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Abstract. Data abstraction is important for enabling the automated
modular verification of a large class of parallel programs even in the
presence of manifest sharing during parallel execution. Though sharing
is difficult to avoid when parallel execution is used to gain performance
improvements, formal verification of such code still must be modular.
The Splittable Array abstraction introduced in this paper supports
modular verification by allowing frame conditions to be dispatched only
once and then be reused by multiple clients, thus amortizing the verifi-
cation cost. The approach achieves this objective by introducing a non-
interference contract that enables the preservation of desirable perfor-
mance characteristics of traditional arrays such as constant-time access
to elements. Illustrative divide-and-conquer client code using this ab-
straction is contrasted with similar client code that uses a traditional
array. The utility of the Splittable Array in a language with clean se-
mantics is demonstrated by comparing the two clients in terms of the
feasibility and tractability of modular verification. The repeated verifi-
cation of software is expensive, so it should be avoided. Modularization
(such as by introducing additional data abstractions) makes it possible
to avoid expensive re-verification of entire client programs when only
minor changes are made.

1 Introduction

Divide-and-conquer algorithms are readily adaptable to parallelization with the
goal of performance improvements. Unfortunately, traditional implementations
of these kinds of algorithms often pose difficulties for modular verification sys-
tems. Small modifications to these programs (e.g., dividing a data structure
into four parts instead of two) can result in having to re-prove the program
from scratch, even though the new proof obligations are mostly identical to the
previous ones. In addition, potential aliasing can create data sharing that is a
substantial hurdle to modular proofs of correctness for concurrent programs in
general.

We propose a novel array abstraction, the Splittable Array, to address
these challenges. This abstraction (i) ensures by construction that all parts of
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the array that may be accessed are separate from one another, and (ii) leverages
clean semantics to ensure that no dangerous data sharing can occur. This array
abstraction simplifies proofs of non-interference between parallel threads, often
turning them into simple syntactic checks that do not require reasoning about the
values of objects. We also show how this abstraction can be implemented using
a traditional array in order to maintain desirable performance characteristics of
such data structures: constant-time split, combine, and lookup.

1.1 Clean Semantics and Shared Data in the Presence of Parallelism

One of the core principles of the RESOLVE programming language [1, 2] is the
notion of clean semantics [3, 4]. When reasoning with clean semantics, a pro-
grammer can rely on the fact that two different variables may be treated as
two independent entities—in effect, there is no dangerous aliasing in RESOLVE.
The verification of parallel programs in this paper relies heavily on this idea and
leverages it to dramatically simplify reasoning, maintain modularity, and guide
the design of a new data abstraction.

Although data sharing can normally be avoided by careful language design in
sequential programs [2], in parallel programs the sharing of data among threads
is sometimes necessary to maximize performance. Showing determinism (thereby
enabling functional verification) in such programs might require exposing some
implementation details to the client about how the data is used. It is critical
for tractability of verification that the exposure of these details does not break
modularity and that it preserves abstraction so as not to complicate reasoning
about the independence of concurrent operations.

Clean semantics and other RESOLVE design principles can be leveraged to
eliminate the dangerous sharing of data. In this paper, we use these principles
and the style of component design they encourage to demonstrate how thoughtful
design can simplify the verification of a divide-and-conquer algorithm without
compromising the performance benefits of a more traditional approach.

1.2 The Interference Contract and Partitions

The interference contract specification construct [5] divides the representation
space of a data type into a number of partitions, each of which is disjoint from
the others in the sense that at the representation level, each unit of data (e.g.,
each representation field3) is a member of exactly one partition. An interference
contract extends behavioral specifications to include effects summaries, which
define how an operation will interact with the partitions of an object. These
summaries are described in terms of three partition modes: affects, preserves,
and oblivious to. In addition to these three modes, a partition is said to have a
restructures effect [6] if, by executing the operation, the members of that par-
tition might be moved to a different one, or that partition might have another

3 Because interference contracts are modular, representation fields might themselves
have partitions that are members of a partition “one level up”.
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partition’s members moved into it, even though value of each of those members
will not have changed. All three partition modes and the restructures effect may
be conditional on the abstract values of the parameters. When an interference
contract is used in the verification of a cobegin block, if the constituent state-
ments are non-interfering, then verification can proceed as if the execution was
sequential [7].

