
Using Parse Tree Validation to Prevent SQL Injection
Attacks

Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti
Computer Science and Engineering

The Ohio State University
Columbus, OH 43210

{buehrer,weide,paolo}@cse.ohio-state.edu

ABSTRACT
An SQL injection attack targets interactive web applica-
tions that employ database services. Such applications ac-
cept user input, such as form fields, and then include this
input in database requests, typically SQL statements. In
SQL injection, the attacker provides user input that results
in a different database request than was intended by the
application programmer. That is, the interpretation of the
user input as part of a larger SQL statement, results in an
SQL statement of a different form than originally intended.
We describe a technique to prevent this kind of manipula-
tion and hence eliminate SQL injection vulnerabilities. The
technique is based on comparing, at run time, the parse
tree of the SQL statement before inclusion of user input
with that resulting after inclusion of input. Our solution
is efficient, adding about 3 ms overhead to database query
costs. In addition, it is easily adopted by application pro-
grammers, having the same syntactic structure as current
popular record set retrieval methods. For empirical anal-
ysis, we provide a case study of our solution in J2EE. We
implement our solution in a simple static Java class, and
show its effectiveness and scalability.

1. INTRODUCTION
Web applications employing database-driven content are

ubiquitous. Companies whose business model focuses on the
Internet, such as Yahoo and Amazon, are obvious exam-
ples; but nearly every major company has a web presence,
and this presence often uses a relational database. These
databases may include sensitive information, such as cus-
tomer data. Typically, the web user supplies information,
such as a username and password, and in return receives
customized content. It is also common to have public con-
tent available through an external site, and then co-host an
intranet on the same web server.

A variety of technologies provide frameworks for web ap-
plications, including Sun’s J2EE (Java Server Pages, Servlets,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SEM 2005 September 2005 Lisbon, Portugal
Copyright 2005 ACM 1-59593-204-4/05/09 ...$5.00.

Struts, etc.), Microsoft’s ASP and ASP.NET, PHP, and the
Common Gateway Interface (CGI). All of these models make
use of a tiered environment. Typically, three tiers are em-
ployed: the presentation tier, middle tier, and data tier. The
presentation tier uses a web browser to capture user input
and present information output. This is typically HTML,
but occasionally intranet applications make use of a custom
thin client. The middle tier, also known as the business
tier, encapsulates the business logic that drives the appli-
cation. This software layer is responsible for constructing
information requests to the database layer. The database
tier is typically a relational database and provides storage
services.

As a motivating example, consider an online banking web
application. The bank allows clients to log in and view
their accounts, make payments, etc. Clients provide cre-
dentials by typing their username and password into a web
page (the presentation tier). The web page posts this in-
formation as name:value string pairs (input field:value) to
the middle tier. The middle tier uses this input to cre-
ate a query, or request, to the database layer. This is al-
most always SQL (Structured Query Language), such as
SELECT * FROM users WHERE username=’greg’ AND
password=’secret’. The data layer processes the request and
returns a record set back to the middle tier. The middle tier
manipulates the data, creates a session, and then passes a
subset to the presentation tier. The presentation tier renders
the information as HTML for the browser, displaying a menu
of account options and personalized information about ac-
count balances and transaction history. Notice that, in this
example, the middle layer generates an SQL request based
on input supplied by the user.

Because of the popularity of these types of applications,
techniques to exploit their security vulnerabilities are po-
tentially quite dangerous. One such technique is called SQL
injection. This attack occurs when user input is parsed as
SQL tokens, thus changing the semantics of the underlying
query. Two well-known companies whose public web sites
were vulnerable to such attacks are Guess and Petco. Both
vulnerabilities were discovered by a curious 20 year old pro-
grammer in 2003. As a result, Petco exposed 500,000 credit
cards, and required a settlement with the Federal Trade
Commission [18, 21].

In this paper, we present a novel runtime technique to
eliminate SQL injection. We observe that all SQL injections
alter the structure of the query intended by the programmer.
By capturing this structure at runtime, we can compare it

to the parsed structure after inserting user-supplied input,
and evaluate similarity. We assert that it is more effective to
measure the results of the input than to attempt to validate
the input prior to inserting it into the proposed query. By
incorporating a simple SQL parser, we can evaluate all user
input without requiring a call to the database, thus lowering
runtime costs. Our method aims to satisfy the following
three criteria:

• eliminate the possibility of the attack;

• minimize the effort required by the programmer; and

• minimize the runtime overhead.

