
Enabling Modular Verification with Abstract
Interference Specifications for a Concurrent

Queue

Alan Weide1, Paolo A. G. Sivilotti1, and Murali Sitaraman2

1 The Ohio State University, Columbus OH 43221, USA
weide.3@osu.edu, paolo@cse.ohio-state.edu
2 Clemson University, Clemson SC 29634, USA

murali@clemson.edu

Abstract. When concurrent threads of execution do not modify shared
data, their parallel execution is trivially equivalent to their sequential
execution. For many imperative programming languages, however, the
modular verification of this independence is often frustrated by (i) the
possibility of aliasing between variables mentioned in different threads,
and (ii) the lack of abstraction in the description of read/write effects
of operations on shared data structures. We describe a specification and
verification framework in which abstract specifications of functional be-
havior are augmented with abstract interference effects that permit ver-
ification of client code with concurrent calls to operations of a data ab-
straction. To illustrate the approach, we present a classic concurrent data
abstraction: the bounded queue. Three different implementations are de-
scribed, each with different degrees of entanglement and hence different
degrees of possible synchronization-free concurrency.

1 Introduction

Parallel programming is important for both large-scale high performance systems
and, increasingly, small-scale multi-core commodity software. Programming with
multiple threads, however, is error-prone. Furthermore, when errors are made,
they can be difficult to debug and correct because parallel programs are often
nondeterministic. Non-trivial parallel programs designed with software engineer-
ing consideration will be invariably composed from reusable components, often
ones that encapsulate data abstractions.

Given this context, we propose a specification and verification framework
to guarantee entanglement-free execution of concurrent code that invokes op-
erations on data abstractions. Guaranteeing, simultaneously, modularity of the
verification process and the independence of concurrent threads is complicated
by two key problems. The first of these is the possibility of aliasing between
objects involved in different threads. The second problem concerns guarantee-
ing safe parallel execution of data abstraction operations on an object without
violating abstraction.

2 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

At the core of a solution to the aliasing problem is a notion of clean operation
calls whereby effects of calls are restricted to objects that are explicit parameters
or to global objects that are explicitly specified as affected. Under this notion,
regardless of the level of granularity, syntactically independent operation calls
are always safe to parallelize. While both the problem and the solution are of
interest, this paper focuses only on a solution to the second problem.

To illustrate the ideas, the paper presents a bounded queue data abstraction
and outlines three different implementations that vary in their potential for par-
allelism among different queue operations. The data abstraction specification is
typical, except that it is designed to avoid unintended aliasing. To capture the
parallel potential in a class of implementations we augment the data abstraction
specification with an interference specification that introduces additional mod-
eling details to facilitate guarantees of safe execution of concurrent client code.
The second-level specification is typically still quite abstract and is devoid of
concrete implementation details. The novelty of the proposed solution is that
it modularizes the verification problem along abstraction boundaries. Specifi-
cally, verification of implementation code with respect to both its data abstract
and interference specification is done once in the lifetime of the implementation.
Verification of client code relies strictly on the specifications.

This paper is strictly work in progress. We outline, for example, the speci-
fication and verification framework, but do not include formal proof rules. The
rest of the paper is organized as follows. Section 2 summarizes the most related
work. Section 3 describes the central example and alternative implementations.
Section 4 describes the solution. It begins with a presentation of the interference
specification that forms the basis for the subsequent discussion on verification.
The last section summarizes and gives directions for further research.

2 Related Work

The summary here is meant to be illustrative of the type of related work, not
exhaustive.

Classical solutions to the interference problem (e.g., [3]) would involve defin-
ing and using locks, but neither the solutions nor the proofs of absence of inter-
ference here involve abstraction or specification. Lock-free solutions built using
atomic read-write-modify primitives (e.g., compare-and-swap) allow finer gran-
ularity of parallelism, but the proofs of serializability in that context are often
not modular and do not involve complex properties.

The objective of modular verification is widely shared. The work in [1], for
example, involves specifying interference points. For data abstractions, the in-
terference points would be set at the operation level, meaning two operations
may not execute concurrently on an object, even if they are disentangled at a
“fine-grain” level. The work by Rodriguez, et al [7] to extend JML for concur-
rent code makes it possible to specify methods to be atomic through locking
and other properties. Using JML* and a notion of dynamic frames, the work in
[6] address safe concurrent execution in the context of more general solutions to

Modular Verification of a Concurrent Data Abstraction 3

address aliasing and sharing for automated verification. The work in [9] makes
it possible to specify memory locations that fall within the realm of an object’s
lock. Chalice allows specification of various types of permissions and includes a
notion of permission transfer [5]. Using them, it is possible to estimate an upper
bound on the location sets that may be affected by a thread in Chalice.

