasionally ambiguous. It is up to the students to address the omissions 
and ambiguities by soliciting information from their hypothetical client and by making 
appropriate design choices. Apart from design choices in their system requirements, 
students are also free to make many design choices in the completion of their 
assignments; for example, the implementation language and platform as well as the 
module decomposition, data structures, and algorithms. For most students, CSE 560 is the 
first time they will face ambiguous requirement requests and the first time they will be 
given significant latitude in how they satisfy these requirements.  

CSE 560 is also the first time most students will be building programs that are too large 
to complete in a single sitting. At the beginning of the quarter, the class is divided into 
teams of four or five. Assignments are completed by the team as a whole, and the entire 
team is given a single grade (with the exception, in some sections, of 5% that is reserved 
for individual effort and is allocated according to a peer review by other group members). 
Teams are responsible for setting up regular meeting times and for partitioning the 
workload equitably. Teams meet with the instructor during the quarter to get direct 
feedback on their design decisions as well as to analyze and discuss how well the team is 
working together. Peer evaluations are submitted regularly during the quarter and provide 
more insight into the team dynamics that have evolved. Students gain first-hand 
experience in the challenges involved with working with others. They learn the 
importance of proper task allocation, how to rely on others, and how to take 
responsibility for completing tasks both as individuals and as a group.  



Version: 9/7/09 5

In addition to a working implementation, teams must also deliver extensive 
documentation in the form of a user's guide, a programmer's guide, a testing guide, and 
the minutes from all team meetings. CSE 560 is officially designated as a third writing 
course. It is not uncommon for this documentation to exceed several hundred pages over 
the course of the term. Recently, some sections of the course have experimented with 
online and electronic documentation. Some lecture time is set aside to address technical 
writing issues. For the first assignment, draft documentation is submitted so that students 
can get feedback before submitting their first set of documentation. Also, the last 
assignment is a synthesis of the previous assignments into a single working system and 
hence much of the documentation submitted for this final assignment is a rewritten form 
of previously submitted and graded documentation. Also, the College of Engineering 
maintains a Technical Communication Resource Center whose mission it is to "assist 
students in the development of effective written and visual communication skills". 
Students are encouraged to avail themselves of this service. There are two recommended 
textbooks for CSE 560, one of which is a reference book and style guide for technical 
writing. 

CSE 601: The primary objective is for each participant to become informed, and to 
develop reasoned opinions about the ethical, social, and legal dimensions of various 
situations that may be encountered by computer professionals, and about social issues 
that arise from computer technology. Participants practice how to: hold an opinion, have 
reasons for one's opinions, change opinions when compelled by best judgment, and 
rationally discuss opinions in cooperative pursuit of truth and good practices. Additional 
objectives are to develop communication skills, both written and oral, and to encourage 
ethical and responsible behavior.  

The class meets once a week, with a 90 minute time slot. Each student makes one 10 
minute classroom presentation on an assigned topic -- either a report-style presentation or 
an assigned role in a debate. Debates follow a modified town-hall debate format with 
points of order and points of information. Each student also writes a three-page paper on 
a topic chosen from a list of possible topics.  

The presentation grade is based on: effectiveness of communication, clarity, strength of 
preparation, accuracy of reported material. Students are given an opportunity to rewrite 
their papers based on instructor and grader feedback.  

Changes to this course have been minimal, and are primarily due to the inclusion of 
newer current topics. The grading rubrics have been revised slightly based on experience. 
More communication is done through email. The overall external appearance of the 
course hasn’t changed much, but the internal emphasis on professionalism is now clearer. 
For 2009, the requirement for student built web sites has been dropped due to privacy 
issues. The availability of GoogleDocs, blogs, presentation, and web sites is likely to 
change what the class should be trying to accomplish and what should be required.  

For the switch to semesters, the instructor recommends keeping this a separate 1-hour 
course and adding some formalized case studies (the primary thing left out now). A 



Version: 9/7/09 6

desire of the instructor is to offer a version of this course for students in major other than 
computer science. Other engineering departments offer this kind of course, but majors 
from other colleges might also enjoy it. 

CSE 757: This is our software engineering fundamentals course and is required for 
students in the Software Systems option. The course is a prerequisite for CSE 758 and 
CSE 772, and students generally take it during their junior or senior year. The class meets 
for three lecture hours per week.  

Starting recently, this course is being extensively re-worked (with this re-work being 
supported by an NSF CCLI grant). The technical content of the reworked material now 
centers on software engineering techniques and methodologies related to the development 
and maintenance of large software systems, known as enterprise systems. The course 
studies the principles and methodological frameworks necessary to support the software 
development lifecycle (SDLC) of these enterprise systems. Topics include frameworks 
for understanding the business context of enterprise systems, requirements identification 
and analysis, project management (including project planning, estimation, configuration 
management and project risk management), software architecture and design, software 
quality assurance and testing, and software system deployment. There is a paper project 
where students apply the theory that is taught in the lecture. In Winter of 2009, in 
collaboration with Thoughtworks Inc., we developed an “organizational simulation”--a 
LegoTM based game--that allowed students to experience some essential elements of Agile 
methodologies such as iteration planning, estimation, and the importance of customer 
engagement. This game was considered very effective by the students in showing how 
Agile works, and we will permanently incorporate this simulation into the course. We are 
working on developing simulations that illustrate other concepts. 

The collaboration with Thoughtworks, Inc., is one example of industry engagement in the 
ongoing refinement of this course.  

In the recent offerings of CSE 757, the course material has consisted of extracted material 
from a variety of books and papers, as well as exemplar SDLC artifacts from actual 
projects.  

