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Abstract—The smart grid is the new generation of electricity
grid that can efficiently utilize new distributed sources of energy
(e.g., harvested renewable energy), and allow for dynamic elec-
tricity price. In this paper, we investigate the cost minimization
problem for an end-user, such as a home, community, or a
business, which is equipped with renewable energy devices when
electrical appliances allow different levels of delay tolerance.
The varying price of electricity presents an opportunity to
reduce the electricity bill from an end-user’s point of view
by leveraging the flexibility to schedule operations of various
appliances and HVAC systems. We assume that the end user
has an energy storage battery as well as an energy harvesting
device so that harvested renewable energy can be stored and later
used when the price is high. The energy storage battery can also
draw energy from the external grid. The problem we formulate
here is to minimize the cost of the energy drawn from the
external grid while usage of appliances are subject to individual
delay constraints and a long-term average delay constraint. The
resulting algorithm requires some future information regarding
electricity prices, but it achieves provable performance without
requiring future knowledge of either the power demands or the
task arrival process. Moreover, we analyze the influence of the
assumption that energy can be sold from the battery to the grid.
An alternative algorithm is proposed to take advantage of the
ability to sell energy. The performance gap between our proposed
algorithm and the optimum is shown to diminish as energy selling
price approaches the electricity price.

I. I NTRODUCTION

The next-generation electricity grid, known as the “smart
grid”, provides both suppliers and consumers with full vis-
ibility and pervasive control over their assets and services
in order to achieve economy and sustainability [2]. Being
able to incorporate renewable energy sources (e.g., solar or
wind) is one of the key objectives of the smart grid [3]. In
addition, the utility companies are allowed to dynamically
adjust the electricity price in order to control the power usage.
For example, price of electricity increases during high demand
periods, and decreases during low demand periods. Consumers
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thus can avoid the premium for using electricity at high price
periods when they are aware of the price for some future
period.

In this paper, we consider an end-user equipped with
renewable energy devices in smart gird, where the electricity
price is time varying. The renewable energy devices consist
of an energy storage battery and an energy harvesting device.
Renewable energy can be harvested and stored in the battery.
We assume that the arrivals of demands for electrical appli-
ances is a stochastic process (from now on, we use the terms
appliance and task interchangeably). Fig. 1 shows some typical
appliances at an end user. We assume that some tasks are delay
tolerant, that is, they do not need to be activated immediately
upon their arrival, such as washer and dish washer. They can
be opportunistically scheduled when the electricity price is
relatively low in order to reduce cost. For instance, if the price
is high around 7pm and low around 2am, then some delay-
tolerant tasks, such as dish washer, can be postponed to be
scheduled around 2am. The power demand is met by drawing
energy from the battery, or purchasing extra energy from the
outside grid. We also allow the battery to charge energy from
the grid, because the battery can purchase and store energy
when the price is low, and discharge when the price is high.

In this work, we are interested in developing an optimal
task scheduling algorithm that minimizes the total price cost
of the energy drawn from the external grid subject to delay
constraints. The customer has full control over all electricity
appliances. The algorithm can exploit the delay flexibility and
take advantage of time-varying prices.

A. State-of-the-art

In power networks, there have been some literature that
has focused on scheduling delay-tolerant tasks. Koutsopoulos
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and Tassiulas [4] investigate an off-line version and an on-
line version of the task scheduling problem. The authors
propose two algorithms under these two cases, respectively,
and provide a provable performance bound. However, these
finite-horizon problems are proven to be NP-hard, and the
algorithms only achieve optimality when the delay constraint
is arbitrarily loose. In [5], the authors develop an energy
allocation algorithm to minimize the total electricity cost.
However, they do not allow renewable energy to be saved
for future use, which our work takes into account. In addition,
we provide individual delay constraints to all tasks, instead
of an universal worst-case delay constraint which is likely
to be very large. Some works adopt dynamic programming
techniques, e.g. [6]. They can achieve optimality only if the
distribution of the power demand is known a priori. There
are also some other works that have formulated problems
using game theory, e.g., [7]. The authors in [8] [9] develop
a scheduling scheme to achieve an optimized upper bound on
the power peak load. In [10], we investigate an energy trading
problem in the smart grid. The energy selling price is assumed
to be a fraction of the electricity price. Under the assumption
that the energy demand process is an exogenous input process,
an asymptotically optimal energy trading scheme is developed.
However, in this paper, energy usage is one of our control
variables. In [1], we only consider task scheduling problem,
yet we do not allow selling energy from the battery to the grid.