3 A Bounded Queue Data Abstraction

3.1 RESOLVE Background

RESOLVE[8] is an imperative, object-based programming and specification frame-
work designed to support modular verification of sequential code. Contracts con-
tain functional specifications and invariants in terms of abstract state. Abstract
state is given in terms of mathematical types, such as sets or strings.1 Realiza-
tions provide executable implementations as well as correspondence information
connecting concrete and abstract state. The fundamental data movement oper-
ation is swap (:=:), a constant-time operator that avoids introducing aliasing
while also avoiding deep or shallow copying [2].

In addition to pre- and post-condition based specifications, operation signa-
tures in contracts include parameter modes, whereby the modification frame is
defined. For example, the value of a restores-mode parameter is the same at the
end of the operation as it was the beginning. In the realm of concurrency, restore-
mode alone is not sufficient to ensure noninterference since it does not preclude
the temporary modification of a parameter during the execution of an operation.
Other parameter modes include clears (changed to be an initial value), replaces
(can change, incoming value is irrelevant), and updates (can change, incoming
value may be relevant).

3.2 Abstract Specification

The BoundedQueueTemplate concept models a queue as a mathematical string
of items. This concept defines queue operations including Enqueue, Dequeue,
SwapFirstEntry, Length, and RemCapacity. The operations have been designed
and specified to avoid aliasing that arises when queues contain non-trivial objects
[2] and to facilitate clean semantics [4].

The operations in the contract are given in the listing below. For Enqueue,
the requires clause says that there must be space in the queue for the new element
(|q| < MAX LENGTH). The ensures clause says that the outgoing value of q
is the string concatenation of the incoming value of q (i.e., #q) and the string
consisting of a single item, the old value of e. Less formally, Enqueue puts e at
the end of the queue. The parameter mode for e defines its outgoing value: an
initial value for its type.

1 A string is a sequence of values such as <1, 2, 1, 3>. The string concatenation
operator is o.

4 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

operation Enqueue (clears e: Item, updates q: Queue)
requires |q| < MAX LENGTH
ensures q = #q o <#e>

operation Dequeue (replaces r: Item, updates q: Queue)
requires q /= empty string
ensures #q = <r> o q

operation SwapFirstEntry (updates e: Item, updates q: Queue)
requires q /= empty string
ensures

<e> = substring(#q, 0, 1) and
q = <#e> o substring(#q, 1, |#q|)

operation Length (restores q: Queue) : Integer
ensures Length = |q|

operation RemCapacity (restores q: Queue) : Integer
ensures RemCapacity = MAX LENGTH − |q|

Listing 1.1. Contracts for Queue Operations

The requires clause for Dequeue says that q must not be empty. The ensures
clause says that the concatenation of the resulting element r and outgoing value
of q is the original value of q.

The SwapFirstEntry operation makes it possible to retrieve or update the
first entry, without introducing aliasing.

The functions Length and RemCapacity behave as expected: Length returns
an integer equal to the number of elements in the queue, and RemCapacity
returns an integer equal to the number of free slots left in the queue before it
becomes full. Neither modifies the queue.

3.3 Alternative Implementations

We have developed three alternative implementations of the bounded queue
specified above, each with different parallelization opportunities. All three are
based on a circular array. In the first two implementations, the length of the
underlying array is equal to the maximum length of the queue, MAX LENGTH,
while in the third the length of the array is one greater.

