Assignment #3: Reasoning About Programs — Safety & Progress

DUE: in class, Monday, February 9th.

1. Safety (6 points)
 Recall the program \textit{Strange} from an earlier assignment, where the constants \((M\text{ and }N)\) satisfy \(M \geq 0\) and \(N > 0\):

 \begin{verbatim}
 Program Strange
 var x, y, z, k : \mathbb{Z}
 initially x = 0 \land y = M \land z = N \land k = 1
 assign
 y \geq 2 \times z \rightarrow z, k := 2 \times z, 2 \times k
 y < 2 \times z \rightarrow z, k := N, 1
 y \geq z \rightarrow x, y := x + k, y - z
 \end{verbatim}

 Prove the following invariant for program \textit{Strange}:

 \[x \times N + y = M \land y \geq 0 \land z = k \times N \land k \geq 1 \]

 If this program reaches a fixed point, what has it computed?

2. Progress (6 points)
 Consider the following program (the actions are labelled for your convenience):

 \begin{verbatim}
 assign
 a_1 : x := x + 1
 a_2 : y := y + 1
 a_3 : x \neq y \rightarrow z := z + 1
 \end{verbatim}

 Are the following properties of this program? Justify your answer with a proof or counter-example, as appropriate.

 (a) \textbf{transient}.(x + y = k)
 (b) \textbf{transient}.(x \leq k)
 (c) \(x = k \leadsto x > k\)
 (d) \textbf{transient}.(z = k)
 (e) \(z = k \leadsto z \neq k\)
3. **Termination** (6 points)

Given an array $A[0..N-1]$ of distinct natural numbers, consider the following program:

$$\text{assign} (\quad \mid x : 0 \leq x < N \mid 0 \leq A[x] < N \rightarrow \ A[x], A[A[x]] := A[A[x]], A[x])$$

Does this program terminate? If so, prove your claim. If not, provide a counter-example.