B. Our Contributions

In this paper, we address the task scheduling problem while
tasks are subject to individual hard delay constraints and
average delay constraints. To the best of our knowledge, it
is the first work that takes into account these two different
types of delay constraints in the area of smart grid. If there is
no average delay constraint, a greedy algorithm could achieve
the optimal solution. We, however, also take into account the
average delay constraint, which is an important quality of
service metric, but makes the problem challenging. Further,
having a battery brings about significant differences. The
reason is that the battery can draw energy from external grid
when the electricity price is low and discharges energy when
the price is high. Fig. 2 shows a simple example, where a task
(the boxes illustrated in the figure) requires a service period
of two slots. If there is no battery, we can see that the optimal

way is to schedule during time slot 2 and slot 3 (the red box),
resulting in a total cost of 10 dollars. However, with the help
of battery, we can store some energy in time slot3 since the
electricity price is low during this time slot. For simplicity of
exposition, we assume that the maximum energy that is stored
in one slot can be used to support up to one-slot service. Now,
let us consider an alternate schedule, where the power demand
during time slot 5 is met from the stored energy in slot 3 and
the demand during time slot 6 is met from the external grid,
as shown by the shadowed blue box. It can be seen that the
total cost under this scheduling policy is 7 dollars, which is
the optimal. Moreover, if energy can be sold from the battery
to the grid, it implies higher flexibility in energy management
and may lead to a further cost reduction.

We summarize our main contributions as follows:
1) We consider different types of delay constraints in our

model. First, each task has a hard delay constraint, which
cannot be violated. Further, there is a “dissatisfaction”
function of delay for each task, and we require the long-
term average dissatisfaction to be less than a threshold.
This is a generalization of the average delay constraint.

2) We propose a simple algorithm that can achieve provable
performance, which is within a bounded distance of the
optimum. Note that our algorithm does not require future
knowledge of the power demand and the task arrival
process.

3) We revisit the cost minimization problem if selling
energy from the battery to the grid is allowed. An
alternative algorithm is proposed to take advantage of
the ability to sell energy. The performance gap between
our proposed algorithm and the optimum is shown to di-
minish as energy selling price approaches the electricity
price.

4) We validate our algorithm using real electricity price
traces to compute realistic savings. We show that our
algorithm can indeed reduce cost under various system
parameter settings.

Our paper is organized as follows: In Section II, we
discuss our system model. In Section III, we formulate our
cost minimization problem with various delay constraints. In
Section IV, we develop our task scheduling algorithm and
show its performance. Energy selling situation is discussed
in Section V. After presenting simulation results in Section
VI, we conclude our paper in Section VII.

II. SYSTEM MODEL

We consider a set of appliances connected to the external
smart grid. Time is assumed to be slotted. The price of
electricity is time varying and denoted byP (t) in time slot
t. As an example, Fig. 3 shows the average five-minute spot
market prices for the Columbus area obtained from CAISO
[11]. LetNt represent the set of tasks that arrive in time slott,
while nt represents the number of tasks inNt, i.e.,nt = |Nt|,
where | · | denotes the cardinality of a set. For simplicity of
exposition, we assume that all tasks arrive in the beginning of
each slot.

