Modular Verification with

Computer Science and Engineering ® College of Engineering ® The Ohio State University

Case Study: A Concurrent Queue

Alan Weide™, Murali Sitaraman®, Paul Sivilotti™

“Ohio State University
TClemson University

Acknowledgement: U.S. NSF grant CCF-1161916

Context: Perfect Parallelism

Computer Science and Engineering B The Ohio State University

Concurrent threads do not modify shared

state
split(problem, pl, p2);
cobegin {
solve(pl, sl);
solve(p2, s2);

}

merge(sl, s2, solution);

Benefits

B Minimal synchronization

O No locks, semaphores, mutexes, signals, etc

O No deadlocks, fewer synchronization bottlenecks
B Determinism

O Same semantics as sequential execution

O No race conditions, easier to debug

Challenge: Aliasing

Client code:
cobegin {
update(pl);
update(p2);

}

Threads are independent only if pl and
p2 are fully distinct

Challenge: Deliberate Sharing

Computer Science and Engineering B The Ohio State University

In client code:
split(list, listl, list2);
cobegin {
countin(listl, item, cl);
countin(list2, item, c2);

}

occurrences = cl + c2;

Spec of countlin
countin(list: List(T), 1: T, c: Integer)
ensures list = #list and
I #1 and
C count(r, list)

Correctness of parallel composition
depends on implementation of countlin
B Must preserve 1, not just restore it

Related Work

O

O

O O 0O 0O O

Computer Science and Engineering B The Ohio State University

Type systems

B Permissions, DPJ, Liquid Effects
Deterministic scheduling

B DMP, CoreDet, Kendo

B Grace, Determinator, DOMP
OS/Scheduling

B Dthreads, dOS, Legion

Non-blocking data structures

B CAS, linearizability, transactional memory
Assertional

B Non-interference VCs, Bridge assertions
Separation logic

B CSL, Concurrent abstract predicates
Value semantics

B ParaSail, dataflow and futures

Approach: Extend RESOLVE

Computer Science a

Value semantics
B No aliases

Constant-time swap primitive

Modularity

B Program types modelled by mathematical
abstractions

B Proofs of implementations layered on math
models of other concepts

Tool support: Static verification
workbench

B https://www.cs.clemson.edu/resolve
B http://resolveonline.cse.ohio-state.edu

Modularity

Computer Science and Engineering B The Ohio State University

BoundedQueue
Abstract state
Contract L J Abstract invariants
Y Procedure specifications
implements
ArrayWithLength

— Concrete state
Realization Concrete invariants

— Abstraction relation
Implementation code

_ Loop invariants, variants,...

Integer

Modularity

Computer Science and Engineering ® The Ohio State University

BoundedQueue
Abstract state
Contract Abstract invariants
Procedure specifications
implements
AN\ _
\\\\\ | | Concrete state
Realizations N Concrete invariants

— Abstraction relation
Implementation code
Loop invariants, variants,...

Multiple implementations
of a single contract

Exposing Entanglement

Intermediate Model

Comp nd Engineering ® The Ohio State University

|

|

detangles

respects

a

j { Partitions
3 Operation effects

Exposing Entanglement

Computer Science and Engineering ® The Ohio State University

L J An intermediate
/_ model detangles a
deté{ E single contract

respects

Exposing Entanglement

Comp

-

detangles

respects

lllustrative Example:

A Bounded Concurrent Queue

ence and Engineering ® The Ohio State University

type Queue 1s modeled by string of Item
exemplar q
constraint |gq|] <= MAX_LENGTH
initially g = empty_string

(@, 9,09,

procedure Enqueue (clears e: Item,
updates g: Queue)
requires |q] < MAX_LENGTH
ensures q = #q * <#e>

#e <> e O
4 (@, C @) (0,9, O)

Other Bounded Queue Operations

Computer Science and Engineering B The Ohio State University

procedure Dequeue (replaces r: Item,
updates g: Queue)
requires q /= empty string
ensures #q = <r> * (¢

procedure DequeueFromLong (replaces r: Item,
updates g: Queue)
requires |q| >= 2
ensures #q = <r> * (¢

procedure SwapFirsteEntry (updates e: Item,
updates g: Queue)
requires q /= empty string
ensures <e> = #q[0, 1) and
q = <#e> * #q[1, |#al)

Decoupled Head and Tall

Computer Science and Engineering ® The Ohio State University

Consider a non-empty gueue

(@, CW, ¢, L)

Dequeue X

DequeueFromLong

SwapFirstEntry

Which operations are perfectly parallel
with Enqueue?

