Introducing 8" Grade Girls to
Fault Tolerant Computing
(An Experience Report)

Paul A.G. Sivilotti
Murat Demirbas

Dept. of Computer & Info. Science
The Ohio State University

{paolo,demirbas}@cis.ohio-state.edu

The Context

m "Future Engineers’ Summer Camp”
u Piloted at OSU Summer 2002
m Workshop for 8™ grade girls
= 30 participants
m 1 week (days only) on campus
m Theme: Introduction to “engineering and
science"

m Mechanical, chemical, civil, astronomy,
environmental, industrial, ...

m Lectures, lab tours, activities

The Challenge

m Design a 3-hour module for CS
m Goals:

m Fun

m Educational

m Reflection of CS as a discipline
m Requirements:

m No CS background assumed

Approach 1: Logo

m Use a simple imperative programming
environment
m Eg. "Darwin’'s World" exercise in CS 1/2
= Simple programming language to control bug
movement, replication
= Bugs interact, infect, thrive, die
u Ref: SIGCSE '99 panel on nifty assignments
m Appeal:
m Conditionals, iteration, recursion,...
m Problems:
m Syntax is a distraction
m Low engagement for this audience

Approach 2: Using App's

m Use engaging applications
m E.g. tool for designing web pages
m Appeal:
m Gender-appropriate applications can be chosen
u Clear, identifiable skill is learned
m Sense of accomplishment from an impressive
final product
m Problem:
u Not CS!

Our Approach

m Teach:

1. Software engineering principles

2. Parallel programming

3. Self-stabilizing distributed algorithms
m Three graduate-level CS topics!

m Each builds on the previous

m Each consists of lecture + activity (1 hr)

m Consistent theme:

= Programs as recipes
= Computers as chefs

Topic 1: Programs

m |Lego Mindstorm robots
m Light sensors
m Follow grid lines

m Instructions
m Turn, forward, take sample
m Printed on cards

m Cards stacked to form
programs
m Straight-line
m Simple requirements
m Uploaded to robots

Topic 3: Fault Tolerance

m Lecture
m Nature of faults (chef analogy)
m Easy answer: redundancy
u Follows directly from parallel algorithm unit
m Self-stabilizing token ring algorithm
m Correct state: 1 token (mutual exclusion)
m Possible faults: token loss or duplication
m Converges fo correct state
n Distributed control

m Problem: What about faults?
m What happens if token is lost?

m One fault means disaster!
11

Topic 2: Parallel Programs

m Each person holds a
number
" e et o101 1T %
m Sequential sort Mﬁ%ﬁm 1147
m Bubble sort
m Parallel sorts K SE

m Even-odd transposition
= Radix
m Differences apparent I%)
m Execution time
m Multiple threads
m SIGCSE '94 paper

Fault Tolerance Activity

m Design goals
m Simple rules
m Reinforce distributed nature of algorithm

u Dramatic difference between correct &
incorrect states

m Satisfaction in re-establishing correct state
m Solution:
m Use music!
m Students are in a ring, each with a chime
m When they have the token, they play their note
m Correct (1 token) = melody
m Incorrect (multiple/none) = chaos / silence

10

_ Prevent Loss of Token:
Binary Ring

m Rule (for most people):
if left neighbor is different from me,
then I have the token

m Make my number equal to that neighbor's .

Completing the Ring

m One person is special:
if left neighbor is same as me,
then I have the token
m Make my number differ from that neighbor's

13

Fault: Corruption of Values

“0” token
@“1“ token

m Problem: multiple tokens in ring

m Tokens chase each other around ring

m One fault means disaster
14

k-State Token Ring

m Solution: use more values than peoplel

m Same rule
m If left neighbor different from me:
n T have the token! (use it)
= Change my value to be equal to neighbor
m Again, one person is special
m If left neighbor same as me
n I have the token (use it)
= Change my value to be ore bigger

15

Activity

m Form a ring
m Each person has number cards
m Each person has a chime
m When you get the token:
u Play your chime
m Then change your number
m We'll run different versions

m T'll introduce "faults” and see if you can
recover!

16

FT Demo: Tips for Success

m Recognizable tune with equal note lengths
m TTLS, a scale, Frére Jagues, Carmen Ohio...
m Use a large group (14 notes worked well)
m Do not align tune with processor O
m Supervise the "special processor”
m Binary ring:
m Allow tune to emerge, then disrupt
m After fault, make sure all 3 tokens appear
= Change tune after binary ring
m K-state ring:
m Disrupt before tune emerges
m Start from random state for effect 17

Participant Evaluation

m "How much did you know about CS before?”
m 2.8 (1=none, 5 = alot)
m "Is CS how more or less interesting?”
m 4.0 (1= less, 5 = more)
m "Most important thing learned?”
m "It's really fun”
m "Computers need specific instructions”
m "Sequential programs are slow"
= “How a program can recover from faults”
m "In which activity did you learn the most?”
m Most popular selection: CS

18

Conclusions

m Effectiveness of anthropomorphism
m Caveat: encourages operational reasoning
m Try the fault tolerance activity!
m Works best as a 3-part series
= But each part can work individually too
m Age neutral
m Middle school, HS, UG, Grad
m Slides, notes, and code available:
http://www.cis.ohio-state.edu/~paolo/FESCO2

19

Acknowledgements

m Graduate student assistants
= Sandip Bapat

m Florina Comanescu, Scott Pike, Nigamanth
Sridhar, Hilary Stock

m School of Music
m Amy Giles, Prof. Ken Williams
m FESC Workshop
m Prof. Linda Weavers
m Funding:
u National Science Foundation
m Ameritech

20

Introducing 8% Grade Girls to
Fault Tolerant Computing
(An Experience Report)

Paul A.G. Sivilotti
Murat Demirbas

Dept. of Computer & Info. Science
The Ohio State University

http://www cis.ohio-state.edu/~paolo/FESC02