CSE 758: The major objective of this course is to ready students for the marketplace by 
requiring them to exercise the knowledge they have gained in previous software and 
software engineering courses on industry-specified real world problems. Specifically, 
upon completing this course, students are expected to have applied their knowledge of 
enterprise-scale software engineering frameworks to:  

• The process of developing software:  
o Requirements and analysis 
o Software architecture and design, driven by non-functional requirements: 

scalability, security, usability and performance  
o Project management, planning, team structure, roles and responsibilities, 

Configuration management  



Version: 9/7/09 7

o Incremental and iterative, workbook-centered, object-oriented, structured 
and agile software development  

o Project planning  
• Presenting work to an audience of peers  
• Business issues in software development  

Specific tools and techniques that students typically use include:  

• Object oriented analysis, design and implementation work-products.  
• Structured and agile methodologies.  
• Unified Modeling Language (UML) notation for some of the above work 

products.  
• Configuration management tools (RCS, SCCS, Ant, Make, or other), and other 

miscellaneous tools - Web authoring tools, Word processing tools etc.  
• J2EE tools and components: Java 2 SDK, JSP pages and servlets, Enterprise Java 

Beans, JDBC, JUnit.  
• .NET tools and components: SQL-Server, ASP.NET, C#.  
• Development frameworks and toolkits for Mobile computing – such Windows 

CE, J2ME and proprietary frameworks 
• Other frameworks, such as AJAX, Flex and Flash 
• Relational databases  
• Documentation/Markup languages including HTML, XML, and Javadoc.  

Projects in this course have been many and varied. Projects are all provided from external 
sources--large and small industry, and individuals within and outside the university. All 
of them are sponsoring the project because of a real need. In all cases, the external entity 
has assigned one or more of their personnel to work with the students--mostly in the 
provision of requirements, but also as mentors. Finally, industry representatives attend 
the mid-term and final presentations, act as the "instructor-for-a-day" and provide 
feedback on how the students are proceeding, with specific feedback on what portions of 
the projects could make a suitable employment portfolio.  

The number of projects done in a quarter depends on the number of students in a section. 
Some sections assign a project to sub-groups of 4-5 students. Other sections have 
typically assigned a single project to an entire section.  

Recent projects have included e-commerce sites, mobile applications, a reading assistant 
for young children, a web-based geographical game, a web-site for microloans to people 
in the developing countries, and the re-architecture of an enterprise scale client-server 
system (sponsored by local entrepreneurs). Almost 50% of the projects have been taken 
into production by the sponsors later. 

The use of real external projects, in almost all cases, has brought in significant and 
interesting complexity to the projects--much more so than if the instructor had formulated 
projects. Students have been very motivated because of the presence of a real customer. 
Some projects have been very successful, and are confidently showcased by both students 



Version: 9/7/09 8

and the instructors to external industry. Business requirements have been well-understood 
by students, and there is a clear connection to business and market requirements in the 
scope and design of the projects.  

Each of these projects has required system and software design. The non-functional 
(design) requirements that students have concentrated on have primarily been UI 
requirements. An extremely high-performing group doing a referee-enrollment web site 
project considered scalability as a key design requirement, studying several design 
alternatives, and implementing connection pooling, caching, very lightweight templates 
and database optimizations. Another group (that did a SmartCard digital cash project) 
made security their primary design requirement, and brought in the use of considerable 
digital-cash technology. Students are required to make weekly presentations during the 
quarter to showcase their progress and solicit feedback and guidance. Students are also 
required to do two formal presentations--a mid-term one (45 minutes to 1 hour in length) 
and a final one lasting 2 hours. The mid-term presentation is made to the entire class, the 
instructor and invited external evaluators. The final presentation is made only to the 
evaluator and the instructor because of the difficulty of scheduling times when the entire 
class can attend. Each student individually presents at least 6 times during a quarter. 
Students clearly benefit from this presentation experience, as evidenced by the 
improvement that they make over the course of the quarter.  

Even though the purported goal of the course is for students to apply their prior academic 
knowledge to class projects, students have not typically come in with a great deal of 
directly applicable prior knowledge. This means that students have to learn new things, 
such as new technologies and methodologies as well as learn to develop skills for 
applying their prior knowledge (on their own, and with mentoring, but without formal 
lecture from instructors). We believe that this experience will set the stage for life-long 
learning on the part of students--both in terms of expectations as well as ability.  

There have been two offerings of CSE 758 with students who have taken the changed 
CSE 757 course. We believe (albeit anecdotally) that the student groups with a member 
who has taken the new CSE 757 perform better with respect to the process aspects of 
software engineering. 

We were of the opinion that a two-quarter Capstone sequence was necessary for course 
expectations to "sink in", and be met in a better manner. However, with the course now 
having been incrementally streamlined, we no longer believe that this is necessary. The 
move to semesters will certainly help. 

CSE 502: This is a three-credit course that introduces non-CS majors to object-oriented 
programming. It is intended for science and engineering students (lab assignments are 
technical in this direction), and serves as the transition course for non-CS majors who 
wish to take the Applied Software Engineering sequence. Topics include object-oriented 
programming concepts, interfaces and classes, and some important and standard design 
patterns. This is a course for either graduate or undergraduate credit. It is oriented 
primarily to graduate students in other departments who want an advanced introduction to 



Version: 9/7/09 9

basic principles of object-oriented programming and the use of a modern program 
development environment (Java and Eclipse). Even though there are minimal 
prerequisites, we expect the students to have experience with programming.  

CSE/ECE 668: This course covers the application of component-based software 
engineering technology to design and implementation of software systems in engineering 
and science.  The topics include: 

• Review of basics of object orientation 
• UML class diagrams and interaction diagrams 
• Building efficient object-oriented software components 
• Events and the Java Event Model as the basis for "wiring together" software 

components into a larger software system 
• Introduction to JavaBeans 
• Multithreading and its importance for correctness of engineering and scientific 

software systems 
• Building a sample engineering and/or scientific software system 

CSE/ECE 767:  This course is focused on developing a software application sase study 
using incremental and iterative use-case-driven process of building object-oriented 
scientific and engineering software systems; analysis, design, UML modeling, design 
patterns. 