2 A Motivating Example

Listing 1 shows a generic recursive, parallel divide-and-conquer method written
in a Java-like language that “does something” with each entry in A. The con-
current calls to divConquer share two arguments: A and mid. This data-sharing
between concurrent threads of execution is safe (i.e., non-interfering) only when A
is written by different threads in compatible (non-overlapping) ways and mid (in
this case, a primitive variable) is copied in each call. If either of these criteria are
not met (e.g., there is aliasing within A), then no guarantees of non-interference
can be made and functional verification is complicated substantially.

Listing 1. A generic recursive, parallel divide-and-conquer solution using a Java-like
language.

/∗
∗ Does something with each entry in A
∗ in the interval [lowEnough, tooHigh)
∗/

void divConquer(T[] A, int lowEnough, int tooHigh) {
if (tooHigh ´ lowEnough > 1) {

int mid = (lowEnough + tooHigh) / 2;
cobegin {

divConquer(A, lowEnough, mid);
divConquer(A, mid, tooHigh);

}
} else if (tooHigh > lowEnough) {

T e = A[lowEnough];
A[lowEnough] = doSomething(e);

}
}

2.1 Verification Challenges with this Approach

The approach in Listing 1 presents several challenges to verification, and espe-
cially to modular verification. We address some of these challenges in order of
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increasing complexity of reasoning: first we consider the case where A is an ar-
ray of primitives or immutable objects, then we consider when A is an array of
mutable objects (specifically, an array of stacks), and finally we consider when
A is an array of objects using a shared representation.

The Overlapping Array Intervals Problem First, we consider the simplest
case where T is a primitive or immutable reference type. In order to verify the
functional correctness of this method body relative to a formalized version of its
specification, it is helpful to show that the parallel portion of the code does not
introduce any nondeterminism4 through data races. For this, it is sufficient to
show that the two recursive calls are non-interfering (in the sense presented
in [8]). Showing non-interference, especially when each element of the array
might be modified, requires showing that the intervals rlowEnough,midq and
rmid , tooHighq are disjoint. This is not a hard problem in this simple case, but
suppose for performance reasons that a programmer wished to modify this pro-
gram to split A into 4 parts: rlowEnough, q1q, rq1,midq, rmid , q3q, and rq3, tooHighq.
Now there are four intervals which must be shown to be pairwise disjoint. In the
general case, showing mutual disjointness of n sets of indices is non-trivial, and it
is certainly not readily scalable (the number of pairs increases quadratically with
n). The explicit split/combine operations in the Splittable Array abstraction
discussed in Section 3 are motivated by this problem.

A related problem occurs when the partitioning is not into contiguous seg-
ments of the array, for example a partitioning of A into the even indices and odd
indices. When partitions are arbitrary, the disjointness problem becomes much
harder, and potentially even intractable. This problem motivates a more general
array abstraction discussed in Section 4.

Challenges Related to Aliasing Next we identify challenges posed by a
similar program, but where T is a mutable reference type. Listing 2 shows an
example where the array contains stacks. When reasoning about the code in
mutateTops, a requirement for the non-interference of the parallel section of
code is the total independence of each stack in A. In particular, a specification
of this method written in separation logic might look similar to the specification
in (1).

#

h´1
ä

i“l

list ei ¨ αi pA0ris, nilq

+

mutateTops(A, l, h);
#

h´1
ä

i“l

list ei
1
¨ αi pA0ris, nilq

+

(1)

4 It is possible for a program to exhibit nondeterminism and still be correct, but for
now we are concerned only with provably deterministic parallel programs.
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Listing 2. A recursive, parallel divide-and-conquer solution using a Java-like language
and an array of Stacks.

/∗
∗ Mutates the top of each stack in A
∗ in the interval [lowEnough, tooHigh)
∗/

void mutateTops(Stack<R>[] A, int lowEnough, int tooHigh) {
if (tooHigh ´ lowEnough > 1) {

int mid = (lowEnough + tooHigh) / 2;
cobegin {

mutateTops(A, lowEnough, mid);
mutateTops(A, mid, tooHigh);

}
} else if (tooHigh > lowEnough) {

if (A[lowEnough].size() > 0) {
R e = A[lowEnough].pop();
mutate(e);
A[lowEnough].push(e);

}
}

}

In plain English, the meaning of this specification is as follows. The precon-

dition,
!