In addition to describing the structure of the technique, we
present an implementation of our solution in a J2EE case
study and evaluate it based on these three criteria. We
conclude that our solution provides a practical and useful
security tool for middleware developers, and make the code
publicly available. Our general strategy is not limited to
any specific platform since it does not rely on any particular
language mechanism or technology. This strategy can be
instantiated for any existing web application framework.

2. BACKGROUND: SQL INJECTION

2.1 Web Server Technology
Web applications accept user input via forms in web pages.

This input is posted to the server as name-value pairs, both
of which are strings. An alternate mechanism to pass infor-
mation to the server is the query string. The query string
is information appended to the end of the URL. On most
web servers, a question mark separates the resource from the
query string variables. Each name value pair in the query
string is separated by an ampersand, and the user is free to
edit this input as easily as form inputs.

Because it is common for web servers not to differenti-
ate between variables passed in the query string and those
posted in the form, we will consider both as user input.

Web forms can also have hidden fields. These fields are a
tool for the programmer to maintain state across web pages.
These fields are hidden for aesthetic purposes only. It is rela-
tively easy for an attacker to examine the source code of the
web page, and either place a hidden field in the query string
or save the form to local storage and modify it. Therefore,
we will treat all hidden fields as user-supplied input as well.

2.2 SQL Injection Defined
SQL injection is a type of security attack whereby a ma-

licious user’s input is parsed as part of the SQL statement
sent to the underlying database. Many variations exist, but
the central theme is that the user manipulates knowledge of
the query language to alter the database request. The goal
of the attack is to query the database in a manner that was
not the intent of the application programmer. We present
several examples in this section.

2.3 SQL Injection Techniques

2.3.1 Tautologies
One method to gain unauthorized access to data is to

insert a tautology into the query. In SQL, if the WHERE
clause of a SELECT or UPDATE statement is disjuncted

with a tautology, then every row in the database table is
included in the result set.

To illustrate, consider an online banking application. As-
sume that a user has logged into the web site properly. To
update their account information, the user navigates to the
proper page using a (generated) query string where the user
id appears, for example: details.asp?id=22. The value of
the id name-value pair (i.e., the string 22) is then used by
the middle tier to generate the SQL statement SELECT *
FROM users WHERE userid=22, and the appropriate in-
formation is returned back to the user. However, an attacker
could easily manipulate this interaction by editing the query
string to contain a tautology, such as details.asp?id=22 OR
1=1. Again, the value of id is used (i.e., the string 22 OR
1=1) in constructing the SQL statement, which becomes
SELECT * FROM users WHERE userid=22 OR 1=1. This
query returns all rows of the users table.1

Checking for tautologies can be difficult, because SQL al-
lows a wide range of function calls and values. Simply check-
ing user input for patterns such as n=n or even for an equals
sign is not sufficient. For example, other SQL tautologies are
’greg’ LIKE ’%gr%’ and ’greg’=N’greg’ which are based on
operators, such as LIKE and =N, that are not typical math
operators.

2.3.2 UNION Queries
Another SQL injection technique involves the UNION key-

word. SQL allows two queries to be joined and returned as
one result set. For example, SELECT col1,col2,col3 FROM
table1 UNION SELECT col4,col5,col6 FROM table2 will re-
turn one result set consisting of the results of both queries2.
Let us return to our previous example, SELECT * FROM
users WHERE userid=22. If the attacker knew the number
and types of the columns in the first query, an additional
query such as SELECT body,results FROM reports can be
appended. For some applications, surmising this informa-
tion is not difficult. If the programmer is not consuming all
exceptions, incorrect SQL queries will generate error mes-
sages that expose the needed information[14]. For example,
if the two queries in the UNION clauses have a disparate
number of columns, an error such as All queries in an SQL
statement containing a UNION operator must have an equal
number of expressions in their target lists will be returned.
The attacker merely changes the query to SELECT * FROM
users WHERE userid=22 UNION SELECT body,results,1
FROM reports to try and match the number of columns.
The attacker can continue to add dummy columns until
an error such as Syntax error converting the varchar value
’txfrs’ to a column of data type int occurs. This signals that
the column count is correct, but at least one column type is
not. The attacker can then vary the types accordingly.