Topics in this course include: 

• Review of elementary UML and intermediate concepts 
• What is good software? 
• Introduction to the case study problem 
• Requirements capture, and use case analysis 
• Introduction to use case driven iterative and incremental processes 
• Analysis and problem domain models 
• Robustness diagrams 
• Bridging the gap between analysis and design; GRASP patterns. 
• Design and design patterns 

CSE/ECE 769: This is a course introducing current technologies and middleware for 
distributed enterprise computing. Technologies include XML, JavaScript, Flash, Ajax, 
Flex, Enterprise Java, Web Services, an Enterprise Service Bus and the Google Web 
Toolkit. The objective of this course is to learn about current technologies in distributed 
enterprise computing and apply them in small projects in a disciplined manner. The class 
is organized into teams of two people each. The same projects are assigned to each team. 
Teams must develop and apply an appropriate software design methodology to the 
project. They are expected to meet outside the usual class periods for the project and 
maintain and present the project workbook in electronic form on the Web. Maintenance 



Version: 9/7/09 10

of the work-products on the web site is part of the class project, and their work-products 
on the web site are electronically archived at the end of the course. 

The projects are intended to be small application components that build on each other to 
finally create a complete application. For the most recent offering of this course, the 
application was an emergency response application where crises and responders could be 
tracked on a map. 

CSE 794J and K: This is a 2-course project-based sequence that introduces Enterprise 
Architecture and technology management. Topics include: interdisciplinary frameworks 
for enterprise Information Technology (IT) architectures; applications to transformation 
and innovation within the enterprise and creating solutions to real-world problems. 
Topics in 794J include: 

• Enterprise Services and Architectures: trends, modeling and conceptualizing of 
macro-to-micro linkages, concepts of enterprise services composition and 
workflow integration.  

• Overview of common architecture-related frameworks - ITIL (IT Infrastructure 
Libraries), TOGAF (The Open Group Architectural Framework), Architecture 
Tradeoff Analysis Method (ATAM), and Component Business Modeling.  

• Introduction to business processes, supply chains, and enterprise systems. 
• Adaptive Complex Enterprise: performance linkages between in-the-large and in-

the-small, life-cycle and continuous improvement concepts, performance analysis 
and portfolio development.  

• Introduction to policy formulation, implementation and evaluation. Discussion of 
traceability to meet regulations and requirements (such as Sarbanes-Oxley, HIPA 
and other security related) and their impact on complex systems. 

• Patterns and principles for co-engineering Adaptive Complex Systems to achieve 
behaviors like Lean, Chargeback and Capacity alignment, Accountability, 
Competitiveness, and Innovation. 

• Defining and deploying an IT solution using current and emerging technologies 
(sensor networks, mobile computing, service-oriented architectures) and related 
enterprise architecture patterns. 

• Portfolio development and program management. Project specific presentations of 
research and best practices. Related guest lecturers from industry representing IT 
operations management and middleware technologies. 

• Team project methodology and research presentations. 
 
Topics in 794K include: 

• Review of technologies available for enterprise integration. 
• Project implementation plan and prioritization 
• Development of non-functional requirements and request for proposals. 

Discussion of regulations (such as Sarbanes-Oxley, HIPA) and their impact on IT. 
• Project implementations and review of work products. Application of architecture 

Tradeoff Analysis Method (ATAM), and Zachman Architecture. Case studies 



Version: 9/7/09 11

covering the creation of an architecture representation and its use for analysis and 
identification of opportunities for enhancements. 

• Project presentations. 
• Guest lectures from industry representatives in IT operations management and 

middleware technologies. 
• Innovation frameworks. 
• Enterprise architecture patterns. 

 
This course has an extensive project- and applied research-based foundation, thus making 
graduate students the primary audience of this course. All projects done in this course are 
through the CETI NSF-IUCRC program. 

2.2 Evaluation of the courses 

CSE 560: This course has an extensive set of learning outcomes as follows: 

LO1. To master using and implementing each component of the the assemble-link-load-
relocate-execute process.  

LO2. To master using bit manipulation of integers and ascii characters to be able to 
emulate a simple computer that handles both integer and character I/O.  

LO3. To master analyzing the intended audience for a written document and to write an 
audience profile.  

LO4. To be familiar with group project organization techniques including conducting 
group meetings, recording minutes, and tracking project progress.  

LO5. To be familiar with writing a relocating linking loader.  
LO6. To be familiar with using different addressing modes.  
LO7. To be familiar with subroutine linkage at the assembly level.  
LO8. To be familiar with using compilers, debuggers, word processors, editors, diagram 

drawing programs, and profilers to design, build, and document a large software 
project.  

LO9. To be familiar with using macros, including recursive and nested macros.  
LO10. To be familiar with defining the purpose (persuade, inform, etc.) of a written 

document and select the appropriate rhetorical devices; and to write several pieces 
of documentation that have different purposes and to use appropriate organization 
to tie them together.  

LO11. To be familiar with proof-reading own and others' writing.  
LO12. To be familiar with emulating in software, the fetch-decode-execute cycle of a 

CPU.  
LO13. To be familiar with the concept of a `machine' and its implementation via either 

translation or interpreation on lower level machines.  
LO14. To be familiar with making engineering decisions involving tradeoffs (e.g., space-

time tradeoffs in choosing a symbol table implementation).  
LO15. To be familiar with the importance of communication skills, including oral, email, 

and other written documents such as meeting minutes.  



Version: 9/7/09 12

LO16. To be familiar with software testing strategies including black-box versus white-
box, unit testing, integration testing, top-down versus bottom-up testing, and 
construction and implementation of a test plan.  

LO17. To be familiar with the economic and social forces that often drive technology to 
explain developments in system software.  

LO18. To be familiar with using one structured approach to large software design to 
carry out a large group project.  

LO19. To be exposed to issues in systems programming as opposed to applications 
programming.  

LO20. To be exposed to memory management issues including caching, virtual memory, 
etc.  

LO21. To be exposed to one-pass macro processing techniques.  

CSE 560 meets multiple outcomes as the “keystone” course of the CSE curriculum. The 
technical content centers on 2 aspects: (a) tools that bridge the semantic gap between the 
application developer and the machine and (b) good software design and correct 
implementation of these tools using a high-level, object-oriented language. Thus, the 
learning outcomes above span both these aspects. A third aspect is technical writing – 
through the writing of two extensive sets of documentation – targeted at tool users and 
programmers. Thus outcomes LO10, LO11 and LO15 target this aspect.  

CSE 601: The intended learning outcomes for this course are as follows: 

LO1. Be familiar with social implications of decisions and actions of computing 
professionals.  