Äh´1
i“l list ei ¨ αi pA0ris, nilq

)

, states that for each l ď i ă h, the initial

value of the i-th element of array A is a nil-terminated (singly linked) list with
abstract value ei ¨ αi, and that each of these lists is separate in the heap (that
is, they share no nodes). The postcondition states that the only thing that has
changed about each element of A is the abstract value of the first node in the
list (and, still, that the lists are separate).

The first challenge posed by this example with this specification is that it
does not preclude aliasing between elements of the stacks in A. For example, if the
top element of A[0] is an alias to the top element of A[1], the picture might look
like Figure 1. Note that it is still true that tlist α pAr0s, nilq ˚ list β pAr1s, nilqu,
so the precondition is satisfied. The problem with this scenario is that if the
mutation performed by the mutate operation is not idempotent, the result will
not be correct (in fact, if the top of one stack is an alias to an element of a
stack that is not the top, even an idempotent mutation will cause problems). In
a language with clean semantics, we can rely on the fact that separate variables
act as separate objects to guarantee there is no dangerous aliasing.5

5 While a modified specification could be written in separation logic to handle this
particular situation, it becomes extremely complex in the general case [9].
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A

x

y

nil

nil

Fig. 1. An array with separate (in the heap) lists, but whose member stacks have
elements that are aliases if x and y are references and x “ y.

The Shared Representation Problem A much more subtle issue arises when
instances of T use a shared representation. For example, the precondition as writ-
ten would not be satisfied if the stack implementation were swapped out for one
based on a shared cactus stack, as in Figure 2, even though such an implementa-
tion could provide correct behavior. This lack of modularity demonstrates a need
for abstraction in the specification of concurrent programs (e.g., an interference
contract) to facilitate reusable code that can remain proven to be correct even
when different underlying data structures are used.

nilA

H

B

CD

E

FS1

GS2

S4S3 S5

Fig. 2. A cactus stack using a partially-shared realization. Stack S1 “ xF,B,Ay, S2 “

S3 “ xG,D,C,Ay, S4 “ xE,C,Ay, and S5 “ xHy. Note that it is not the case that
list αpS1, nilq ˚ list βpS2, nilq for any α, β.

3 The Splittable Array Abstraction

The Splittable Array abstraction is a novel array abstraction that amortizes
the cost of reasoning about parallel divide-and-conquer algorithms such as the
one presented in Listing 2. The Splittable Array component provides the client
with operations that divide the array at some split point into two sub-arrays
with contiguous indices. By virtue of RESOLVE’s clean semantics the resulting
sub-arrays may be reasoned about as totally independent objects. The abstract
specification of this component is shown in Listing 3.

Notation The notation used in the remaining listings of this paper is based on
the RESOLVE language [1, 2]. A concept is the specification of a type, including
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a mathematical model and specifications for operations on that type in terms
of that model. In the operation contracts, the keywords restores, updates,
replaces, clears, and preserves are parameter modes, which summarize the
effect of the operation on that parameter. The difference between restores and
preserves is that a restores-mode parameter might have its value changed
temporarily by the implementation of the operation while a preserves-mode
parameter may not; both express the fact that the value of the parameter after
the operation is the same as it was beforehand. In the ensures clause of the
operation contracts, the notation # denotes the “old” value of a parameter—
roughly equivalent to a zero-subscript in other specification languages. In the
specifications hereafter, we use traditional mathematical notation for the clauses
to improve readability; the language has text-based equivalents that would ap-
pear in real programs.

Listing 3. Abstract specification for Splittable Array

concept Splittable Array Template(type Entry)

var Ids: finite set of integer
initialization ensures Ids “ H

type family Splittable Array is modeled by (
Id: integer
Lower Bound: integer,
Upper Bound: integer,
Contents: integer ´> Entry,
Split Point: integer,
Parts In Use: boolean

)
exemplar A

constraint
A.Lower Bound ď A.Upper Bound ^

A.Lower Bound ď A.Split Point ď A.Upper Bound ^

A.Id P Ids
initialization ensures

A.Lower Bound “ 0^A.Upper Bound “ 0 ^
 A.Parts In Use ^

A.Id R #Ids
end

operation Set Bounds(
restores LB: integer,
restores UB: integer,
updates A: Splittable Array)

requires LB ď UB ^ A.Parts In Use
ensures A.Lower Bound “ LB ^A.Upper Bound “ UB ^