2.3.3 Additional Statements
An interesting point when using a UNION to select mul-

tiple requests is that often only the first row of the result
set is used by the web page. Given this fact, it seems the
attacker does not necessarily benefit from returning more

1If a result set contains multiple rows where only a single
row was expected, typically the middle tier uses only the
first row. In the case of a table of passwords, the first row
often corresponds to an administrator, making tautologies a
particularly dangerous form of SQL injection.
2Subject to some constraints, such as matching types.

rows than what was intended via the UNION attack. How-
ever, a similar but alternative approach is to UNION the
first query with a new query that does not return addition
results. These new queries often perform specific actions on
the database that can have disastrous consequences. For
example, Microsoft’s SQL Server provides two system level
stored procedures designed to aid administrators. These
tools inadvertently provide powerful features to an attacker.
The first is the xp cmdshell(string) command. This func-
tion can be UNION ’d with any other query. The effect is
essentially that the command passed to the function will be
executed on the server as a shell command. Another in-
teresting system procedure is sp execwebtask (sql,location).
This command executes the SQL query and saves the re-
sults as a web page at the specified location. The loca-
tion need not be on the database server, but rather can be
placed in any accessible UNC path. For example, SELECT
* FROM users WHERE userid=22 UNION sp makewebtask
’\\IP address\share\test.html’,’SELECT * FROM users’ will
create an HTML page of the entire users table at the server
IP address.

2.3.4 Using Comments
SQL supports comments in queries. Most SQL imple-

mentations, such as T-SQL and PL/SQL use – – to indicate
the start of a comment (although occasionally # is used).
By injecting comment symbols, attackers can truncate SQL
queries with little effort. For example, SELECT * FROM
users WHERE username=’greg’ AND password=’secret’ can
be altered to SELECT * FROM users WHERE username=
’admin’ – – AND password=”. By merely supplying admin’ – –
as the username, the query is truncated, eliminating the
password clause of the WHERE condition. Also, because
the attacker can truncate the query, the tautology attacks
presented earlier can be used without the supplied value
being the last part of the query. Thus attackers can cre-
ate queries such as SELECT * FROM users WHERE user-
name=’anything’ OR 1=1 – – AND password=’irrelevant’.
This is guaranteed to log the attacker in as the first record
in the users table, often an administrator.

2.4 Mass SQL Injection Discovery Techniques
It is not required to visit a web page with a browser to

determine if SQL injection is possible on the site. Typi-
cally, a malicious user will program a web crawler to in-
sert illegal characters into the query string of a URL (or
an HTML form), and check for errors in the result. If an
error is returned, it is a strong indication that the illegal
character, such as ’, was passed as part of the SQL query,
and thus the site is open to manipulation. For example, Mi-
crosoft Internet Information Server by default will display
an ODBC error if an unescaped single quote is passed to
SQL Server[14]. The crawler simply searches the response
text for ODBC messages.

3. SQL PARSE TREE VALIDATION
A parse tree is a data structure for the parsed representa-

tion of a statement. Parsing a statement requires the gram-
mar of the statement’s language. By parsing two statements
and comparing their parse trees, we can determine if the two
queries are equal.

When a malicious user successfully injects SQL into a
database query, the parse tree of the intended SQL query

WHEREtable_listselect_list FROM where_cond

users

SELECT

SELECT * FROM users WHERE username=? AND password=?

passwordusername

identifierAND = literalliteral=identifier

*

identifieridentifier

Figure 1: A SELECT query with two user inputs

WHEREtable_listSELECT select_list FROM where_cond

users password’greg’ ’secret’

SELECT * FROM users WHERE username=’greg’ AND password=’secret’

username

identifierAND = literalliteral=identifier

*

identifieridentifier

Figure 2: The same SELECT query as in Figure 1,
with the user input inserted

and the resulting SQL query do not match. By intended
SQL query, we mean that when a programmer writes code
to query the database, she has a formulation of the struc-
ture of the query. The programmer-supplied portion is the
hard-coded portion of the parse tree, and the user-supplied
portion is represented as empty leaf nodes in the parse tree.
These nodes represent empty literals. What she intends is
for the user to assign values to these leaf nodes. A leaf
node can only represent one node in the resulting query, it
must be the value of a literal, and it must be in the position
where the holder was located. By restricting our validation
to user-supplied portions of the parse tree, we do not hinder
the programmer from expressing her intended query.

An example of her intended query is given in Figure 1.
This parse tree corresponds to the example we presented in
Section 1, SELECT * FROM users WHERE username=?
AND password=?. The question marks are place holders
for the leaf nodes she requires the user to provide.3 While
many programs tend to be several hundred or thousand lines
of code, SQL statements are often quite small. This affords
the opportunity to parse a query without adding significant
overhead.

3.1 Dynamic Queries
One significant advantage over static methods is that we

can evaluate the exact structure of the intended SQL query.
Many times this structure itself is a function of user input,
which does not permit static methods to determine its struc-
ture. An example is a search page. One popular free web-
based email tool allows users to search through their mes-
sages for particular content. This search may or may not in-
clude searching through the email body, subject, from field,
etc. Typically in these types of searches, if the user leaves
one or more of these fields empty, the code does not incor-
porate them into the SQL query. Normally the programmer
will append inputs from these fields on the WHERE portion
of the query, such as WHERE subject LIKE ’%input%’.