LO2. Be familiar with the analysis of ethical issues facing computing professionals.  
LO3. Be familiar with writing papers involving legal, ethical, and professional issues in 

computing.  
LO4. Be familiar with making oral presentations, participating in formal debates, and in 

critically observing others' presentations and debates.  
LO5. Be exposed to legal issues facing computing professionals.  

The primary objective is for each participant to become informed and to develop 
reasoned opinions about the ethical, social, and legal dimensions of various situations that 
may be encountered by computer professionals, and about social issues that arise from 
computer technology. Participants will practice how to: hold an opinion, have reasons for 
their opinions, change opinions when compelled by best judgment, and rationally discuss 
opinions in cooperative pursuit of truth and good practices. Additional objectives are to 
develop communication skills, both written and oral, and to encourage ethical and 
responsible behavior. 

CSE 757: The official learning outcomes for this course are as follows: 

LO1. Be familiar with principles of modern software processes. 
LO2. Be familiar with requirements analysis. 
LO3. Master domain analysis using UML. 



Version: 9/7/09 13

LO4. Master principles of object-oriented design using UML. 
LO5. Master design principles and patterns. 
LO6. Be familiar with principles of software testing for procedural and object-oriented 

software. 

The learning outcomes of this course are in the process of being revised to better reflect 
its broad scope. An initial set of revised learning outcomes are below: 

LO1. Be exposed to the trends impacting Enterprise Software Engineering 
LO2. Be exposed to the need for frameworks for Enterprise Software Engineering 
LO3. Be exposed to frameworks for analyzing the business context of enterprise IT 

systems, the concept of Business-IT alignment and related issues, and Enterprise 
Architecture frameworks for analyzing and achieving Business-IT alignment. 

LO4. Be familiar with structured and agile software engineering frameworks; 
specifically structured and agile software engineering methodologies for 
requirements identification, analysis, architecture, design, deployment, testing, 
and project management. 

A typical offering of CSE 757 requires students to conceive, architect and design on 
paper an enterprise scale software system in parallel with class lectures that present the 
relevant techniques with examples. Several simulations that illustrate the techniques are 
intended to be extensively used in this course. One such simulation, a Lego-based game 
that enables students to experience the use of Agile methodologies was designed and 
successfully conducted. 

4 offerings of the course with the revised syllabus have taken place – 3 by Rajiv Ramnath 
and 1 by Bettina Bair.  

CSE 758: This project-based Capstone course builds on CSE 757. The current learning 
outcomes are as follows:  

LO1. Master software design, driven by non-functional requirements: scalability, 
security, usability and performance; generating and evaluating design alternatives; 
pattern-based software design. 

LO2. Master the process of developing software: configuration management; project 
management, planning, team structure, roles and responsibilities; incremental and 
iterative, workbook-centered, object-oriented, agile, lean software development; 
project planning. 

LO3. Master presenting work to an audience of peers. 
LO4. Be familiar with business issues in software development. 

The learning outcomes for this course are also in the process of being revised to better 
connect with its pre-requisite, CSE 757. An initial set of revised learning outcomes are 
below: 



Version: 9/7/09 14

LO1. Be familiar with frameworks for analyzing the business context of enterprise IT 
systems, the concept of Business-IT alignment and related issues, and Enterprise 
Architecture frameworks for analyzing and achieving Business-IT alignment. 

LO2. Master the principles underlying structured and agile software engineering 
frameworks, specifically structured and agile software engineering methodologies 
for requirements identification, analysis, architecture, design, deployment, testing, 
and project management. 

LO3. Be familiar with the application of structured and agile software engineering 
frameworks, specifically structured and agile software engineering methodologies 
for requirements identification, analysis, architecture, design, deployment, testing, 
and project management. 

LO4. Be familiar with the application of at least one industry-standard technology 
framework. 

LO5. Master professional and formal presentations and communications to a varied set 
of stakeholders – customers, peers and superiors. 

Students in CSE 758 achieve these outcomes by engaging in a quarter-long industry 
sponsored project and interacting with real customers. 

CSE 502: These are the official learning outcomes and they reflect the intended audience 
for this course, i.e., (mainly graduate) students from other engineering and scientific 
disciplines (specifically non-CS majors) with some previous programming experience 
and no previous exposure to object-oriented languages, methodologies and technologies: 

LO1. Master using control structures, built-in data types, and object-oriented program 
units of Java (interface, class, and package), and inter-unit relationships 
(implements and extends), to write programs for representative applications that 
are important in engineering and science. 

LO2. Be familiar with using object variables (references/pointers), and with handling 
the problems they create compared to normal variables in procedural languages. 

LO3. Be familiar with designing and developing new interfaces, classes, and packages 
of the kind that might arise in engineering and science applications. 

LO4. Be familiar with using some of the most important object-oriented design 
patterns. 

LO5. Be familiar with using UML class diagrams. 
LO6. Be familiar with using formal specifications in interfaces. 
LO7. Be exposed to the virtual machine model of modern computer systems. 
LO8. Be exposed to software engineering issues. 

In the class we put an emphasis on programming with interfaces (which has a natural 
connection with many things students want to do in Java) and the implications for strong 
typing, dynamic dispatching, and programming by contract. We also talk about 
inheritance, delegation, implements, visibility, and other object-oriented relationships 
involving classes, objects and interfaces. Basic design patterns are illustrated and applied 
to typical programming problems. UML is used as a design and discussion enabling 
graphical technique. 



Version: 9/7/09 15

Eclipse was chosen as a development environment since it facilitates many of the 
software engineering techniques we also discuss, including refactoring, test driven 
development, design, group work, and documentation. 

This course has been offered for close to a decade and has been taught in a relatively 
consistent fashion by various instructors over time. Perhaps the main change in recent 
years has been a heightened emphasis on development tools usually employed by 
professional Java programmers, e.g., Eclipse, Javadoc, JUnit, etc.  These changes seemed 
appropriate given the audience and objectives for the course and were well received by 
the students. 