 A.Parts In Use ^
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A.Id R #Ids ^#A.Id R Ids

operation Set Split Point(
restores i: integer,
updates A: Splittable Array)

requires A.Lower Bound ď i^ i ď A.Upper Bound ^

 A.Parts In Use
ensures A.Split Point “ i ^

[[everything else about A stays the same]]

operation Swap Entry At(
restores i: integer,
updates A: Splittable Array,
updates E: Entry)

requires  A.Parts In Use ^

A.Lower Bound ď i ă A.Upper Bound
ensures E “ #A.Contentspiq ^A.Contentspiq “ #E ^

[[everything else about A stays the same]]

operation Split(
updates A: Splittable Array,
replaces L: Splittable Array,
replaces U: Splittable Array)

requires  A.Parts In Use
ensures A.Parts In Use ^

L.Incl Lower Bound “ A.Incl Lower Bound ^

L.Excl Upper Bound “ A.Split Point ^
U .Lower Bound “ A.Split Point ^
U .Upper Bound “ A.Excl Upper Bound ^

L.Id “ A.Id ^ L.Contents “ A.Contents ^
U .Id “ A.Id ^U .Contents “ A.Contents ^
 L.Parts In Use ^ U .Parts In Use ^

[[everything else about A stays the same]]

operation Combine(
updates A: Splittable Array,
clears L: Splittable Array,
clears U: Splittable Array)

requires A.Parts In Use ^

 L.Parts In Use ^ U .Parts In Use ^

L.Incl Lower Bound “ A.Incl Lower Bound ^

L.Excl Upper Bound “ A.Split Point ^
U .Incl Lower Bound “ A.Split Point ^
U .Excl Upper Bound “ A.Excl Upper Bound ^

L.Id “ A.Id ^U .Id “ A.Id
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ensures  A.Parts In Use ^

@pi : Zqp
pi ă A.Split Pointq ñ pA.Contentspiq “ #L.Contentspiqq ^
pi ě A.Split Pointq ñ pA.Contentspiq “ #U .Contentspiqqq ^

[[everything else about A stays the same]]

operation Lower Bound(preserves A: Splittable Array): integer
ensures Lower Bound “ A.Lower Bound

operation Upper Bound(preserves A: Splittable Array): integer
ensures Upper Bound “ A.Upper Bound

operation Split Point(preserves A: Splittable Array): integer
ensures Split Point “ A.Split Point

operation Parts Are In Use(preserves A: Splittable Array):
Boolean
ensures Parts Are In Use “ A.Parts In Use

operation Ids Match(
preserves A1: Splittable Array,
preserves A2: Splittable Array): Boolean

ensures Ids Match “ pA1.Id “ A2 .Idq

end Splittable Array Template

The Splittable Array component is modeled in part as a function from
integers to entries (Contents). The Incl Lower Bound and Excl Upper Bound
give the addressable range of indices. The operations allow the client to set a
split point within the addressable range, and to split/combine the array into two
subarrays, split at A.Split Point. The Parts In Use flag indicates whether the
array has been split into subparts, and controls access to those parts.

A

A.Split Point = 14A.Incl Lower Bound = 10 A.Excl Upper Bound = 16

A.Parts in Use

A1 A2

A2 .Excl Upper Bound = 16A2 .Incl Lower Bound = 14

¬A2 .Parts in Use

Fig. 3. The state after Split(A, A1, A2) is executed on a Splittable Array.
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Figure 3 visualizes how a splittable array is split up by the Split operation.
Given three splittable arrays A, A1, and A2, the operation call Split(A, A1, A2)
places the contents of A below the split point into A1 and the contents of A at and
above the split point in A2. After A is split, a client cannot access anything in A
until A1 and A2 are combined back into A; that is, until A.Parts In Use “ true.

3.1 Divide-and-Conquer Client Code Using Splittable Array

A natural application of Splittable Array is in a parallel divide-and-conquer
algorithm such as the mutateTops operation from Listing 2. Using the compo-
nent in such a context dramatically simplifies the reasoning involved in formally
verifying the correctness of such code. Listing 4 shows how such an algorithm
might be implemented and specified using Splittable Array.