The first implementation has two Integer fields, front and length, where front
is the index of the first element of the queue and length is the number of elements
in the queue. This implementation cannot handle concurrent calls to Enqueue
and Dequeue without synchronization because both of those calls must neces-
sarily write to length. A client can, however, make concurrent calls to Swap-
FirstEntry and Enqueue when the precondition for both methods is met before

Modular Verification of a Concurrent Data Abstraction 5

x
y
z

m
n

a
b

front = 5

length = 8

x
y
z

m
n

a
b

head = 5

postTail = 3

y
z

m
n
o

a

b
x

head = 5

postTail = 2

isEmpty = false

a. Realization #1 b. Realization #2 c. Realization #3

Fig. 1. Three alternatives for implementing a bounded queue on a circular array.

the parallel block (that is, if 0 < |q| and |q| < MAX LENGTH. These two meth-
ods may be executed in parallel because SwapFirstEntry touches only the head
of the queue and does not modify length, while Enqueue will write length and
touch the end of the queue (which we know is different from the head of the
queue because there was already an element in the queue before Enqueue was
called). An empty queue in this implementation has length = 0 and 0 <= front
< MAX LENGTH, and a full queue has length = MAX LENGTH and 0 <=

front < MAX LENGTH.
The second implementation also has two Integer fields: head and postTail,

and an additional Boolean field isEmpty. While head is the index of the array at
which the first element of the queue is located, postTail is the index of the first
element of the array after the last element of the queue. The boolean isEmpty
is necessary to distinguish between a full queue and an empty queue since in
both cases, head = postTail. As in implementation 1, a client can concurrently
call Enqueue and SwapFirstEntry as long as both preconditions are satisfied.
However, because the length of the queue is computed from the head and postTail
fields (and not another variable written by both Enqueue and Dequeue), we can
also concurrently call Enqueue and Dequeue, but only in a more limited set
of circumstances than is described by their respective preconditions: the queue
must have at least 2 entries in it and there must be at least 2 “free” slots in the
array. This restriction is important because both Enqueue and Dequeue must at
least read isEmpty to determine if the queue is empty when head = postTail.
By restricting concurrent calls to these two methods to those situations when
isEmpty will not be changed by either method (that is, when the queue will be
made neither full nor empty by either Enqueue or Dequeue), we can guarantee
deterministic behavior when they are executed in parallel.

The third and final implementation is similar to the second in that its two
Integer fields are head and postTail (and they represent the same things), but

6 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

in lieu of a Boolean isEmpty field, there is a sentinel node added to the array so
that when head = postTail it can only be the case that the queue is empty (a
full queue has head = (postTail + 1) mod (MAX LENGTH + 1)). Because the
length of the array is greater than MAX LENGTH, there will always be some
element of the array that is not part of the queue. This differentiation between a
full and empty queue without the need to have a separate variable ensures that
even when the queue might become either full or empty during a call to Enqueue
or Dequeue, it will not write anything that the other method reads or writes.

4 Interference Contracts and Modular Verification

Modular reasoning about the safe execution of concurrent threads can be sepa-
rated into three distinct parts: (i) a description of the conditions under which op-
erations are independent, (ii) a proof that client code ensures these independence
conditions, and (iii) a proof that an implementation guarantees non-interference
under these conditions.

Our approach to these three tasks is described below and illustrated using
the first bounded queue realization from the previous section.

4.1 Interference Contract

A functional specification, as given in section 3.2, does not reveal the degree to
which different parts of the abstract state are entangled in the implementation.
The correspondence relation between concrete state and abstract state is part
of the proof of correctness for the implementation, and modular verification
precludes its use in reasoning about client code.

Reasoning about the independence of concurrent threads in client code, how-
ever, requires exposing more information. Our approach for describing this in-
dependence involves creating an intermediate model consisting of orthogonal
components, and encapsulating the description of this intermediate model in a
distinct specification, an interference contract. While this segmentation is all
that is necessary for the example in this paper, in general, an augmentation may
additionally supplement the abstract model with more elaboration in order to
specify absence of interference among operations. In this case, the specification
will also need to state the additional guarantees (ensures clauses) on the supple-
mental model for each operation, not just interference-related specifications as
in the present example.

An interference contract for the bounded queue is given below.

interference contract LookupOffset for BoundedQueueTemplate

partition for Queue is (head, tail, offset)

operation Enqueue (clears e: Item, updates q: Queue)
affects q.tail

Modular Verification of a Concurrent Data Abstraction 7

preserves q.offset
when q = empty string affects q.head

operation SwapFirstEntry (updates e: Item, updates q: Queue)
affects q.head
preserves q.offset

end LookupOffset

Names for different segments of the intermediate model are introduced with
the partition keyword. These segments are independent of implementation par-
ticulars.