Different Partitions

Computer Science and Engineering B The Ohio State University

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Different Partitions

Computer Science and Engineering B The Ohio State University

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

prefront length

Different Partitions

Computer Science and Engineering B The Ohio State University

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

postTail head isEmpty
@ B

Y

XY | Z LI M|N|[O]A E I O | u

Different Partitions

Computer Science and Engineering B The Ohio State University

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel
postTail head
2] 3

Perfectly Parallel with E

Computer Scien

Dequeue

DequeueFromLong

SwapFirstEntry

ce and Engineering ® The Ohio State University

AN

N

AN

N

AN

..Length

..Flag

.Sentinel

Partition |

Computer Science and Engineering B The Ohio State University

partition for Queue i1s (head, tail, index)

procedure Enqueue (clears e: ltem,
updates g: Queue)
affects ¢-tail
preserves (.index
when |q] = 0 affects q.head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects qgq.head, q.-tail, g.index

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects q.head, q.-tail, g.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head
preserves (.index

Partition |: Conditional Effects

Computer Science and Engineering B The Ohio State University

partition for Queue i1s (head, tail, i1ndex)

procedure Enqueue (clears e: ltem,
updates g: Queue)
affects ¢-tail
preserves (.index
when |q] = 0 affects q-head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects qgq.head, q.-tail, g.index

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects q.head, q.-tail, g.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head
preserves (.index

Partition 1: Non-Interference

Computer Science and Engineering B The Ohio State University

partition for Queue i1s (head, tail, i1ndex)

procedure Enqueue (clears e: ltem,
updates g: Queue)
affects ¢-tail
preserves (.index
when |q] = 0 affects q.head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects qgq.head, q.-tail, g.index

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects q.head, q.-tail, g.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head
preserves (.index

ArrayWithLength Realization

Computer Science and Engineering B The Ohio State University

partition for Queue i1s (head, tail, i1ndex)

prefront length
procedure Enqueue (clears e: Item, | 6 } { 8]
updates g: Queue)
affects ¢-tail v
preserves (.index v lzlilwlnlolalel Tols

when |q] = 0 affects q.head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects qgq.head, q.-tail, g.index

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects q.head, q.-tail, g.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head
preserves (.index

ArrayWithLength Realization

Computer Science and Engineering B The Ohio State University
partition for Queue 1Is , ,

procedure Enqueue (clears e: ltem,
updates g: Queue)

length

affects ¢-tail

preserves (.index
when |q] = 0 affects q.head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects qgq.head, q.-tail, g.index

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects q.head, q.-tail, g.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head
preserves (.index

Com

Layering of Intermediate Models

[} BoundedQueue

[j head, tail, index

{ Partition Mapping

contents, b

Partition 11

Computer Science and Engineering B The Ohio State University

partition for Queue i1s (head, tail, m)

postTail head isEmpty

procedure Enqueue (clears e: Item, 7 \

updates g: Queue)
affects qg-tail;

when |Jq] = 0
affects gq.head, g.-m

otherwise
preserves q.m

procedure Dequeue (replaces r: Item, updates g: Queue)
affects (g.head;
when |Jq] =1
affects qg.-tail, g.m
otherwise
preserves g-tail

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects (.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects (.head

Partition 111

Computer Science and Engineering B The Ohio State University

partition for Queue is (head, tail)

postTail head

procedure Enqueue (clears e: ltem, | 2 ‘ 7 \

updates g: Queue)
affects qg-tail; v :

when |Jq] = 0

vylz|la|L|[m|N|OJA]E]|I |O]|U|X
affects g.head

procedure Dequeue (replaces r: Item, updates g: Queue)
affects (.head

procedure DequeueFromLong (replaces r: Item, updates g: Queue)
affects (.head

procedure SwapFirstEntry (updates e: ltem, updates q: Queue)
affects (.head

Summary

Computer Science and Engineering B The Ohio State University

Leveraging RESOLVE framework

B Verification system for sequential correctness,
client code and implementation

B See demo this afternoon

Work In progress

B Inclusion of segmented fields in partition
descriptions

B Development of modular proof system and
generation of VCs

O Proof of perfect parallelism in client code using
partition descriptions

O Proof that implementation respects partition
descriptions

B Integration with existing RESOLVE IDE