Listing 4. A recursive, parallel divide-and-conquer solution using Splittable Array

uses Stack with [[some interference contract]];
uses Splittable Array with [[some interference contract]];
uses Entry with [[some interference contract]];
facility Stack Fac is Stack(Entry);
facility Array Fac is Splittable Array(Stack Fac.Stack);
operation Mutate Tops(updates A: Splittable Array);

requires
A.Incl Lower Bound < A.Excl Upper Bound and
not A.Parts In Use;

ensures [[the top of each stack in A has been mutated]];
interference spec

affects A@∗;
recursive procedure

decreasing A.Excl Upper Bound ´ A.Incl Lower Bound;

if (Excl Upper Bound(A) ´ Incl Lower Bound(A) > 1) then
var A1, A2: Splittable Array
var mid: Integer := (Incl Lower Bound(A) + Excl Upper Bound(A))
/ 2

Set Split Point(mid, A)
Split(A, A1, A2)
cobegin

Mutate Tops(A1)
Mutate Tops(A2)

end;
Combine(A, A1, A2)

else
var stack: Stack
var index: Integer := Incl Lower Bound(A)
Swap Entry At(A, index, stack)
if Length(stack) > 0 then
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var e: Entry
Pop(stack, e)
Mutate(e)
Push(stack, e)

end
Swap Entry At(A, index, stack)

end
end Mutate Tops

As discussed in Section 2, keeping verification of this code relatively simple
involves showing that the operations inside the cobegin block are non-interfering
as defined in [8]. First, by the interference spec (a local, operation-level version
of the component-level interference contract) of Mutate Tops, we know that it
affects all partitions of A (whatever those partitions may be—this particular
interference spec is agnostic to the interference contract used with the array). If
there were a shared array parameter between the two recursive calls, it would
be impossible to show non-interference. Fortunately, however, the two calls to
Mutate Tops inside the cobegin statement operate on different array variables,
so they are necessarily independent because of RESOLVE’s clean semantics.

3.2 Reusability and Modifiability

The code in Listing 4 is highly reusable. A client can use any implementation
of the Stack concept as long as it respects the interference contract defined in
the solution. For example, if there is a cactus stack realization of Stack that has
appropriate concurrency properties, the client may use it without having to re-
prove Mutate Tops or write a new specification. In fact, this particular operation
is entirely agnostic to any of the interference contracts that may be supplied.

It is also highly amenable to modifications, requiring only minimal proofs
to be discharged in most cases. Consider an alternate approach to Mutate Tops
where the array is split into four parts instead of two. Now the parallel section
of the code might look like Listing 5. Thanks to clean semantics, it is still a
simple syntactic check to show that the four parallel calls are non-interfering.
The one-time proof of disjointness in the intervals falls on the implementer of
the Splittable Array specification—but is trivial unless the implementer opts
for a shared realization such one discussed in Section 3.3.

Listing 5. The parallel section of a divide-and-conquer solution which splits A into 4
parts via consecutive calls to Split.

cobegin
Mutate Tops(A1)
Mutate Tops(A2)
Mutate Tops(A3)
Mutate Tops(A4)

end
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3.3 Efficiently Realizing Splittable Array

A combination of clean semantics, careful component design, and robust speci-
fication has reduced the potentially complicated reasoning problem of showing
non-interference in Listing 2 to a purely syntactic check in Listing 4. This is
a clear advantage of our approach over the traditional one. Importantly, these
reasoning advantages can be achieved without compromising performance.

Although clean semantics allows the two sub-arrays A1 and A2 to be rea-
soned about as if they were totally separate arrays, an efficient implementation
of this concept would not make any copies of the array. The interface for this
component was designed with a shared implementation in mind so that a re-
alization could employ an underlying (traditional) array that is shared among
all Splittable Array instances with the same Id. This design choice manifests
itself in the use of the Split and Combine operations as pseudo-synchronization
points by flipping Parts In Use and preventing access to the array while it is
split. Doing so ensures that at any time, there is only one array with each Id that
can access any given index. In this way, a realization can share an underlying
array among instances with the same Id without introducing any interference.
Enabling such a shared implementation is important for preserving the per-
formance benefits that programmers expect from parallel software; that is, the
operations Split, Combine, and Swap Entry At can all be done in constant time.

4 A Hierarchy of Array Abstractions

4.1 Three Distinct Array Abstractions

The Splittable Array abstraction presented here is one member of a hierarchy
of concurrency-ready array abstractions that can be used in multiple contexts [6].
The most general abstraction in this family, Index Partitionable Array, may
be partitioned on arbitrary indices rather than contiguous portions of the array.
A third abstraction, Distinguished Index Array, allows a client to isolate a
distinguished entry and operate on it separately from the rest of the array.