CSE/ECE 668: Below are the official learning outcomes and they reflect the intended 
audience for this course, i.e., (mainly graduate) students from other engineering and 
scientific disciplines (specifically non-CS majors): 

LO1. Be familiar with applying industry-standard software engineering technologies 
and tools to engineering and scientific software systems. 

LO2. Be familiar with how to build a software system by "wiring together" software 
components 

LO3. Be familiar with the efficiency issues connected with building software for 
engineering and scientific applications, and with how to use object orientation in 
the software without sacrificing efficiency. 

LO4. Be familiar with the software design techniques needed to build such systems, 
such as using a standard modeling language, loosely coupled layered software 
architectures, event-driven programming, multithreading, design-for-reuse, and 
associated design patterns. 

While this course was originally intended for non-CSE majors, there is strong interest 
from CSE majors. 

CSE/ECE 767: The intended learning outcomes of this course are: 

LO2. Be familiar with using UML-based industry-standard CASE tools. 
LO3. Be familiar with following a process that is driven by the requirements of the 

users of the system. 
LO4. Be familiar with model building, at the level of use cases, analysis, and design. 
LO5. Be familiar with the important step of bridging the gap between analysis and 

design. 
LO6. Be familiar with using objected-oriented design patterns. 
LO7. Be familiar with the implications of building real-time software systems. 

This course follows on from CSE 668 by taking the students through the requirements, 
analysis and design phases of the SDLC, thus providing the context for the 
implementation-oriented material in CSE 668. While this course was originally intended 
for non-CSE majors, there is strong interest from CSE majors. 



Version: 9/7/09 16

CSE/ECE 769: The intended learning outcomes of this course are: 

LO1. Master the technologies of enterprise computing that are most important in the 
software industry.  

LO2. Master the advantages of architectures, specifically three tier architectures over 
two tier architectures.  

LO3. Master how to build scalable distributed systems.  
LO4. Master standards in describing data.  
LO5. Be familiar with how to apply enterprise computing to scientific problems.  
LO6. Be familiar with the importance of distributed computing through hands on 

experience.  
LO7. Be familiar with the issues involved in enterprise mission critical applications.  

This course is a strongly enterprise-technology oriented course. In the most recent 
offering of this course the technologies taught were XML and the Xerces XML toolkit, 
the J2EE suite of technologies – Servlets, Java Server Pages, Java Server Faces and 
Enterprise Java Beans. Also taught was the rich client technology, AJAX. Finally, 2 
lectures covered the Enterprise Service Bus, using an open source ESB named 
ChainBuilder from a local company, Bostech (http://www.bostechcorp.com). As with 
CSE 668 and CSE 767, while this course was originally intended for non-CSE majors, 
there is strong interest from CSE majors. In fact, during the last offering of this course, 
there were 3 non-CSE majors out of the 45 students who enrolled in the class. 

CSE 794J and 794K: The learning outcomes for this course sequence are: 

LO1. Master techniques for representing and analyzing enterprise architectures in order 
to more effectively manage complex systems of business processes, 
organizations, and technologies. 

LO2. Be familiar with the practice of applying architecture knowledge for developing 
strategic options for decision making and developing IT solution approaches for 
industry-sponsored problems. 

LO3. Be familiar with communication and program management skills through making 
presentations that consider all stakeholder perspectives and techniques for 
identifying areas of IT innovation and requirements relevant to a particular 
organization. 

 
This pilot 2-course sequence CSE 794J and K is on Enterprise Architecture, i.e. how 
complex organizations are structured and how technology supports the business. This 
course could fit in the Applied Software Engineering sequence, as an important course 
for computer science and other graduates seeking to enter professional practice in 
information technology, because of the relevance of organizational design and 
management, technology management, project and program management and vendor 
management to professionals. It is also a relevant course for CS graduates alone. 

2.3 Relation to rest of the program 



Version: 9/7/09 17

CSE 560: The prerequisites for CSE 560 are CSE 321 (or CSE 314 for Information 
Systems majors), CSE 360 (or ECE 265 for ECE majors), and a second writing course. 
The CSE 321 (or CSE 314) requirement stems from the large programming assignments 
that form the lab component of this course. Students come to CSE 560 with a strong 
foundation in the use and implementation of components built in C++ using the Resolve 
discipline. The ideas of tokenizers and parsers introduced in CSE 321 are extended in 
CSE 560. The CSE 360 (or ECE 265) requirement stems from the topic of the 
programming assignments: system software. Students are expected to be familiar with the 
basics of architecture and some assembly language.  

CSE 560 serves as a direct prerequisite for the initial courses in several sub-disciplines: 
CSE 655 (programming languages), CSE 660 (operating systems), CSE 680 (algorithms), 
and CSE 681 (graphics). Of these, CSE 655 and CSE 660 require a conceptual model of 
the underlying hardware including memory and program execution. CSE 655 and CSE 
681 both have extensive programming assignments, and assume the student is 
comfortable writing large programs.  

CSE 560 also serves as a direct prerequisite for: CSE 731, CSE 772, and CSE 778.  

Finally, CSE 560 serves as a prerequisite for two other courses in this course group: CSE 
601 and CSE 757. Please refer to the description of these courses, below, for an 
evaluation of this prerequisite relationship.  

CSE 601: The only prerequisite for this course is CSE 560. This course does not directly 
use any of the technical content of CSE 560. There are two reasons, however, for this 
prerequisite. Firstly, students in CSE 601 must complete a significant writing assignment 
(a term paper). They benefit, therefore, from the writing experience gained in CSE 560. 
Secondly, students in CSE 601 are expected to have a certain academic sophistication and 
general familiarity with many aspects of the discipline of computer science. Students 
should therefore be taking CSE 601 in their junior or senior year. The CSE 560 
prerequisite is a simple mechanism to ensure that CSE 601 is not taken too early in the 
program.  

CSE 601 is a prerequisite for all Capstone courses.  

CSE 757: The only prerequisite for CSE 757 is CSE 560. There are two reasons that CSE 
560 is a prerequisite for CSE 757. Firstly, CSE 757 builds on the experience that students 
have in CSE 560. CSE 560 serves as an introduction to many of the problems that occur 
during the software development and maintenance life cycle. It therefore motivates the 
techniques and solutions presented in CSE 757 for managing the complexities of this 
process. Secondly, students in CSE 757 are expected to have a certain academic 
sophistication and general familiarity with many aspects of the discipline of computer 
science.  

