
Computer Science and Engineering College of Engineering The Ohio State University

Modular Verification with
Abstract Interference Models

Case Study: A Concurrent Queue

Alan Weide*, Murali Sitaraman†, Paul Sivilotti*

*Ohio State University
†Clemson University

Acknowledgement: U.S. NSF grant CCF-1161916

Computer Science and Engineering The Ohio State University

Context: Perfect Parallelism
 Concurrent threads do not modify shared

state
split(problem, p1, p2);
cobegin {
solve(p1, s1);
solve(p2, s2);

}
merge(s1, s2, solution);

 Benefits
 Minimal synchronization

 No locks, semaphores, mutexes, signals, etc
 No deadlocks, fewer synchronization bottlenecks

 Determinism
 Same semantics as sequential execution
 No race conditions, easier to debug

Computer Science and Engineering The Ohio State University

Challenge: Aliasing

 Client code:
cobegin {
update(p1);
update(p2);

}

 Threads are independent only if p1 and
p2 are fully distinct

Computer Science and Engineering The Ohio State University

Challenge: Deliberate Sharing
 In client code:

split(list, list1, list2);
cobegin {
countIn(list1, item, c1);
countIn(list2, item, c2);

}
occurrences = c1 + c2;

 Spec of countIn
countIn(list: List(T), i: T, c: Integer)
ensures list = #list and

i = #i and
c = count(i, list)

 Correctness of parallel composition
depends on implementation of countIn
 Must preserve i, not just restore it

Computer Science and Engineering The Ohio State University

Related Work
 Type systems

 Permissions, DPJ, Liquid Effects
 Deterministic scheduling

 DMP, CoreDet, Kendo
 Grace, Determinator, DOMP

 OS/Scheduling
 Dthreads, dOS, Legion

 Non-blocking data structures
 CAS, linearizability, transactional memory

 Assertional
 Non-interference VCs, Bridge assertions

 Separation logic
 CSL, Concurrent abstract predicates

 Value semantics
 ParaSail, dataflow and futures

Computer Science and Engineering The Ohio State University

Approach: Extend RESOLVE
 Value semantics
 No aliases

 Constant-time swap primitive
 Modularity
 Program types modelled by mathematical

abstractions
 Proofs of implementations layered on math

models of other concepts
 Tool support: Static verification

workbench
 https://www.cs.clemson.edu/resolve
 http://resolveonline.cse.ohio-state.edu

Computer Science and Engineering The Ohio State University

Modularity

Contract

BoundedQueue

ArrayWithLength

Array

Integer

implements

uses

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

Realization

Computer Science and Engineering The Ohio State University

Modularity

Contract

Realizations

implements

uses

Abstract state
Abstract invariants
Procedure specifications

Concrete state
Concrete invariants
Abstraction relation
Implementation code
Loop invariants, variants,…

BoundedQueue

Multiple implementations
of a single contract

Computer Science and Engineering The Ohio State University

Exposing Entanglement

respects

uses

detangles

Intermediate Model Partitions
Operation effects

uses

Computer Science and Engineering The Ohio State University

Exposing Entanglement

respects

uses

uses

detangles

An intermediate
model detangles a
single contract

Computer Science and Engineering The Ohio State University

Exposing Entanglement

respects

detangles

Computer Science and Engineering The Ohio State University

Illustrative Example:
A Bounded Concurrent Queue
type Queue is modeled by string of Item
exemplar q
constraint |q| <= MAX_LENGTH
initially q = empty_string

procedure Enqueue (clears e: Item,
updates q: Queue)

requires |q| < MAX_LENGTH
ensures q = #q * <#e>

Computer Science and Engineering The Ohio State University

Other Bounded Queue Operations
procedure Dequeue (replaces r: Item,

updates q: Queue)
requires q /= empty_string
ensures #q = <r> * q

procedure DequeueFromLong (replaces r: Item,
updates q: Queue)

requires |q| >= 2
ensures #q = <r> * q

procedure SwapFirstEntry (updates e: Item,
updates q: Queue)

requires q /= empty_string
ensures <e> = #q[0, 1) and

q = <#e> * #q[1, |#q|)

Computer Science and Engineering The Ohio State University

Decoupled Head and Tail

 Consider a non-empty queue

 Which operations are perfectly parallel
with Enqueue?

Enqueue
Dequeue
DequeueFromLong
SwapFirstEntry

Computer Science and Engineering The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering The Ohio State University

Different Partitions

III III

BoundedQueue

ArrayWithLength ArrayWithFlag ArrayWithSentinel

Computer Science and Engineering The Ohio State University

Perfectly Parallel with Enqueue

I II III

Dequeue
DequeueFromLong
SwapFirstEntry

…Length …Flag …Sentinel

Computer Science and Engineering The Ohio State University

Partition I
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering The Ohio State University

Partition I: Conditional Effects
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering The Ohio State University

Partition I: Non-Interference
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering The Ohio State University

ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering The Ohio State University

ArrayWithLength Realization
partition for Queue is (head, tail, index)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail
preserves q.index
when |q| = 0 affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head, q.tail, q.index

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.index

Computer Science and Engineering The Ohio State University

Layering of Intermediate Models

Array

Integer

n

contents, b

head, tail, index

Partition Mapping

BoundedQueue

Computer Science and Engineering The Ohio State University

Partition II
partition for Queue is (head, tail, m)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head, q.m

otherwise
preserves q.m

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head;
when |q| = 1
affects q.tail, q.m

otherwise
preserves q.tail

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head

Computer Science and Engineering The Ohio State University

Partition III
partition for Queue is (head, tail)

procedure Enqueue (clears e: Item,
updates q: Queue)

affects q.tail;
when |q| = 0
affects q.head

procedure Dequeue (replaces r: Item, updates q: Queue)
affects q.head

procedure DequeueFromLong (replaces r: Item, updates q: Queue)
affects q.head

procedure SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head

Computer Science and Engineering The Ohio State University

Summary
 Leveraging RESOLVE framework
 Verification system for sequential correctness,

client code and implementation
 See demo this afternoon

 Work in progress
 Inclusion of segmented fields in partition

descriptions
 Development of modular proof system and

generation of VCs
 Proof of perfect parallelism in client code using

partition descriptions
 Proof that implementation respects partition

descriptions
 Integration with existing RESOLVE IDE

