Research, Teaching & Service:
The Miniconference as a Model for CS Graduate Seminar Courses

Paul Sivilotti
Bruce Weide
Computer Science & Engineering
The Ohio State University
(paolo,weide)@cis.ohio-state.edu

What keeps me up at night
- 3 graduating PhD students on job market:
 Scott Pike - Fault Containment
 Nigamanth Sridhar - Design Patterns
 Chris Bohn - Model Checking
- 2 other affiliated students on job market:
 Murat Demirbas - Sensor Networks
 Jason Hallstrom - Software Product Lines

Do they know what they are getting into?

Inadequacy in Preparation
Each level requires different skills:
- High school
 - take tests
- Undergraduate student
 - answer questions
- Graduate student
 - ask questions
- Faculty member
 - run a business

Our Idea
- Distill the "academic experience"
 - Create a course structure that captures all the essential elements
- Constraints
 - 1 course (10 weeks)
 - No sacrifice of technical content
 - Heterogeneity of audience
- We're bold, but also realistic
 - Preparing future faculty is a daunting task
 - Programs, workshops, panels, seminars, books, ...
 - Our course structure is just one small step

The Miniconference Model
- During the term
 - Professor covers normal technical material
 - Students make some seminar presentations
 - Students carry out original research projects
- Seminar culminates in a "miniconference"
 - Call for papers is circulated
 - Papers are written and submitted
 - The class acts as the program committee!
 - Review & critique papers
 - Make accept/reject decisions
 - Accepted papers are presented

Past Miniconferences
- Sample projects:
 - Dynamic interceptor composition framework
 - Temporal component-based specifications
 - Dynamic software module replacement
 - Heuristics for distributed scheduling
 - Distributed discrete-event simulation app
 - Structured parallel programming techniques
 - Distributed recording service for debugging
 - Encapsulating concurrency for sequential reasoning
- Many accepted papers led to "real" publications
The Three Pillars

This model touches on all three aspects of academia:
- **Research**
 - Focused, graduate-level research project
 - Miniconference paper preparation & submission
 - Miniconference paper presentation
- **Teaching**
 - Seminar presentation to class
 - Topic chosen to relate to student’s project
- **Service**
 - Professional service: paper reviewing
 - Professional service: program committee

Mechanics: Grading Scheme

- **Research**
 - 55%
- **Teaching**
 - 25%
- **Service**
 - 10%
- **Class Participation**
 - 10%

Mechanics: Paper Review

- **Review metrics**: specific and quantitative
 - **A. Relevance**
 - Category, audience, appropriateness
 - **B. Presentation**
 - 14 different metrics, scale of 1-10
 - **C. Contribution**
 - Importance, strengths, weaknesses, correctness
 - **D. Conclusions**
 - Overall recommendation, confidence level
 - **E. Open-ended (private and public) comments**
 - Everyone reviews several (~3) papers

Benefits of This Model

- Many similar approaches exist, with similar benefits
 - Writing skills
 - Oral presentation skills
 - Critiquing skills
- In addition, miniconference model reveals:
 - Insights into each of the “three pillars”
 - Inter-relationships among them

Learning Gains: Research

- Writing a good research paper
 - Targeting a specific audience
 - Packaging the paper’s contribution
- Giving a good research talk
 - Breadth and interests of audience
- Collaborative research and writing
 - Dynamics of writing a joint paper
- Mentoring junior students
 - In student-led projects, senior students can play the role of advisor
Learning Gains: Teaching
- **Potential synergies** between research and teaching
 - Experience with research project improves student lectures
 - Preparing for lectures helps with project
- **Contrast** research talk and lecture
 - One is meant to instruct, the other to inform (and persuade, and sell)
 - Different evaluation forms used

Learning Gains: Service
- **Reviewing and critiquing peers’ work**
 - Authors see (anonymous) reviews
 - PC committee sees all (other) reviews
 - Note: PC committee consists (only) of authors!
- **Behind-the-scenes look at PC decision process**
 - Each submission discussed to reach consensus
 - No one has seen every paper
 - Outcome can be influenced by the right “champion”
 - Seriousness: outcome affects people’s lives
 - Conflicts of interest: discussing competitors’ papers

Robustness of the Model
- We have tried many variations
 - Low vs high miniconference acceptance rates
 - Group vs individual projects
 - Professor- vs student-led projects
 - Long vs short revision windows
 - Relative weightings in grade distribution
- Other things we have not changed (yet)
 - Graduate-level seminar courses
 - Single-course scope for miniconference

In general, the model is surprisingly robust!

Pointers for Success
- **Specific, focused research projects**
- **Authentic CFP:**
 - Firm deadline, page limits
 - Include typesetting requirements (ACM)
- **Authentic conference:**
 - Session chair imposing time limits
 - “Published” proceedings
- **Focused quantified review templates**
- **End-of-term debriefing session**

Summary
The miniconference model for graduate seminars:
- Provides a microcosm of academia
- Introduces inter-relationships among research, teaching, and service
- Is surprisingly robust under variation
- Is worth trying!
What else might one add to this model?
- Proposal writing and funding (?)
- Promotion and tenure (???)
- Department/university citizenship
- The joy of advising students!

What keeps me up at night
- 3 graduating PhD students on job market:
 - Scott Pike - Fault Containment
 - Nigamandh Sridhar - Design Patterns
 - Chris Bohn - Model Checking
- 2 other affiliated students on job market:
 - Murat Demirbas - Sensor Networks
 - Jason Hallstrom - Software Product Lines

They may be better prepared than most
Research, Teaching & Service:
The Miniconference as a Model
for CS Graduate Seminar Courses

Paul Sivilotti
Bruce Weide

Computer Science & Engineering
The Ohio State University

(paolo.weide)@cis.ohio-state.edu