CSE 757 also serves as the only prerequisite for CSE 758. See the next paragraph for a 
description of the relationship between these courses. CSE 757 serves as a prerequisite 



Version: 9/7/09 18

for CSE 772 (Information Systems majors may take CSE 616 to satisfy the CSE 772 
prerequisite instead). Separate from the formal prerequisites, CSE 757 serves as a useful 
foundation for several of the other courses in the SE program--such as CSE/ECE 668, 
767, and 769, as well as for the systems analysis course, CSE 616. 

Given the large number of undergraduates who take CSE 757, we are considering 
changing its course number to CSE 657. This change will also better position CSE 757 as 
a valuable precursor to the Applied Software Engineering sequence. 

CSE 758: The only prerequisite for CSE 758 is CSE 757. In CSE 757, students learn the 
principles and practice of software development. In CSE 758, students apply this 
knowledge in the design of a significant, large-scale system.  

CSE 758 is not a prerequisite for any other course.  

There has become a strong connection between CSE 758, and 2 other Capstones – CSE 
762 (web-services Capstone) and CSE 772 (the database Capstone), through projects that 
are shared across all three courses. 

CSE 502: The prerequisites for this course are calculus and introductory programming in 
any language and paradigm, which we would expect of most students in science and 
engineering; plus some additional programming experience beyond an intro course, 
which we would expect of students interested in studying applied software engineering if 
CS is not their major. CSE 502 is an alternate (i.e., non-CS major's) prerequisite for 
CSE/ECE 668. We also have made it an alternate prerequisite for some other courses as 
well in order to support the proposed ASE graduate minor. For example, non-CS majors 
may use it as a prerequisite for CSE 541 in place of CSE 221. This course is in many 
ways separate from the rest of the program since it "may not be used as a technical 
elective by CSE or CIS majors or minors." It is intended to give graduate students from 
other departments and advanced introduction to elementary topics that would enable 
them to take other advanced course in the CSE department. The formal prerequisites for 
CSE 502 are minimal--just introductory mathematics and a previous programming 
course. In actuality, the students are expected to have considerable experience with 
programming, just not programming taught in a formal way. Many gaps and 
misunderstandings have to be addressed.  

CSE/ECE 668: This course is intended to be the next course in line following CSE 502. 
It is cross-listed with ECE 668, and is not open to students with credit for 694T/ECE694T 
or 768/ECE768. 

CSE/ECE 767: In this course, students are taken through a case study using incremental 
and iterative use-case-driven process of building object-oriented scientific and 
engineering software systems; analysis, design, UML modeling, design patterns.  

CSE/ECE 769: This is a course where the most current enterprise-scale technologies are 
taught. As such, the only requirement is knowledge of programming (i.e., CSE 560), but 



Version: 9/7/09 19

we require as pre-requisites CSC/ECE 668 and CSE 660 (the Introduction to Operating 
Systems course), the latter because there are concepts such as transactions and 
concurrency that would be helpful for the students to know beforehand. 

CSE/ECE 794J and K: The prerequisites for the first course in this sequence are 682 or 
731 or 758 or 762 or 772 or 778 or permission of instructor. Essentially, students must 
have attained a level of maturity in their understanding of computing applications. 

In summary, the prerequisites for the courses in the group are satisfactory.  

2.4 Evaluation with respect to CSE Program Outcomes 

The courses in this group play a key role in meeting the CSE program outcomes. For 
these Outcomes we show each course’s contribution at a learning outcome level, 
followed by a summary at a course level. For the EC 2000 outcomes we only show the 
contribution at the course level. 

2.4.1 CSE Program Outcomes 

As noted earlier, the BS-CSE POs are currently being revised. The (proposed) new POs 
are:  

a. an ability to apply knowledge of computing, mathematics including discrete 
mathematics as well as probability and statistics, science, and engineering;  

b. an ability to design and conduct experiments, as well as to analyze and interpret 
data;  

c. an ability to design, implement, and evaluate a software or a software/hardware 
system, component, or process to meet desired needs within realistic constraints 
such as memory, runtime efficiency, as well as appropriate constraints related to 
economic, environmental, social, political, ethical, health and safety, 
manufacturability, and sustainability considerations;  

d. an ability to function effectively on multi-disciplinary teams;  
e. an ability to identify, formulate, and solve engineering problems;  
f. an understanding of professional, ethical, legal, security and social issues and 

responsibilities;  
g. an ability to communicate effectively with a range of audiences;  
h. an ability to analyze the local and global impact of computing on individuals, 

organizations, and society;  
i. a recognition of the need for, and an ability to engage in life-long learning and 

continuing professional development;  
j. a knowledge of contemporary issues;  
k. an ability to use the techniques, skills, and modern tools necessary for practice as 

a CSE professional.  
l. an ability to analyze a problem, and identify and define the computing 

requirements appropriate to its solution;  



Version: 9/7/09 20

m. an ability to apply mathematical foundations, algorithmic principles, and 
computer science theory in the modeling and design of computer-based systems 
in a way that demonstrates comprehension of the tradeoffs involved in design 
choices;  

n. an ability to apply design and development principles in the construction of 
software systems of varying complexity.  

2.4.2 Contribution to the CSE Outcomes at the Learning Outcome Level 

In this section we detail the contribution of each course in the primary or “core” sequence 
to the CSE Learning Outcomes. Thus, CSE 502, 668, 767, 769 and 794J and K are not 
detailed here. 