Another example is result set sorting. Many web appli-
cations which allow the user to sift through tabular results
permit sorting the table by any of the columns. This func-

3In all the parse tree figures, we have simplified the typical
where clause grammar rules due to space constraints.

WHEREtable_listSELECT select_list FROM where_cond

users

SELECT * FROM usertable WHERE username=’greg’ AND 1=1

literal

11’greg’username

AND = literalliteral=identifier

*

identifieridentifier

Figure 3: The same SELECT query as in Figure 1,
with a tautology inserted

tionality is easily accommodated by appending an ORDER
BY column1,column2 clause on the end of the query. Be-
cause this clause may or may not be present, and can be
any number of columns, static analysis cannot determine
the exact query at compile time. As our method establishes
the query at runtime, verifying these queries is as straight-
forward as the others.

In our last example, we consider an online library applica-
tion. The programmer has developed a front end application
which allows the user to select publications based on his par-
ticular criteria. This front end has three user input fields.
The first is a list, which supplies the variable to search on,
such as author, title, or publisher. The second field is a list
to provide the available operators, such as LIKE, greater
than, equals, etc. The last field is a free form input to spec-
ify text. Two buttons are supplied, which are used to ap-
pend the clause to the current query as either a conjunction
or disjunction. Since the left side of the clause is a column
name, and the right side is a user-supplied value, it is not
possible for the two to be equal. A string on the right side
uses quotes, and a value field uses only number characters.
Also, if the programmer had a need to limit the selection,
she could easily code her own clause in the middleware, such
as ’ AND accesslevel< 20’. The list fields which control
the variable (author, title, etc) and thus the column of the
database table (or view), are not text input by the user.
The key in this example is that the user is choosing from
a template structure that the programmer has supplied. In
this example, although the user impacts the structure of the
query, no nodes which are supplied by the user are unknown
to the programmer. The user always supplies a clause as a
tuple, namely (column,operator,value). Admittedly, this is
not due to the parse tree approach, but due to proper front
end programming. If the programmer were to allow free text
supplied by the user to be parsed as SQL, then security is
compromised. By definition, there can be no ’injection’ in
that case, because the user is not injecting SQL. The user
is supplying SQL as intended by the programmer.

We would like to emphasize that we are not disallowing
the program from using tautologies, or disallowing the pro-
grammer from permitting tautologies be supplied by the
user. Eliminating tautologies is not the goal. The goal is to
eliminate SQL injection, which is to eliminate the user from
supplying text that the programmer did not intend to be
SQL, but is parsed as such. A common SQL injection tech-
nique is to provide a text input such as ’ OR 1=1’, and have
this input be parsed as part of the structure of the query.

3.2 Comment Token Inclusion
One subtle case of attacks deserves special discussion. Our

solution compares the parse tree before the user-supplied
fields have been inserted and after the user-supplied fields

WHEREtable_listSELECT select_list FROM where_cond

users password’greg’ ’secret’

SELECT * FROM users WHERE username=’greg’ AND password=’secret’ −− ’ AND password=’tricky’

username

identifierAND = literalliteral=identifier

*

identifieridentifier

Figure 4: The same SELECT query as in Figure 1,
with a subtle shadowing attack

identifier

where_condWHEREtable_listSELECT select_list

identifier

users

FROM comment

’ AND password=’tricky’

password’greg’ ’secret’

SELECT * FROM users WHERE username=’greg’ AND password=’secret’ −− ’ AND password=’tricky’

username

identifierAND = literalliteral=identifier

*

Figure 5: The same user input as in Figure 4, but
including the comment as a token

have been inserted. If the user knew the table names and
the structure of the targeted SQL query, it is possible he
could customize his attack to mimic the query. He could
inject the exact query in the first field, and supply values
for all subsequent fields (by commenting out the later por-
tions). An example is illustrated in Figures 1, 2 and 5. The
original query is given in Figure 1, with two user-supplied
fields (shaded gray). If the user were to supply greg’ AND
password=’secret’ – – for the username field and tricky for
the password field, the resulting parse tree would be as in
Figure 2. The potential vulnerability is that the program-
mer may assume that since the query parsed properly, the
value stored in the request object’s password field is the
same value which was used to build the query. While the
data returned by the query is proper, the state of the pro-
gram is most likely not the state assumed by the program-
mer. Fortunately, our parse tree mechanism catches this
subtle hazard. The solution is to include the comment as
a token in the parse tree. Figure 5 is the result from the
same input, with this comment token included. Because the
original query does not have a comment token, the resulting
parse tree is no longer a match. This does not restrict the
programmer from annotating queries. Had a comment ex-
isted in the original query, the parse would still have failed
because the value (string literal value) of the two tokens
would not be equal.