4.2 Layered Implementations

The Index Partitionable Array (and Distinguished Index Array) can be
efficiently implemented in a similar manner to Splittable Array; that is, by
sharing a single underlying array amongst all instances with the same ID. Once
an efficient realization for Index Partitionable Array is provided, however,
more specialized realizations can be built by layering on top of it. For example,
Splittable Array can be realized with an underlying Index Partitionable Array

and mapping the two sets of indices of the Index Partitionable Array to the
low and high parts of the Splittable Array and maintaining the invariant that
each set of indices in the underlying Index Partitionable Array is contigu-
ous (and corresponds to the appropriate indices for abstraction to a Split-

table Array).
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5 Related Work

One central challenge in sequential, object-oriented software verification involves
objects, aliasing, and properties about the heap [10, 11]. Separation logic is an
extension of Hoare’s logical rules to address these challenges. Examples of verifi-
cation using separation logic in Coq include [12, 13] and in VeriFast to verify Java
and C programs include [14, 15]. Automating verification with separation logic is
the topic of [16–20]. Concurrent separation logics have attempted to expand the
capabilities of separation logic by adding rules for reasoning about concurrent
programs [21]. An important new direction for abstraction and simplification
in concurrent separation logic is the focus of [22]. Our approach sidesteps the
concerns of both separation logic and concurrent separation logic first by us-
ing a language which has clean semantics and then by abstracting away most
implementation details to avoid reasoning directly about the state of the heap.

Other approaches have guaranteed determinism in the presence of paral-
lelism using region logic or a variant thereof. In Deterministic Parallel Java [23]
(DPJ), regions are defined explicitly by the programmer. These annotations al-
low a DPJ compiler to guarantee, syntactically, that two concurrent operations
are non-interfering and thus will produce a deterministic result. ParaSail [24]
is an extension of the Ada programming language that relies on value seman-
tics to verify that concurrent statements are non-interfering. Both approaches
are limited by what can be syntactically checked, and ParaSail in particular is
limited by the fact that objects must be reasoned about as a whole and can-
not be subdivided. By leveraging the full functional verification capabilities of
RESOLVE, our approach can increase the expressiveness of method effects over
that of DPJ by including conditional effects, and clean semantics let us preserve
the simplicity afforded by ParaSail. Both DPJ and ParaSail offer examples of
divide-and-conquer solutions similar to the one presented here and have verified
them to be deterministic (their correctness is informally argued) [25, 26].

DPJ additionally provides the DPJArray and DPJPartition [27, 28] fami-
lies of classes to attack many of the same problems as the various partitionable
arrays presented in this paper. A DPJArray allows the client to define subar-
rays, and operate on them as if they were their own array—without making any
copies (shallow or otherwise). Because there are no disjointness requirements
placed upon subarrays, the implementer of a divide-and-conquer algorithm in
DPJ should prefer to use DPJPartition which splits an array into two disjoint,
contiguous sections based upon a client-provided index. However, there is noth-
ing to stop a client from accessing elements of a partitioned array while a parallel
thread is accessing either of its sub-parts, potentially compromising determin-
ism. In contrast, there is always exactly one instance of a Splittable Array
that can access any given element.

Other languages that provide array slicing or partition operations typically
make shallow copies of the underlying array [29, 30]. This poses two immediate
problems. First, it does not eliminate the potential for aliasing between elements
of several arrays that have been sliced. Second, the operation has a runtime that
is linear in the length of the slice.
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Determinism guarantees in our research and others’ amount to showing data
race freedom, though our approach deals with high-level programming con-
structs. There is a large body of work on showing low-level race freedom, in-
cluding both static approaches [31–36] and dynamic ones [37–40]. Like DPJ and
ParaSail, these are limited to guaranteeing determinism and do not claim to
formally verify full functional correctness.

6 Conclusions

Verifying the correctness of a parallel divide-and-conquer algorithm in a mod-
ular way using traditional arrays is a difficult problem for automated verifica-
tion engines. To solve this problem, we develop a new abstraction, the Split-

table Array, with an interference contract that abstractly defines how data can
be accessed. Combined with careful component design and clean semantics, this
approach allows us to write software that is easy to reason about even in the
presence of concurrency.

The Splittable Array allows reusable verification of non-interference of ar-
ray partitions in one place instead of for every client. The abstraction allows
frame conditions to be captured in a novel way that reduces repeated verifi-
cation costs, as demonstrated through the divide-and-conquer examples in this
paper.

The development of this new data abstraction allows standard client veri-
fication machinery to be used, such as tools developed for the verification of
RESOLVE programs [41, 42].
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