CSE 560: The relationship between the Learning Outcomes of CSE 502 and the CSE 
Outcomes are summarized in the table below:  

Learning 
Outcome  

CSE 
(a) 

CSE 
(b) 

CSE 
(c) 

CSE 
(d) 

CSE 
(e) 

CSE 
(f) 

CSE 
(g) 

CSE 
(h) 

CSE 
(i) 

CSE 
(j) 

CSE 
(k) 

CSE 
(l) 

CSE 
(m) 

CSE 
(n) 

LO1 XXX  XXX  XX      XX XXX XXX XX 

LO2 XXX  XXX  XX      XX XXX XXX XX 

LO3        XX        

LO4    XX           

LO5 XX          XXX XX   

LO6 XX          XXX XX   

LO7 XX          XXX XX   

LO8 XX          XXX XX   

LO9 XX          XXX XX   

LO10       XXX        

LO11       XXX        

LO12 XX          XXX XX   

LO13 XX          XXX XX   

LO14 XX          XXX XX   

LO15           XX XX XX XX 

LO16       XXX        

LO17   XX        XX XX XX XX 

LO18      X         

LO19   XX        XX XX XX XX 

LO20 XX          XXX XX   



Version: 9/7/09 21

LO21 XX          XXX XX   

CSE 601: 

The relationship between the Learning Outcomes of CSE 601 and the CSE Outcomes are 
summarized in the table below:  

Learning 
Outcome  

CSE 
(a) 

CSE 
(b) 

CSE 
(c) 

CSE 
(d) 

CSE 
(e) 

CSE 
(f) 

CSE 
(g) 

CSE 
(h) 

CSE 
(i) 

CSE 
(j) 

CSE 
(k) 

CSE 
(l) 

CSE 
(m) 

CSE 
(n) 

LO1      XXX X XX  XX     

LO2      XXX X XX  XX     

LO3       XXX X XX  XX     

LO4      XXX X XX  XX     

LO5      XXX X XX  XX     

CSE 757: 

The relationship between the revised learning outcomes of CSE 757 and the CSE 
Outcomes are summarized in the table below: 

Learning 
Outcome  

CSE 
(a) 

CSE 
(b) 

CSE 
(c) 

CSE 
(d) 

CSE 
(e) 

CSE 
(f) 

CSE 
(g) 

CSE 
(h) 

CSE 
(i) 

CSE 
(j) 

CSE 
(k) 

CSE 
(l) 

CSE 
(m) 

CSE 
(n) 

LO1   X      XX XX     

LO2    XX  XX XX  XX  XX    

LO3   XX XX XX XX XX XX XX  XX XX  XX 

LO4   XXX  XX XX XX XX XX  XX XX  XX 

CSE 758: 

The relationship between the revised learning outcomes of CSE 758 and the CSE 
Outcomes are summarized in the table below: 

Learning 
Outcome  

CSE 
(a) 

CSE 
(b) 

CSE 
(c) 

CSE 
(d) 

CSE 
(e) 

CSE 
(f) 

CSE 
(g) 

CSE 
(h) 

CSE 
(i) 

CSE 
(j) 

CSE 
(k) 

CSE 
(l) 

CSE 
(m) 

CSE 
(n) 

LO1    XX XX XX XX XXX XX XXX XX XX   

LO2   X XX XX XX XX  X X XX X X X 

LO3   XXX XX XXX XXX XX XX XX X XXX XXX XXX XXX

LO4   XXX  XXX    XXX  XXX XXX XXX XXX

LO5       XXX  X X     



Version: 9/7/09 22

2.4.3 Summary of Contribution to CSE Outcomes by the Courses 

This group of courses as a whole strongly contributes toward meeting outcomes a, c, d, e, 
g, i, j, k, and l, contributes moderately to outcomes f, h and m, and contributes minimally 
to b.  

Specifically, in CSE 560, students are exposed to software design and development for 
large systems, and they design their first large software system. CSE 560 thus contributes 
to program outcomes a, c, d, e, g, k, l, m and n. In CSE 757, they study the principles and 
practices that guide the development of software systems, and in CSE 758, they use these 
principles to design a software system. Further, in CSE 758, the projects come from real 
(external) clients and carry with them the full breadth of functional and nonfunctional 
requirements. Students tackle a wide variety of problems as they address a wide variety 
of considerations such as: correctness, UI usability, response time, throughput, 
scalability, and security. These 2 courses thus contribute to all outcomes except (b).  

The "social, professional, and ethical considerations related to... computing" are exactly 
the substance of CSE 601. This course, therefore, contributes significantly to objective 
(f). 

The software engineering sequence contributes significantly to objective (d) by 
repeatedly requiring students to work in teams. All assignments in CSE 560 are done by 
teams of 4 or 5 students. These assignments involve using a variety of skills to address 
the range of required tasks (implementation, quality control, documentation). Teamwork 
also plays a central role in CSE 758, although the precise structure of the teams varies 
between instructors. In some sections, the entire class has been structured as a matrix 
organization with cross-functional teams working towards a single unified goal. In other 
sections, the class has been strictly subdivided into independent teams each with similar 
or independent goals.  

Written communication is a key component of many of the courses. CSE 560 focuses on 
technical writing, requiring extensive technical documentation of various aspects of the 
delivered product (e.g., use, maintenance, and testing). CSE 758 also has significant 
documentation requirements, and CSE 601 requires a term paper. Some sections of CSE 
757 use written paper summaries where students report on a paper in the literature.  

CSE 601, on the other hand, focuses primarily on oral communication, with weekly 
individual presentations and team debates. Students learn how to communicate their 
views effectively and persuasively in several ways. Firstly, some lecture time is set aside 
for instruction in the mechanics of presentation/rhetoric. Secondly, the instructor makes 
topic presentations similar in style to what is required of the students, so they have the 
opportunity to learn by example. Finally, students receive direct and immediate feedback 
both from the instructor and their fellow classmates. During debates, each audience 
member chooses which side to support and sits on the corresponding side of the room. As 
the debate progresses and audience members move back and forth, speakers see 
immediately which arguments are persuasive and which are not.  



Version: 9/7/09 23

The software engineering sequence contributes significantly to objective (k). Students 
report that during their job interviews, they are asked to discuss many of the topics that 
they study in CSE 757, and that, because of what they have learned in the course, they are 
knowledgeable about the topics. Students also report that their potential employers are 
very impressed with the experience in software design that CSE 758 gives them.  

The table below captures which courses specifically contribute to which program 
outcomes. In this table we use “XXX” to indicate a strong contribution, “XX” to indicate 
moderate contribution, and “X” to indicate minimal contribution. If a cell is empty, this 
indicates no contribution at all. 