3.3 Implementation
We have implemented our solution in Java. At the core of

this solution is a single static class, SQLGuard, which provides
parsing and string building capabilities. The programmer
uses this class to dynamically generate, through concatena-
tion, a string representing an SQL statement and incorpo-
rating user input.

Each SQL string is prepended with SQLGuard.init(), which
generates and returns a fresh key. By generating a new key
for each database query, we allow for inadvertent discovery
of a key, because successive page loads will always have a
new key. When a user-provided string, s, is included within
an SQL statement, it is first pre- and post-pended with the

creates

implements

implements
Connection

DriverManager

Statement

SafeDriverManager

SafeConnection

SafeStatement

uses

init()

verify()

wrap(s)

SQLGuard

encapsulates

creates

Figure 6: General class structure

current key by using SQLGuard.wrap(s). It is imperative
that the key not be guessable by an attacker. We use a se-
quence of 8 randomly generated ASCII characters (seeded
by clock value, thread id, and an application guid).

The SQLGuard class has a private method, verify(), which
removes the key from the beginning of the query and uses
it to identify wrapped user input and build two parse trees.
The first tree has unpopulated user tokens for user input.
The second tree is the result of parsing the string with these
nodes filled in with user input. The two trees are then com-
pared for matching structure.

We use a static class and maintain thread identities for
each key. A sorted vector is used in the case the container
application is multithreaded. We parse the query string us-
ing ZQL[7], a publicly available parser written in Java.

3.4 Correctness
The correctness of our approach is predicated on two as-

sumptions. The first is that user input values are intended
to be used only as leaves in the parse tree. That is, we
assume that it is not the intent of the application to al-
low user input to include SQL statements or substatements.
One could certainly imagine an application where this is not
the case, for example a web tutor for learning SQL! For such
situations, we could weaken the parse tree similarity check.
Instead of verifying that that user leaf nodes are replaced
with terminal literals, we would verify that they have been
replaced by subtrees. In practice, however, we are not aware
of any real web applications designed to accept SQL directly
from the user and so we have chosen to not implement this
weaker similarity check.

The second assumption is that the key value is outside
the space of possible user input (i.e., it is unguessable by
an attacker) and of possible programmer input (i.e., it is
not, itself, a valid SQL token or sequence of tokens). This
assumption means that the only occurrences of the key in
an SQL statement are a result of calls to SQLGuard.init()

SQLGuard.wrap(). If used correctly, then, these key values
bracket exactly the instances of string values in the state-
ment arising from user input. Hence, replacing the sub-
strings bracketed by the key values by a single token cor-
rectly generates the parse tree of the original, programmed,

Figure 7: Average database query times for state-
ments and guarded statements vs query size

SQL statement template.

4. CASE STUDY
Our case study is an application built for the Ohio De-

partment of Transportation. The Ohio State University was
contracted to engineer and develop a web application, the
Geological Hazard Inventory Management System. This ap-
plication is designed to inventory hazards which adversely
affect roads and highways throughout Ohio. It also provides
cost estimations for various remediation techniques, allow-
ing state engineers to make decisions and establish priorities
for their fiscal resources. The application was built on J2EE
using JSP, Java classes, and Sybase, with Apache Tomcat as
the application server. SQL queries are generally built from
JSP-supplied user input, using Java’s SQL.Statement class.
We have evaluated our SQL injection elimination technique
with respect to its computational overhead, and how easily
it incorporates into existing code. In addition, the guarded
application handled every injection attempt described in this
paper, and all other techniques of which we are aware.

4.1 Execution Overhead
To test the execution time overhead, we baselined our

study by timing the application with traditional SQL queries,
i.e., without our injection checking. We then modified the
queries as outlined in Section 3 and reran the experiment.
The web server is a 733MHz Windows 2000 machine with
256MB RAM.

