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Context: Perfect Parallelism
 Concurrent threads do not modify shared 

state
split(problem, p1, p2);
cobegin {
solve(p1, s1);
solve(p2, s2);

}
merge(s1, s2, solution);

 Benefits
 Minimal synchronization

 No locks, semaphores, mutexes, signals, etc
 No deadlocks, fewer synchronization bottlenecks 

 Determinism
 Same semantics as sequential execution
 No race conditions, easier to debug
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Challenge: Aliasing

 Client code:
cobegin {
update(p1);
update(p2);

}

 Threads are independent only if p1 and 
p2 are fully distinct
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Challenge: Deliberate Sharing
 In client code:

split(list, list1, list2);
cobegin {
countIn(list1, item, c1);
countIn(list2, item, c2);

}
occurrences = c1 + c2;

 Spec of countIn
countIn(list: List(T), i: T, c: Integer)
ensures list = #list and

i = #i and
c = count(i, list)

 Correctness of parallel composition 
depends on implementation of countIn
 Must preserve i, not just restore it
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Related Work
 Type systems

 Permissions, DPJ, Liquid Effects
 Deterministic scheduling

 DMP, CoreDet, Kendo
 Grace, Determinator, DOMP

 OS/Scheduling
 Dthreads, dOS, Legion

 Non-blocking data structures
 CAS, linearizability, transactional memory

 Assertional
 Non-interference VCs, Bridge assertions

 Separation logic
 CSL, Concurrent abstract predicates

 Value semantics
 ParaSail, dataflow and futures
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Approach: Extend RESOLVE
 Value semantics
 No aliases

 Constant-time swap primitive
 Modularity
 Program types modelled by mathematical 

abstractions
 Proofs of implementations layered on math 

models of other concepts
 Tool support: Static verification 

workbench
 https://www.cs.clemson.edu/resolve
 http://resolveonline.cse.ohio-state.edu
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Modularity

Contract

BoundedQueue

ArrayWithLength

Array

Integer

implements

uses

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

Realization
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Modularity

Contract

Realizations

implements

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

BoundedQueue

Multiple implementations
of a single contract
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Exposing Entanglement

respects

uses

detangles

Intermediate Model Partitions
Operation effects

uses
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Exposing Entanglement

respects

uses

uses

detangles

An intermediate
model detangles a 
single contract
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Exposing Entanglement

respects

detangles
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Illustrative Example:
A Bounded Concurrent Queue
type Queue is modeled by string of Item
exemplar q
constraint |q| <= MAX_LENGTH
initially q = empty_string

procedure Enqueue (clears e: Item,
updates q: Queue)

requires |q| < MAX_LENGTH
ensures q = #q * <#e>
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Other Bounded Queue Operations
procedure Dequeue (replaces r: Item,

updates q: Queue)
requires q /= empty_string
ensures #q = <r> * q

procedure DequeueFromLong (replaces r: Item,
updates q: Queue)

requires |q| >= 2
ensures #q = <r> * q

procedure SwapFirstEntry (updates e: Item,
updates q: Queue)

requires q /= empty_string
ensures <e> = #q[0, 1) and

q = <#e> * #q[1, |#q|)
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Decoupled Head and Tail

 Consider a non-empty queue

 Which operations are perfectly parallel 
with Enqueue?

Enqueue
Dequeue
DequeueFromLong
SwapFirstEntry
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Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel
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Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel
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Perfectly Parallel with Enqueue

I II III

Dequeue 
DequeueFromLong  
SwapFirstEntry   

…Length …Flag …Sentinel
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Partition I
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index
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Partition I: Conditional Effects
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index
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Partition I: Non-Interference
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index
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ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index
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ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index
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Layering of Intermediate Models

Array

Integer

n

contents, b

head, tail, index

Partition Mapping

BoundedQueue
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Partition II
partition for Queue is (head, tail, m)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head, q.m

otherwise
preserves q.m

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head;
when |q| = 1
affects q.tail, q.m

otherwise
preserves q.tail

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
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Partition III
partition for Queue is (head, tail)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
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Summary
 Leveraging RESOLVE framework
 Verification system for sequential correctness, 

client code and implementation
 See demo this afternoon

 Work in progress
 Inclusion of segmented fields in partition 

descriptions
 Development of modular proof system and 

generation of VCs
 Proof of perfect parallelism in client code using 

partition descriptions
 Proof that implementation respects partition 

descriptions
 Integration with existing RESOLVE IDE


