
Computer Science and Engineering  College of Engineering  The Ohio State University

Modular Verification with
Abstract Interference Models

Case Study: A Concurrent Queue

Alan Weide*, Murali Sitaraman†, Paul Sivilotti*

*Ohio State University
†Clemson University

Acknowledgement: U.S. NSF grant CCF-1161916

Computer Science and Engineering  The Ohio State University

Context: Perfect Parallelism
 Concurrent threads do not modify shared

state
split(problem, p1, p2);
cobegin {
solve(p1, s1);
solve(p2, s2);

}
merge(s1, s2, solution);

 Benefits
 Minimal synchronization

 No locks, semaphores, mutexes, signals, etc
 No deadlocks, fewer synchronization bottlenecks

 Determinism
 Same semantics as sequential execution
 No race conditions, easier to debug

Computer Science and Engineering  The Ohio State University

Challenge: Aliasing

 Client code:
cobegin {
update(p1);
update(p2);

}

 Threads are independent only if p1 and
p2 are fully distinct

Computer Science and Engineering  The Ohio State University

Challenge: Deliberate Sharing
 In client code:

split(list, list1, list2);
cobegin {
countIn(list1, item, c1);
countIn(list2, item, c2);

}
occurrences = c1 + c2;

 Spec of countIn
countIn(list: List(T), i: T, c: Integer)
ensures list = #list and

i = #i and
c = count(i, list)

 Correctness of parallel composition
depends on implementation of countIn
 Must preserve i, not just restore it

Computer Science and Engineering  The Ohio State University

Related Work
 Type systems

 Permissions, DPJ, Liquid Effects
 Deterministic scheduling

 DMP, CoreDet, Kendo
 Grace, Determinator, DOMP

 OS/Scheduling
 Dthreads, dOS, Legion

 Non-blocking data structures
 CAS, linearizability, transactional memory

 Assertional
 Non-interference VCs, Bridge assertions

 Separation logic
 CSL, Concurrent abstract predicates

 Value semantics
 ParaSail, dataflow and futures

Computer Science and Engineering  The Ohio State University

Approach: Extend RESOLVE
 Value semantics
 No aliases

 Constant-time swap primitive
 Modularity
 Program types modelled by mathematical

abstractions
 Proofs of implementations layered on math

models of other concepts
 Tool support: Static verification

workbench
 https://www.cs.clemson.edu/resolve
 http://resolveonline.cse.ohio-state.edu

Computer Science and Engineering  The Ohio State University

Modularity

Contract

BoundedQueue

ArrayWithLength

Array

Integer

implements

uses

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

Realization

Computer Science and Engineering  The Ohio State University

Modularity

Contract

Realizations

implements

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

BoundedQueue

Multiple implementations
of a single contract

Computer Science and Engineering  The Ohio State University

Exposing Entanglement

respects

uses

detangles

Intermediate Model Partitions
Operation effects

uses

Computer Science and Engineering  The Ohio State University

Exposing Entanglement

respects

uses

uses

detangles

An intermediate
model detangles a
single contract

Computer Science and Engineering  The Ohio State University

Exposing Entanglement

respects

detangles

Computer Science and Engineering  The Ohio State University

Illustrative Example:
A Bounded Concurrent Queue
type Queue is modeled by string of Item
exemplar q
constraint |q| <= MAX_LENGTH
initially q = empty_string

procedure Enqueue (clears e: Item,
updates q: Queue)

requires |q| < MAX_LENGTH
ensures q = #q * <#e>

Computer Science and Engineering  The Ohio State University

Other Bounded Queue Operations
procedure Dequeue (replaces r: Item,

updates q: Queue)
requires q /= empty_string
ensures #q = <r> * q

procedure DequeueFromLong (replaces r: Item,
updates q: Queue)

requires |q| >= 2
ensures #q = <r> * q

procedure SwapFirstEntry (updates e: Item,
updates q: Queue)

requires q /= empty_string
ensures <e> = #q[0, 1) and

q = <#e> * #q[1, |#q|)

Computer Science and Engineering  The Ohio State University

Decoupled Head and Tail

 Consider a non-empty queue

 Which operations are perfectly parallel
with Enqueue?

Enqueue
Dequeue
DequeueFromLong
SwapFirstEntry

Computer Science and Engineering  The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering  The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering  The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering  The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering  The Ohio State University

Perfectly Parallel with Enqueue

I II III

Dequeue 
DequeueFromLong  
SwapFirstEntry   

…Length …Flag …Sentinel

Computer Science and Engineering  The Ohio State University

Partition I
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering  The Ohio State University

Partition I: Conditional Effects
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering  The Ohio State University

Partition I: Non-Interference
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering  The Ohio State University

ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering  The Ohio State University

ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering  The Ohio State University

Layering of Intermediate Models

Array

Integer

n

contents, b

head, tail, index

Partition Mapping

BoundedQueue

Computer Science and Engineering  The Ohio State University

Partition II
partition for Queue is (head, tail, m)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head, q.m

otherwise
preserves q.m

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head;
when |q| = 1
affects q.tail, q.m

otherwise
preserves q.tail

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head

Computer Science and Engineering  The Ohio State University

Partition III
partition for Queue is (head, tail)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head

Computer Science and Engineering  The Ohio State University

Summary
 Leveraging RESOLVE framework
 Verification system for sequential correctness,

client code and implementation
 See demo this afternoon

 Work in progress
 Inclusion of segmented fields in partition

descriptions
 Development of modular proof system and

generation of VCs
 Proof of perfect parallelism in client code using

partition descriptions
 Proof that implementation respects partition

descriptions
 Integration with existing RESOLVE IDE