Figure 7 shows the average parse time as a function of
the length of the query. During this experiment, the web
server was otherwise idle. We recorded the time to parse
the query, execute the database call, return the results, and
close the connection. This amounts to the code in Figure 10,
in the course of an HTTP response. We used several differ-
ent queries and averaged their times over 20 trials each. Our
guarded solution required approximately 1-3 ms more time
to execute than traditional Statements, and was not a func-
tion of the length of the query. We feel this is because SQL
queries are relatively short, typically less than 50 tokens.
Both lines show a small slope, which is due to the increas-

Figure 8: Average page response times for 10 (top)
and 25 (bottom) simultaneous users

ing complexity of the query for the database engine.
Our second set of experiments aimed to test our imple-

mentation under extreme load. To accomplish this task,
we used Apache’s JMeter load testing package.4 It is freely
available and tailored for testing the performance of Tomcat
applications. JMeter allows one to schedule walks through a
web application, including detailed web form submission and
thus database querying. This script can exhaustively tra-
verse the application. JMeter can then execute this script
with a configurable number of concurrent users, either lo-
cally or remotely. It also allows the tester to configure the
delay between requests for the simulated users. Our config-
uration was the same web server as in Experiment 1. We
hosted the simulated clients in Santa Clara, California, to
provide a significant response time challenge on the system.
We set the users to request web pages aggressively; inter-
request interval times were taken from a Gaussian distri-
bution with mean 1000 ms and standard deviation 500 ms.
Figure 8 shows the response times for load tests with 10
concurrent users and 25 concurrent users. It can be seen

4See http://jakarta.apache.org/jmeter/.

Figure 9: Load testing results comparison for tradi-
tional Statements and Guarded Statements

Num. Users Query Method Response Time (ms)
10 Statements 818
10 Guarded Statements 836
25 Statements 1836
25 Guarded Statements 1882
50 Statements 3552
50 Guarded Statements 3679

that response times increase as the load is applied, eventu-
ally leveling out. Under extreme loads, the web server’s re-
sponse time increases significantly for both traditional state-
ments and guarded statements. This is primarily because
the server simply does not have the resources to handle the
requests. In addition, the overhead for guarded statements
increases as the load increases. This is due to the additional
class instantiations requested. The table in Figure 9 shows
summary results for load tests of both query mechanisms
for 10 users, 25 users, and 50 users. It can be seen that the
overhead, under the worst load, is only 3%.

4.2 Ease of Use
One requirement of our solution is for it to be simple to

incorporate into both new and existing software. Figure 10
compares the original source with the modified code for a
sample query from the GEO application. As illustrated,
the changes are quite minor (in bold face), requiring only
two lines to be modified. The first change is to receive
the connection object from the SafeDriverManager class,
which we implemented. The getConnection method is used
to obtain a SafeStatement object. Because SafeStatement

implements the standard JDBC Statement interface, exist-
ing code written for Statement also works with our class.
The second change is to insert the SQLGuard.init() and
SQLGuard.wrap() methods.

5. RELATED WORK
SQL injection has been the focus of a flurry of activity

over the past two years. Although the security vulnerability
has persisted for some time, recent efforts by hackers to au-
tomate the discovery of susceptible sites have given rise to
increased invention by the research community [1, 9, 8, 19].
The industrial community has also gone to lengths to make
programmers aware and provide best practices to minimize
the problem [16, 15, 3, 22, 17]. Offutt and Xu [20] made
testing for SQL injection attacks a pointed case in their re-
cent web services testing and verification efforts. However,
a recent study showed that over 75% of web attacks are at
the application level and a test of 300 web sites showed 97%
were vulnerable to web application attacks [21, 10]. Still,
we believe the problem of SQL injection is readily solvable.

It has similarities to buffer overflow security challenges,
because the user input extends passed its position in a query
[5, 6]. At the heart of the issue is the challenge of verifying
that the user has not altered the syntax of the query. As
such, much of the work casts the problem as one of user input
validation, and focuses on analyzing string inputs [2]. Sev-
eral technologies exist to aid programmers with validating
input. A simple technique is to check for single quotes and

Traditional Method
Connection conn = DriverManager.getConnection(strDBconn);

Statement s = conn.createStatement();

String q = ‘‘SELECT * FROM reports WHERE id=’’ + id;

ResultSet RS = s.execute(q);

...

RS.close();

conn.close();

Guarded Method
Connection conn = SafeDriverManager.getConnection(strDBconn);
Statement s = conn.createStatement();

String q = SQLGuard.init() + ’’SELECT * FROM reports WHERE id=’’ + SQLGuard.wrap(id);
ResultSet RS = s.execute(q);

...

RS.close();

conn.close();

Figure 10: Source code for unmodified SQL query (top) and protected SQL query (bottom)

dashes, and escape them manually. This is easily beaten,
as attackers can simply adjust their input for the escaped
characters. Programmers must then check for pre-escaped
text, etc. In [4], Moeller and Schwartzbach use a two-step
process to assess what strings are possible from operations
in Java. They first employ flow graphs, and then use these
graphs to generate finite automata representing the set of
strings possible. Several techniques use this static analysis
approach to create models for the potential SQL queries [9,
8, 23].

