Fault Tolerance

Computer Programs that Can
Fix Themselves!/

Prof's Paul Sivilotti
and Tim Long

Dept. of Computer & Info. Science
The Ohio State University

paolo@cis.ohio-state.edu

Ubiguity of Computers

Distributed Systems

m Computers are increasingly connected
m Can cooperate to solve a common task
m Example: Voting day
m Ballots counted in individual polling stations
m District office sums these counts
m State office sums the district numbers
m Example: Traffic flow
m Calculate best route from OSU to downtown
Columbus
m Based on: roads, distances, construction
information, traffic jams, other cars,...

u Distributed Programs:

Advantages
m Speed
= Divide a big problem into smaller parts
m Solve smaller parts in paralle/
m Communication
m Problem is inherently distributed across space
m Must gather information and coordinate
m Robustness
m Give the same task to many computers
m Even if one fails, others are probably ok

So What's the Downside?

m With more computers, there are more
things that can go wrong!
m Despite our best efforts, "faults” occur
m Examples:
m "blue screen”, "segmentation fault
m Possible causes:
m Environmental conditions
= Computer unplugged, wireless connection lost
= Software bug
= Human error in engineering the software
m User error
= Program given bad input, used improperly

now

,“crash”,...

Fault- Tolerant Software

m A program that still does the right
thing, despite faults
m Can fix itself, and eventually recover
m For sequential software
m Restart system
m But for distributed software?
m Restart isn't practicall
m System must be “self-stabilizing"

Tokens for Taking Turns

m Consider all the chefs across the city
m Say they need to take turns
m Only one can be on vacation at a time
m How do they coordinate when to go on
vacation?
m Solution: use a “token”
m Pass token around

m Rule: If you have the token, you can go
on vacation

Token Ring

m Problem: What about faults?
m What happens if token is lost?
m One fault means disaster!

Prevent Loss of Token:
Binary Ring

m Rule (for most chefs):
if left neighbor is different from me,
then I have the token
= Make my number equal to that neighbor's

m One chef is special:
if left neighbor is same as me,
then I have the token
m Make my number differ from that neighbor's

Fault: Corruption of Values

m Problem: multiple tokens in ring
m Tokens chase each other around ring
= One fault means disaster

k-State Token Ring

m Solution: use more values than chefs!
m Same rule
m If left neighbor different from me:
u I have the token! (use it)
= Change my value to be equal to neighbor
m Again, one chef is special
m If left neighbor same as me
n I have the token (use it)
= Change my value to be one bigger

Activity: Anthropomorphism

m Form a ring
m Each person has number cards
m Each person has a chime
m When you get the token:
u Play your chime
m Then change your number
m We'll run different versions

m T'll introduce "faults” and see if you can
recover!

can We Do Better?

m Problems with this approach?
1. Consider a very large ring
= Need a very /arge number of states!
2. Consider a dynamic ring

» When the size changes, everyone needs to
be updated!

m A better solution would use a fixed
number of states
m Independent of ring size

Constant State Size

m Recall difficulty with binary ring
m Many tokens in ring, of different “types
m Chase each other around the ring, never
colliding
m Solution A:

m Force them to “collide” by having more
types than chefs

m Solution B?

"

m Solution: chop the ring!
m Tokens can't circulate
m They reflect back and forth
m All chefs responsible for stabilization

4-State Token 'Ring”

m Chefs pass tokens right and left
m State = value (0/1) and direction (left/right)
m Left rule (same as before)
u If left neighbor different from me:
u T have the token! (use it)
= Change my value fo be equal to neighbor
= Face right
m Right rule (other direction)
m If right neighbor same as me and facing me:
= T have the token! (use it)
= Face left

Activity 2

m Form a "ring" again
m Pairs at each station
m One person for left rule, one for right
m Left rule person:
m Always “on"
m Copy value and face right (may already be
facing that way)
m Right rule person:

= Only "on" when you and right neighbor face
each other

m Change direction to face left

OHIO

Take-Home Messages

m Ubiquity of Distributed Systems
m Computers are getting smaller, cheaper, faster
m Increased connectivity
m Faults
m Some errors are outside of our control
m Sequential programs can be reset
m Distributed Fault Tolerance
m Distributed programs that fix themselves
m Eventually stabilize in spite of faults
m Subtlety of Distributed Algorithms
m Concurrency and nondeterminism

m How can we convince ourselves these algorithms are
correct?