Course  CSE 
(a) 

CSE 
(b) 

CSE 
(c) 

CSE 
(d) 

CSE 
(e) 

CSE 
(f) 

CSE 
(g) 

CSE 
(h) 

CSE 
(i) 

CSE 
(j) 

CSE 
(k) 

CSE 
(l) 

CSE 
(m) 

CSE 
(n) 

560    XXX X XX  X  X  XX XXX  XX 

601       XXX X XX X      

757  X  XX X XX XX X XX XX X XX XX X XX 

758  XX  XXX XXX XXX XX XXX XX XXX XX XXX XXX X XXX

2.5 Feedback  

The principal official vehicle for student feedback has been student evaluations in the 
form of SETs. These have generally been very positive, even for courses with high loads 
(CSE 560, CSE 757, CSE 758, CSE/ECE 769). These courses require a great deal of 
effort on the part of the students, but this effort seems to be worth the benefit reaped (and 
perceived by the students).  

Unofficially, many students have communicated (either in person or by email) how 
useful the upper level software engineering courses have been in their subsequent 
employment. Several have observed that the CSE 757 background has been useful during 
interviews for securing second interviews and job offers. Students have also commented 
how invaluable the project experiences in CSE 758 have turned out to be in their 
employment.  

A third form of feedback -- and one that is particularly important to the software 
engineering sequence -- is from practitioners in industry. In addition to alumni surveys 
that give general indications of the success of various aspects of the program as a whole, 
CSE 757 and CSE 758 have benefited in particular from a great deal of input and 
interaction with practicing software engineers.  

Rajiv Ramnath was recognized in 2007 with the department's annual Outstanding 
Teaching Award.  Paul Sivilotti had also received this teaching award in a prior year. 

2.6 Major changes since the previous report 



Version: 9/7/09 24

The last Software Engineering course group report was completed in June of 2005.  

Addition of the Enterprise Architecture Sequence CSE 794J and CSE 794K: This 
course sequence was added to reflect the relevance of technology management, legacy 
software integration, organizational management, as well as deployment and 
infrastructure issues instead of a focus on just developing software. 

Evolution in the Applied Software Engineering Sequence: CSE 769 was revised to 
stay abreast of current enterprise technologies. Specifically, XML frameworks, the 
complete J2EE framework, including EJB 3.0, Ajax, the Google Web Toolkit and the 
Enterprise Service Bus were incorporated. 

Changes in CSE 757: Rajiv Ramnath, Jay Ramanathan and Neelam Soundarajan 
recently won an NSF CCLI award to examine how teachable curriculum may be mined 
from project experiences and the actual work-products from these industry projects. This 
work is now underway. 

Changes in CSE 758: CSE 758 has continued to evolve, in particular as a result of the 
changes to CSE 757. 

Changes in ECE/CSE 769: Since current technologies have evolved, what is taught in 
ECE/CSE 769 has changed, and will continue to do so. 

2.7 Continuing and emerging concerns 

Impact to CSE 560 following the emergence of CSE 421: With the establishment of 
CSE 421, there is the potential for CSE 560 to put a less emphasis on bringing the 
students up-to-speed on using a standard programming language and associated tools. 
Thus, CSE 560 is being considered for reduction to 4-credit hours, as well as for the 
incorporation of elements of software design (such as responsibility-driven design). 
However, since not all students taking CSE 560 have taken CSE 421, these changes are 
still being debated. 

Establishing consistency across the CSE 757 sections: The opportunity provided by the 
NSF CCLI grant has enabled us to define the intellectual identity of CSE 757 and 
significantly revise and re-work it to match. This re-worked syllabus has been introduced 
in 3 offerings of CSE 757 (in Winter 2007, Fall 2008 and Winter 2009). As the 
experiences from teaching the new syllabus are fed back into the course material, CSE 
757 will stabilize and the material will be disseminated to other instructors of CSE 757.   

Given the rework of CSE 757, we believe that that a 600-level course number (such as 
657) is a more accurate reflection of the content of a course that is taken primarily by 
undergraduates. This direction was suggested both by the Software Engineering course 
group report in Spring 1999 as well as the report in 2005.  



Version: 9/7/09 25

Lack of a suitable textbook for CSE 757, especially in the light of the extensive re-work, 
remains an issue. 

Finally, the inclusion of CSE 757 in the graduate “applied core” is being considered. 

Move to semesters: The affect of the move to semesters will be seriously considered by 
the Software Engineering Course Group in the near future.  

Changes in the IT industry:  

The current economic downturn has the potential to affect both the hiring patterns of 
companies in the information technology and computing space, as well as the state of the 
professional practice in computing. This is an important phenomenon whose progress 
will be tracked, because it impacts what we teach in order to make CSE graduates 
competitive with respect to employability. 

Conclusions 
The Software Engineering course group is an important component of the CSE program. 
It plays an especially important role in meeting the program objectives and EC 2000 
Criterion 3 outcomes related to professional practice (eg teamwork and communication 
skills), professional ethics, and employability.  

Course Coordinator Recent Instructors 

CSE 502 Weide Bucci, Mathis, Weide 

CSE 560 Sivilotti Giles, Heym, Ramnath, Sivilotti, Stutz  

CSE 601 Mathis Mathis 

CSE 668 Crawfis Crwafis, Khan 

CSE/ECE 768 Khan Khan 

CSE 757 Ramnath Bair, Bucci, Ramnath, Rountev  

CSE 758 Ramnath Ramanathan, Ramnath 

CSE/ECE 767 Khan Khan, Perry 

CSE/ECE 769 (794R) Sivilotti Bucci, Ramnath, Sivilotti  

CSE 794J and K Ramanathan Ramanathan 

People involved in preparing report: Bettina Bair, Paolo Bucci, Roger Crawfis, Wayne 
Heym, Furrukh Khan, Bob Mathis, Doyt Perry, Jay Ramanathan, Rajiv Ramnath, Atanas 
Rountev, Paul Sivilotti, Bruce Weide 

 



Version: 9/7/09 26

Rajiv Ramnath September 7, 2009  
 
 