Wasserman and Su [23] use the static analysis technique
from [4] to generate finite state automata for modeling the
set of valid SQL commands for each data access. This
method offers guarantees of system behavior, and is quite
helpful. Yet it has several drawbacks. It cannot handle
many queries, such as those with LIKE. This limitation is
an implementation issue, and it is reasonable to assume that
support for these as yet unsupported queries will be avail-
able in the future. However, as is a problem with any static
design, it cannot model dynamically generated queries well.
An example is a search where the user specifies the fields
to search on, such as searching through emails. The user
may want to search by topic, body, from, etc. Because any
combination of these fields is possible, static analysis cannot
determine the final structure of the query. Finally, the tech-
nique to prevent tautology attacks is explicit, and thus un-
necessarily complicated. It attempts to ascertain (via SQL
tokens) whether a boolean FSA is true. The number of cases
for this analysis is large; it appears they miss simple boolean
cases which do not use mathematical operators.

Recently, Halfond and Orso combined these static analy-
sis techniques with dynamic verification [10, 11]. This work
is most similar to ours. As with the method above, any tech-
nique whose model is built at compile time cannot predict
the exact structure of the intended query. Huang et al. [12]
also employ both static and dynamic techniques, but they
require that all sensitive functions have their preconditions
precisely defined in annotations (trust policies).

Boyd and Keremytis [1, 13] developed SQLRand, a tech-
nique that modifies the tokens of the SQL language: Each
token type includes a prepended integer. Any additional
SQL supplied by the user, such as OR 1=1, would not match

the augmented SQL tokens, and would throw an error. This
approach is a useful strategy, and can effectively eliminate
SQL injection. From a practicality standpoint, the program-
mer must generate an interface between the database tier
and the middle tier which can generate and accommodate
the new tokens. This is not a trivial endeavor. Secondly,
and more importantly, these new tokens are static. As ac-
knowledged by the authors, many applications export SQL
errors [14], and as such, the new tokens would be exposed.
External knowledge of the new tokens compromises the use-
fulness of the technique.

PHP5 has a technology called Magic Quotes which escapes
input from the Request Object automatically. This feature
has caused programmers difficulty. Because it is a server
setting, applications are often written assuming it is either
on or off, and incorrect assumptions create either invalidated
input or double escaped input. Attempts to alleviate pro-
grammer frustration, such as providing an API to check the
setting at runtime, have had mixed results.

A couple commercial platforms have incorporated strong
typing to assist programmers with SQL injection. J2EE
has prepared statements, and Microsoft’s .NET has com-
mands. The effectiveness of prepared statements at elimi-
nating SQL injection attacks is dependent on their imple-
mentation, which is contained in database drivers, and thus
typically written by third party vendors. Because they were
originally created to allow for multiple queries on the same
statement, however, they are not user friendly. Each param-
eter must be cast as the proper type by the user a priori,
and must be set by individual lines of code. In addition,
two database trips are required to formulate a model, Fi-
nally, many platforms do not have support for strong-typed
technologies.

In addition to eliminating SQL injection, we believe that
a viable solution must not inconvenience the programmer.
The main reason for writing queries as dynamically gener-
ated strings (as opposed to prepared statements) appears to
be ease-of-use. Our approach blends the strengths of both:
it has the convenience of dynamically generated strings and
the security of prepared statements.

5http://www.php.net

6. CONCLUSION
Most web applications employ a middleware technology

designed to request information from a relational database
in SQL. SQL injection is a common technique hackers em-
ploy to attack these web-based applications. These attacks
reshape SQL queries, thus altering the behavior of the pro-
gram for the benefit of the hacker. That is, effective injec-
tion techniques modify the parse tree of the intended SQL.
We have illustrated that by simply juxtaposing the intended
query structure with the instantiated query, we can detect
and eliminate these attacks. We have provided an imple-
mentation of our technique in a common web application
platform, J2EE, and demonstrated its efficacy and effective-
ness. This implementation minimizes the effort required by
the programmer, as it captures both the intended query and
actual query with minimal changes required by the program-
mer, throwing an exception when appropriate. We have
made our implementation open to the public to maximize
its aid for the larger community.6 In the near future, we
plan to implement our solution on the .NET framework and
also in PHP, as well as incorporate automated injection error
logging.

