

Lazy Snapshots: A Taxonomy and Performance Study

Zhijun Liu and Paul Sivilotti*
(and Nigamanth Sridhar)

Computer Science and Engineering
The Ohio State University

*currently visiting faculty at University of Minnesota

Background: Checkpointing

- Checkpoint = recording state of system
- Utility:
 - Fault recovery
 - Debugging
 - Stable property detection
- State of a distributed system consists of:
 - Local state of individual processes
 - State of channels (i.e., messages in transit)
- Simple algorithm:
 - Every process records its local state at time t
- Channel state:
- Challenge:
 - No shared clock

Consistent Checkpoints

Consistent Checkpoints: Local State

Consistent Checkpoints: Channel State

Consistent Checkpoints: Requirement

The cut must be "input-closed":
Every message recorded as received,
must also have been recorded as sent
Consistency:
No after message should be received before RLS

Completeness (channel state):
before messages rec'd after RLS are in transit

A Cooperative Snapshot Alg
- Use marker to separate before messages from after messages
- Assumption: FIFO channels

Rule 1:
Record local state immediately when first marker arrives

Rule 2:
Record channel state after RLS and until marker arrives

Observation: Overconstraint
- Consistency only requires RLS before first after receive
 - Could be "lazy" and delay RLS

Potential advantages:
- Fewer messages in transit
- Less storage required to record channel state
- Some flexibility in choosing when to RLS
- Choose less critical time
- Choose time when local state is smaller

Taxonomy of Laziness
- Recording Local State
 I. When first marker received
 II. Before first send or receive (after rec'd marker)
 III. Before first send or after receive (after rec'd marker)
 IV. Before first after receive

- Sending out markers
 A. When the first marker received
 B. When local state is recorded
 C. Before the first after send
Orthogonal Dimensions?

Example 1: Chandy-Lamport

Example 2: Prescience (A-IV)

Taxonomy of Laziness

Analysis: Flexibility
Results: Flexibility

Results: Storage

Results: Hybrid Algorithms

Conclusions

- Taxonomy with 2 dimensions
- Laziness in recording local state
- Laziness in propagating markers
- Dimensions are not independent
 - Chandy-Lamport: AB-I
 - Unimplementable (without prescience): A-IV
- Performance evaluation
 - Flexibility and storage complexity
- Hybrid: blending A-III / B-IV
 - Dynamic mixing based on prediction of future communication events

Lazy Snapshots: A Taxonomy and Performance Study

Zhijun Liu and Paul Sivilotti

Computer Science and Engineering
The Ohio State University
paolo@cse.ohio-state.edu