Assignment #4: Termination and Logical Time

DUE: in class, Monday, February 16th.

1. **The Coffee Bean Problem** (11 points)

 Consider a can of coffee beans. Each bean is either white or black. We are told the can is initially nonempty. Now consider the program that consists of a single action:

 Choose two beans from the can; if they are the same color, toss them out and put in a white bean (there is a sufficient supply); if they are different colors, toss them out and put in a black bean (there is a sufficient supply).

 This action is repeated.

 (a) (2 points) Let \(w \) be the number of white beans in the can and let \(b \) be the number of black beans. Write the program corresponding to the previous informal description. (Your program should have only two variables, \(w \) and \(b \)).

 (b) (2 points) Prove that \(\{ b \geq 0 \} \) is an invariant of this program.

 (c) (3 points) Give a variant function for this program and use it to prove the program terminates.

 (d) (4 points) If the program terminates with \(b = 1 \), what must have been true of the beans in the can at the beginning of the computation? (Hint: find an invariant on \(w \) and/or \(b \).)

2. **Vector Clocks** (15 points)

 Consider the implementation of vector clocks given in the notes:

   ```
   Program VectorClock
   var
   j, k : processes,
   ch.j.k : channel from j to k,
   m : message,
   A : event,
   vclock.j : vector time of j,
   vtime.A : vector time of A,
   
   initially
   vclock.j.j = 1
   \wedge (\forall k : k \neq j : vclock.j.k = 0)
   
   assign
   local event A \rightarrow
   vclock.j.j := clock.j.j + 1
   ; vtime.A := vclock.j
   
   \parallel send event A \rightarrow
   vclock.j.j := vclock.j.j + 1
   (to k)
   ; vtime.A, vtime.m := vclock.j, vclock.j
   ```
Prove the following invariants:

(a) \(\forall j, k :: \text{velock}.k.j \leq \text{velock}.j.j \)

(b) \(\forall A_j, B_k :: \text{vtime}.A_j < \text{vtime}.B_k \Rightarrow A_j \rightarrow B_k \) (where \(A_j \) denotes event \(A \) that occurred at process \(j \)).