

An Eventually Perfect Failure Detector on ADD Channels Using Clustering

Laine Rumreich and Dr. Paul Sivilotti

Overview

- Development of a cluster-based algorithm to improve complexity for an eventually perfect failure detector
 - Structured as a series of superpositioned layers
 - Simulation shows performance based on various topologies

Results

- 1. Development of a cluster-based algorithm
- 2. Complexity reduced from O(*En*log*n*) to O(*En*)
- 3. Simulation reveals improvement for some network topologies

Background

Background - $\Diamond P$

- Eventually must provide only correct information about crashed processes
 - Strong completeness: Eventually, every crashed process is suspected (by every process)
 - Eventual strong accuracy: No correct process is suspected after some finite prefix
- Oracle is both powerful and implementable

Slide 4 of 14

Background

Previous Work

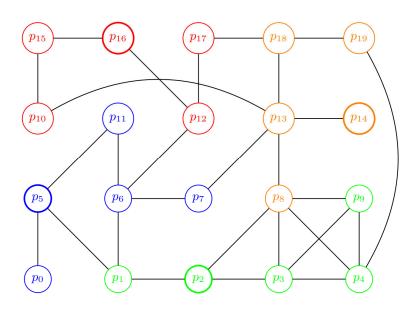
Average Delayed/Dropped (ADD) channel

An ADD channel from nodes p to q, given unknown constants K and D, satisfies the following two properties:

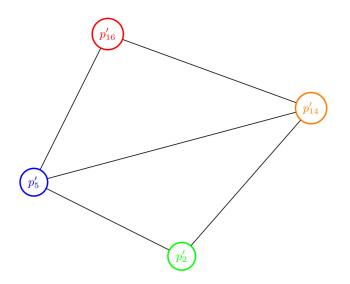
- 1. The channel does not create or duplicate messages
- 2. For every K consecutive messages sent by p to q, at least one is delivered to q within D time

Slide 5 of 14

Background


Previous Work

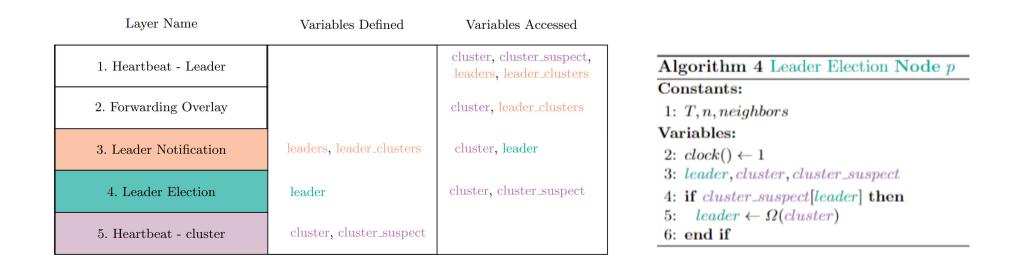
- ◊P on ADD channels for completely connected graphs [1]
- Arbitrarily connected network [2]
- Performance improvement [3] using
 - Heartbeat-based approach
 - Time-to-live values for messages


[1] Sastry, S., Pike, S.: Eventually perfect failure detectors using add channels.
[2] Kumar, S., Welch, J.: Implementing *P* with bounded messages on a network of add channels.
[3] Vargas, K., Rajsbaum, S., Raynal, M.: An eventually perfect failure detector for networks of arbitrary topology connected with add channels using time-to-live values.

Clustering Algorithm

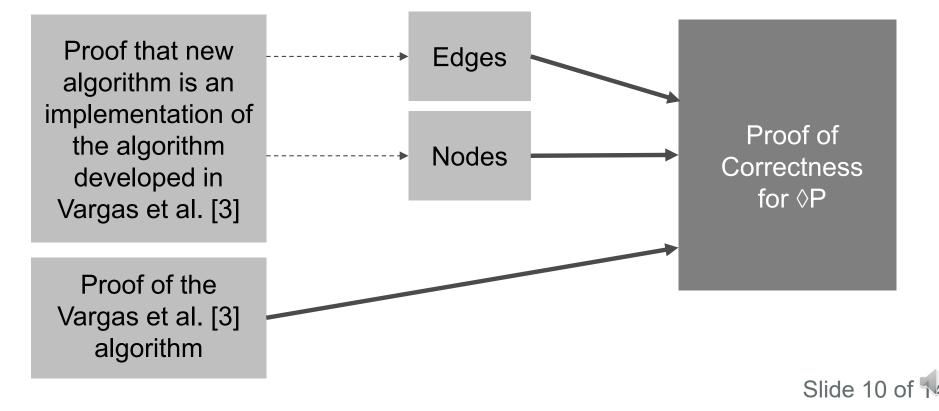
Network Topology with Overlay Network

Network Topology with Abstraction of Overlay Nodes


Slide 7 of 14

A Superpositioning Approach

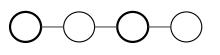
Layer Name	Variables Defined	Variables Accessed
1. Heartbeat - Leader		cluster, cluster_suspect, leaders, leader_clusters
2. Forwarding Overlay		cluster, leader_clusters
3. Leader Notification	leaders, leader_clusters	cluster, leader
4. Leader Election	leader	cluster, cluster_suspect
5. Heartbeat - cluster	cluster, cluster_suspect	

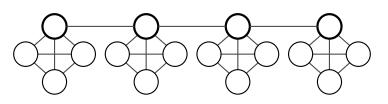


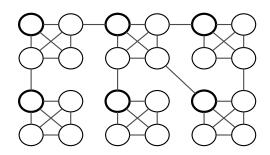
A Superpositioning Approach

Slide 9 of 14

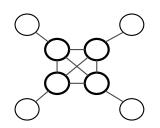
Correctness Proof

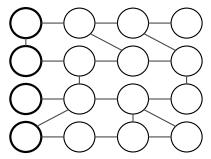



Simulation


- Python script to simulate the clusterbased algorithm and the best previous implementation
- Tests of varying topologies and group sizes on 100 nodes

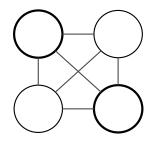
Simulation - Topologies





Chain

Chain with Connected Clusters



Connected Leaders

Average Connectedness

Connected Clusters

Fully Connected Slide 12 of

Simulation – Convergence Results

Topology	Original Algorithm 1-1/M-1/M-M	Cluster Algorithm 1-1/M-1/M-M
Chain	223/223/295	38/38/44
Chain with Connected Clusters	1/4/4	3/8/8
Fully Connected Clusters	4/4/4	6/6/6
Fully Connected Leaders	1/4/4	3/5/44
Average Connectedness	1/4/4	3/5/44
Fully Connected	1/1/3	3/5/5

Slide 13 of 14

Conclusions

- Reduction in the message size complexity of the best previous implementation of ◊P
 - O(*En*log*n*) down to O(*En*)
- Simulation demonstrates a similar time to convergence for the cluster-based algorithm compared to the previous implementation

