
Computer Science and Engineering  College of Engineering  The Ohio State University

Assembly: Review

Lecture 14

Computer Science and Engineering  The Ohio State University

Definition

 Recall: Translation
 A source program is translated into a

target program
 Each language corresponds to an abstract

machine
 Source program is not directly executed

 When source is a symbolic
representation of machine language:
 Source language is ___________
 Translator is ___________

 When source is higher-level, translator
usually called a _________

Computer Science and Engineering  The Ohio State University

Advantage of Assembly

 Over machine code
 Easier to remember/read mnemonic

operations vs actual opcodes
 Easier to use symbolic addresses

 Over higher-level languages
 Access to full capabilities of the machine

at the lowest level
 Speed? Not generally true because:
 Optimizing compilers
 Algorithm design and insights are more

significant

Computer Science and Engineering  The Ohio State University

Best of Both Worlds

 Systems programming often done in a
language like C

 Syntax of a higher-level language
 Control of lower-level concerns, like

memory allocation

Computer Science and Engineering  The Ohio State University

So Why Bother With Assembly?

 Might need to write/read/maintain
some critical bit of assembly code

 Similar to (but simpler than) compiler
 Good way to learn about computer

architecture
 Insights into workings of higher-level

languages
 The world still needs compilers, and

therefore assembly too

Computer Science and Engineering  The Ohio State University

Assembly: Syntax

 One statement / line
 Four fields (not all are necessary):
 Label
 Operation
 Operands
 Comment

 Example
Test BRZ Loop ;if R1=0 repeat

Computer Science and Engineering  The Ohio State University

Label Field

 Symbolic name for the instruction
address

 Clarifies branching to a particular
instruction
 BRNP Loop1

 Clarifies target for loading/storing data
to memory
 LD R3, Sum

 Often severely limited in length

Computer Science and Engineering  The Ohio State University

Operation Field

 Mnemonic for a machine instruction
 Eg, ADD, SUB, BRZ

 Mnemonic for a “pseudo operation”
 Eg, .FILL
 More about these in a moment

Computer Science and Engineering  The Ohio State University

Operand Field

 Arguments to the function
 Registers, immediate data, address

used by the instruction
 What to add, where to branch, where to

store, etc.
 Information used by pseudo operations
 Information for the assembler to produce

the object file
 Program name, how much space to save,

etc.

Computer Science and Engineering  The Ohio State University

Comment Field

 No effect on assembler
 No difference in resulting object file
 No semantic impact on program

 But huge impact on legibility
 Strictly for human consumption

Computer Science and Engineering  The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering  The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering  The Ohio State University

Segment Definition

 Recall object file header & end records
 Segment name
 Segment load address
 Segment length
 Initial execution address

 All of this information comes directly
from pseudo ops
 Exception: __________

Computer Science and Engineering  The Ohio State University

Segment Definition

 Two important pseudo ops:
 .ORIG (for “origin”)
 .END

 Example
MainP .ORIG x300A

LD R0,x126
…

.END x300E

 What are the header & end records of
the resulting object file?

Computer Science and Engineering  The Ohio State University

x300A

x300B

LD R0,x136

x300E

Header record: H
End record: E

Computer Science and Engineering  The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering  The Ohio State University

Symbol Definition

 A label creates a symbol
 Symbol is implicitly defined to be the

address of the instruction
 Example: What is the value of symbol

Test?
Hello .ORIG x300A

LD R0,x126
Test BRZ x147

Computer Science and Engineering  The Ohio State University

Explicit Symbol Definition

 Symbols can also be defined explicitly
 Pseudo Op:
 .EQU (“equate”)

 Example
STEP .EQU #2 ;Skip odd indices

 Symbols are then used as program
constants

ADD R1,R1,STEP
HALT .EQU x25

TRAP HALT

Computer Science and Engineering  The Ohio State University

Summary

 Symbolic machine code
 Advantages/disadvantages
 Basic syntax
 Pseudo Operations
 Segment definition
 Symbol Definition