An interference contract includes the effects of each operation in terms of
this partition. There are two kinds of possible effects: affects and preserves. The
former reflects a possible perturbation (i.e., a write) while the latter reflects
non-modifying access (i.e., a read). Standard RESOLVE parameter modes map
to these two categories of effects. The partition, however, allows for a finer-
granularity description of effects, which is particularly important when concur-
rent threads use the same variable as a parameter, for example the access of a
shared data structure.

RESOLVE’s clean semantics ensure that an operation is oblivious to (i.e.
neither reads nor writes) any variable not explicitly included as a parameter.
Similarly, an operation is oblivious any segment of a partition not explicitly
mentioned in its effects. For example, SwapFirstEntry is oblivious to q.tail.

A when clause gives a condition that restricts the scope of effects. That is, the
when predicate must hold initially for the stated effect to occur. For example,
in order for Enqueue to affect q.head, the queue must be empty.

Notice that this partitioning of this state space is not the same as establishing
the independence of these segments from the point of view of the correspondence
relation. In this example, the independence of the Enqueue operation on front is
conditioned by the queue being non-empty. These independence conditions are
in addition to the usual preconditions of the corresponding operations from the
template specification, so SwapFirstEntry must be oblivious to q.tail only when
the queue is non-empty.

4.2 Modular Verification of Client Code

In order for a set of statements to be safely executed in parallel, each variable–or
each segment in a variable’s intermediate model–can be affected by at most one
statement. Furthermore, if any segment is affected by some statement, all of the
other statements must be oblivious to this segment.

For example, with the interference contract given above, SwapFirstEntry
and Enqueue affect non-overlapping segments (q.head and q.tail, respectively).
Furthermore, each is oblivious to the segment affected by the other, assuming
the queue is non empty. Finally, the segment used by both (q.offset) is preserved
by both. The following client code illustrates the parallel composition of these
operations.

8 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

assume 0 < |q| < MAX LENGTH
cobegin

SwapFirstEntry(x, q)
Enqueue(y, q)

end

First we note that the client code above can be executed concurrently only
if there is no aliasing between objects x and y. This isolation is implied if the
programming language is defined to have a clean semantics like RESOLVE or
through disciplined programming in a language to avoid unintended aliasing.
Under clean semantics, the effects of operations are restricted to their explicit
parameters (or explicitly specified global variables) [4].

In addition to satisfying the usual preconditions for functional correctness,
the verification of the client code includes establishing the independence con-
ditions of the two operations. This verification is carried out entirely in the
context of the client code, using only the abstract functional specification and
interference contract of the bounded queue template.

The independence of the constituent statements of a cobegin block means
that the statements can be executed in any concurrent or arbitrarily interleaved
manner. The semantics of their execution is identical to that of their sequential
composition.

4.3 Modular Verification of an Implementation

In order to map from concrete implementation state to abstract specification
state, realizations provide a representation invariant (convention) and a corre-
spondence function (or relation, more generally). Our approach for establishing
operation independence is to augment this correspondence relation with a parti-
tioning of the constituent concrete state space. That is, an implementation must
provide a mapping from the concrete data structure involved in the implementa-
tion (e.g., contents, front, and length) to the partitioned model of the queue in
the interference contract. Specifically, it must place each implementation struc-
ture for the queue realization into one of head, tail, and offset.

The restrictions imposed by the effect statements need to be proven for the
implementation code of each operation, under the specified conditions. In or-
der for an operation’s implementation to meet the obliviousness requirement, all
statements in its code must be oblivious to the corresponding parts of the data
structure. When a statement does not mention a part of the data structure (e.g.,
front), it is trivially oblivious to that variable. (This observation also requires
clean semantics.) Otherwise, a statement may use parts of the data structure
from their obliviousness requirement only in operations which, themselves, are
oblivious on the corresponding parts of the data structure. The underlying data
structure itself might be built from other data abstractions. This is not a prob-
lem, because the lack of entanglement of one component can be layered on top
of appropriately disentangled realization components.

