
Computer Science and Engineering College of Engineering The Ohio State University

Assembly: Review

Lecture 14

Computer Science and Engineering The Ohio State University

Definition

 Recall: Translation
 A source program is translated into a

target program
 Each language corresponds to an abstract

machine
 Source program is not directly executed

 When source is a symbolic
representation of machine language:
 Source language is ___________
 Translator is ___________

 When source is higher-level, translator
usually called a _________

Computer Science and Engineering The Ohio State University

Advantage of Assembly

 Over machine code
 Easier to remember/read mnemonic

operations vs actual opcodes
 Easier to use symbolic addresses

 Over higher-level languages
 Access to full capabilities of the machine

at the lowest level
 Speed? Not generally true because:
 Optimizing compilers
 Algorithm design and insights are more

significant

Computer Science and Engineering The Ohio State University

Best of Both Worlds

 Systems programming often done in a
language like C

 Syntax of a higher-level language
 Control of lower-level concerns, like

memory allocation

Computer Science and Engineering The Ohio State University

So Why Bother With Assembly?

 Might need to write/read/maintain
some critical bit of assembly code

 Similar to (but simpler than) compiler
 Good way to learn about computer

architecture
 Insights into workings of higher-level

languages
 The world still needs compilers, and

therefore assembly too

Computer Science and Engineering The Ohio State University

Assembly: Syntax

 One statement / line
 Four fields (not all are necessary):
 Label
 Operation
 Operands
 Comment

 Example
Test BRZ Loop ;if R1=0 repeat

Computer Science and Engineering The Ohio State University

Label Field

 Symbolic name for the instruction
address

 Clarifies branching to a particular
instruction
 BRNP Loop1

 Clarifies target for loading/storing data
to memory
 LD R3, Sum

 Often severely limited in length

Computer Science and Engineering The Ohio State University

Operation Field

 Mnemonic for a machine instruction
 Eg, ADD, SUB, BRZ

 Mnemonic for a “pseudo operation”
 Eg, .FILL
 More about these in a moment

Computer Science and Engineering The Ohio State University

Operand Field

 Arguments to the function
 Registers, immediate data, address

used by the instruction
 What to add, where to branch, where to

store, etc.
 Information used by pseudo operations
 Information for the assembler to produce

the object file
 Program name, how much space to save,

etc.

Computer Science and Engineering The Ohio State University

Comment Field

 No effect on assembler
 No difference in resulting object file
 No semantic impact on program

 But huge impact on legibility
 Strictly for human consumption

Computer Science and Engineering The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering The Ohio State University

Segment Definition

 Recall object file header & end records
 Segment name
 Segment load address
 Segment length
 Initial execution address

 All of this information comes directly
from pseudo ops
 Exception: __________

Computer Science and Engineering The Ohio State University

Segment Definition

 Two important pseudo ops:
 .ORIG (for “origin”)
 .END

 Example
MainP .ORIG x300A

LD R0,x126
…

.END x300E

 What are the header & end records of
the resulting object file?

Computer Science and Engineering The Ohio State University

x300A

x300B

LD R0,x136

x300E

Header record: H
End record: E

Computer Science and Engineering The Ohio State University

Pseudo Operations

 Unlike instructions, pseudo ops do not
have a corresponding machine instruction
in the ISA

 Give information to assembler itself
 “assembler directive”
 Control various aspects of resulting object file

 Uses
1. Segment definition
2. Symbol definition
3. Memory initialization
4. Storage allocation

Computer Science and Engineering The Ohio State University

Symbol Definition

 A label creates a symbol
 Symbol is implicitly defined to be the

address of the instruction
 Example: What is the value of symbol

Test?
Hello .ORIG x300A

LD R0,x126
Test BRZ x147

Computer Science and Engineering The Ohio State University

Explicit Symbol Definition

 Symbols can also be defined explicitly
 Pseudo Op:
 .EQU (“equate”)

 Example
STEP .EQU #2 ;Skip odd indices

 Symbols are then used as program
constants

ADD R1,R1,STEP
HALT .EQU x25

TRAP HALT

Computer Science and Engineering The Ohio State University

Summary

 Symbolic machine code
 Advantages/disadvantages
 Basic syntax
 Pseudo Operations
 Segment definition
 Symbol Definition