7. REFERENCES
[1] S. W. Boyd and A. D. Keromytis. SQLRand:

Preventing SQL injection attacks. In Proceedings of
the 2nd Applied Cryptography and Network Security
(ACNS) Conference, pages 292–302. Springer-Verlag,
June 2004.

[2] C. Brabrand, A. Møller, M. Ricky, and M. I.
Schwartzbach. Powerforms: Declarative client-side
form field validation. World Wide Web, 3(4):205–214,
2000.

[3] C.Anley. Advanced SQL injection in SQL server
applications. In http:/www.nextgenss.com/papers
/advanced sql injection.pdf, 2002.

[4] A. Christensen, A. Moeller, and M. Schwartzbach.
Precise analysis of string expressions. In Proceedings
of the 10th International Static Analysis Symposium,
pages 1–18. Springer-Verlag, August 2003 2003.

[5] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
PointGuard: Protecting pointers from buffer overflow
vulnerabilities. In Proceedings of the 12th USENIX
Security Symposium, pages 91–104, August 2003.

[6] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole,
P. Bakke, S. Beattie, A. Grier, P. Wagle, and
Q. Zhang. Stackguard: Automatic adaptive detection
and prevention of buffer-overflow attacks. In
Proceedings of the 7th USENIX Security Symposium,
pages 63–78, January 1998.

[7] P.-Y. Gibello. Zql: A java sql parser. In
http://www.experlog.com/gibello/zql/, 2002.

[8] C. Gould, Z. Su, and P. Devanbu. JDBC checker: A
static analysis tool for SQL/JDBC applications. In
Proceedings of the 26th International Conference on
Software Engineering (ICSE’04), pages 697–698. IEEE
Press, May 2004.

[9] C. Gould, Z. Su, and P. Devanbu. Static checking of
dynamically generated queries in database
applications. In Proceedings of the 26th International

6http://www.cse.ohio-state.edu/ paolo/software/java sqlguard.htm

Conference on Software Engineering (ICSE’04),
pages 645–654. IEEE Press, May 2004.

[10] W. G. Halfond and A. Orso. Combining static analysis
and runtime monitoring to counter SQL-injection
attacks. In Online Proceeding of the Third
International ICSE Workshop on Dynamic Analysis
(WODA 2005), pages 22–28, May 2005.
http://www.csd.uwo.ca/woda2005/proceedings.html.

[11] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai.
Web application security assessment by fault injection
and behavior monitoring. In Proceedings of the 11th
International World Wide Web Conference (WWW
03), pages 148–159, May 2003.

[12] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, and
D. Lee. Securing web application code by static and
runtime protection. In Proceedings of the 12th
International World Wide Web Conference (WWW
04), pages 40–52. ACM Press, May 2004.

[13] G. Kc, A. Keromytis, and V. Prevelakis. Countering
code-injection attacks with instruction-set
randomization. In Proceedings of the ACM Conference
on Computer and Communications Security (CCS
03), pages 272–280. ACM Press, October 2003.

[14] D. Litchfield. Web application disassembly with
ODBC error messages. In
http://www.nextgenss.com/papers/webappdis.doc.

[15] P. Litwin. Stop SQL injection attacks before they stop
you. In http://msdn.microsoft.com/msdnmag
/issues/04/09/ SQLInjection/default.aspx, 2004.

[16] O. Maor and A. Shulman. SQL injection signatures
evasion. In http://www.imperva.com/application
defense center/white papers/sql injection
signature evasion.html, 2004.

[17] S. McDonald. SQL injection: Modes of attack,
defense, and why it matters. In
http://www.governmentsecurity.org/articles/SQLIn-
jectionModesofAttackDefenseandWhyItMatters.php,
2005.

[18] R. McMillan. Web security flaw settlement: FTC
charges that Petco web site left customer data
exposed. In http://www.pcworld.com/news/
article/0,aid,118638,00.asp, 2004.

[19] A. Nguyen-Tuong, S. Guarnieri, D. Green, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In Proceedings of
IFIP Security 2005. Springer, May 2005.

[20] J. Offutt and W. Xu. Generating test cases for web
services using data perturbation. In Proceedings of the
2004 Workshop on Testing, Analysis and Verification
of Web Services (TAV-WEB), pages 1–10. ACM
Press, July 2004.

[21] W. Security. Challenges of automated web application
scanning. In
http://greatguards.com/docs/insightweb.htm, 2003.

[22] K. Spett. SQL injection: Are your web applications
vulnerable? In SPI Labs White Paper, 2004.

[23] G. Wasserman and Z. Su. An analysis framework for
security in web applications. In Proceedings of the
FSE Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2004), pages
70–78, October 2004.