Modular Verification of a Concurrent Data Abstraction 9

realization ArrayWithLength for BoundedQueueTemplate
respects LookupOffset

type representation for Queue is
(contents: array 0..MAX LENGTH − 1 of Item,
front: Integer,
length: Integer)

exemplar q
convention

0 <= q.front < MAX LENGTH and
0 <= q.length <= MAX LENGTH

correspondence
Conc.q = Iterated Concatenation(i = q.front.. q.front + q.length + 1,

q.contents(i mod MAX LENGTH))
interference correspondence

head: q.contents.c[q.front]
tail: q.length, q.contents.c except on {q.front}
offset: q.front

end Queue

procedure Enqueue(clears e: Item; updates q: Queue)
e :=: q.contents[q.front + q.length mod MAX LENGTH]
q.length := q.length + 1
Clear(e)

end Enqueue

procedure SwapFirstEntry(updates e: Item; updates q: Queue)
e :=: q.contents[q.front]

end SwapFirstEntry

end ArrayWithLength

The proof of Enqueue’s obliviousness to q.head (when the queue is non-
empty) is seen as follows. When the queue is non-empty, q.length >= 1. So the
part of q.contents that is modified is distinct from q.contents[q.front]. Therefore,
Enqueue is oblivious to q.head. SwapFirstEntry, on the other hand, is oblivious
to q.tail. Firstly, the operation does not mention q.length. Secondly, only q.
contents[q.front] is affected, so it is oblivious to the rest of the contents.

Notice that the partitioning of q.contents involves the interference contract
for an array (i.e., q.contents.c). It is the partition at this nested level that is used
in the realization’s interference correspondence.

The proof of preserving q.offset amounts to a proof that no statement in
the implementation affects q.front. This proof follows from the interference con-
tracts of the operations used by Enqueue and SwapFirstEntry. In particular, the
swapping of e and q.contents[q.front] preserves q.front.

10 Alan Weide, Paolo A. G. Sivilotti, and Murali Sitaraman

5 Summary and Future Directions

This paper has presented a novel framework for modular verification of concur-
rent programs using data abstractions. Specifically, it has explained how multiple
operations can be simultaneously invoked on an abstract data object if a set of
interference conditions can be specified and verified using an augmentation to
the abstract specification of the data abstraction. The proof process is strictly
modularized. The paper has presented a concrete example to illustrate the ideas.
Future directions include development of a formal proof system and automated
verification.

Acknowledgments. This research is funded in part by NSF grants CCF-
1161916 and DUE-1022941. Any opinions, findings, conclusions, or recommen-
dations expressed here are those of the authors and do not necessarily reflect the
views of the NSF.

References

1. M. Bagherzadeh and H. Rajan. Panini: A concurrent programming model for solv-
ing pervasive and oblivious interference. In Proceedings of the 14th International
Conference on Modularity, MODULARITY 2015, pages 93–108, New York, NY,
USA, 2015. ACM.

2. D. E. Harms and B. W. Weide. Copying and swapping: Influences on the design of
reusable software components. IEEE Trans. Software Eng., 17:424–435, 1991.

3. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2008.

4. G. W. Kulczycki. Direct Reasoning. PhD thesis, Clemson University, Clemson, SC,
USA, 2004. AAI3125470.

5. K. R. M. Leino, P. Müller, and J. Smans. Foundations of Security Analysis and
Design V: FOSAD 2007/2008/2009 Tutorial Lectures, chapter Verification of Con-
current Programs with Chalice, pages 195–222. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

6. W. Mostowski. Verified Software: Theories, Tools, and Experiments: 7th Inter-
national Conference, VSTTE 2015, San Francisco, CA, USA, July 18-19, 2015.
Revised Selected Papers, chapter Dynamic Frames Based Verification Method for
Concurrent Java Programs, pages 124–141. Springer International Publishing, 2016.

7. E. Rodrguez, M. Dwyer, C. Flanagan, J. Hatcliff, and G. T. Leavens. Extending
jml for modular specification and verification of multi-threaded programs. In In
ECOOP, LNCS 3586, pages 551–576. Springer, 2005.

8. M. Sitaraman, B. Adcock, J. Avigad, D. Bronish, P. Bucci, D. Frazier, H. M. Fried-
man, H. Harton, W. Heym, J. Kirschenbaum, J. Krone, H. Smith, and B. W. Weide.
Building a push-button resolve verifier: Progress and challenges. Formal Aspects of
Computing, 23(5):607–626, 2011.

9. J. Smans, B. Jacobs, and F. Piessens. Vericool: An automatic verifier for a con-
current object-oriented language. In Proceedings of the 10th IFIP WG 6.1 Interna-
tional Conference on Formal Methods for Open Object-Based Distributed Systems,
FMOODS ’08, pages 220–239, Berlin, Heidelberg, 2008. Springer-Verlag.