We note that there are two types of tasks, delay-tolerant
and delay-intolerant tasks. Letcti denote the required service
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Fig. 3. 5-minute average spot market price during the week of 10/10/2011-
10/14/2011 for Columbus Area from CAISO [11]

time for each taski ∈ Nt. Also, there is a deadline associated
with each taski ∈ Nt, i.e., the maximum number of time
slots allowed for finishing the job from its arrival timet,
denoted bydti. The deadline is a hard constraint, namely the
task needs to be completed before timet + dti. We call the
task delay-intolerant ifcti = dti, and delay-tolerant ifcti < dti.
For a delay-intolerant task, the only choice that we have
is to activate it immediately upon its arrival. However, for
delay-tolerant tasks, we can opportunistically schedule them
in order to make use of the fluctuating nature of the electricity
price. Our goal here is to find the optimal “postponing” time
sti so that the total cost is minimized subject to the delay
constraints. Clearly, for the delay-intolerant tasks, we have to
setsti = 0. Let dmax denote the maximum delay allowed for
any task, i.e.,dmax , maxt,i d

t
i. Note that(cti, s

t
i, d

t
i), ∀t, ∀i

are integers. It is assumed that we have an accurate short-term
estimation of the electricity price. More precisely, we know
~Pt , P (t), P (t + 1), · · · , P (t + dmax). It is worth pointing
out that this is a reasonable assumption because the short-term
estimation of electricity price can be obtained from the history
[12].

Let h(t) denote the harvested renewable energy in time slot
t, and let r(t) denote our energy storage decision, i.e., the
actual energy that is stored into the battery. For simplicity of
exposition, we assume thatr(t) amount of energy is stored
in the battery at the end of slott. First, it is convenient for
us to assume that battery has infinite capacity. We will show
later that our algorithm only requires a reasonable sized finite
battery. A natural constraint ofr(t) is

r(t) ≤ h(t). (1)

The reason that we keepr(t) and h(t) different is due
to some technical issues used in our proof. We assume that
[nt, cti, h(t)] is i.i.d. over slots.

Let w(t) represent the total power demand in time slot
t. We assume that each taski ∈ Nt consumes energy at a
constant rateπti , namely the power consumption for taski
stays the same during its activation period. In this paper, we
only consider the case where the activation period of any task

TABLE I
NOTATIONS

Control var.

sti Delay for taski ∈ Nt
b(t) Energy drawn from (stored in) thebattery

r(t) Actual energy stored in the battery in slott

Grid var.

P (t) Electricity price in time slott

g(t) Energy drawn from the grid in time slott

Internal var.

cti Required service time for taski ∈ Nt
dti Deadline for taski ∈ Nt
w(t) Power demand in time slott

h(t) Harvested renewable energy in time slott

B(t) Battery level in time slott

πi(t) Power consumption for taski

Uti (s) Dissatisfaction function for delays for task i

is a contiguous chunk of time, and we do not consider the
case where the activation period of tasks can be interrupted and
resumed. We notice that part ofw(t) is met by utilizing energy
from the battery, while the other part will be drawn from the
grid. Let g(t) and b(t) represent the amounts of energy that
are drawn from the outside grid and the battery in time slott,
respectively. Because the supply always needs to balance the
demand, we havew(t) = g(t) + b(t) as shown in Fig. 1. In
addition, we also allow the battery to charge energy from the
grid, which means thatb(t) could be negative. In particular,
the battery discharges/charges energy if we haveb(t) ≷ 0. We
denotebmax as a maximal amount of energy either charging
or discharging from the battery in one time slot. We useB(t)
to denote the battery level at the beginning of time slott, and
the energy dynamics can be formulated as follows:

B(t+ 1) = B(t) + r(t)− b(t). (2)

Since we haveg(t) ≥ 0, it follows that b(t) ≤ w(t).
Therefore, the constraints onb(t) are given by

|b(t)| ≤ bmax (3)

b(t) ≤ B(t), (4)

b(t) ≤ w(t), (5)

where the second constraint means that the allocated energy
from the battery should be less than or equal to the current
available energy in the battery. For storing energy in the
battery,b(t) could be negative and thus Eqn. (4) and (5) do
not constrain the storage process.

Note thatw(t) depends on the decisions made during time
slot t up to time slott− dmax + 1, we have

w(t) =

t∑

τ=t−dmax+1

nτ∑

i=1

πτi 1(τ + sτi + cτi > t& τ + sτi ≤ t),

(6)

where1(τ+sτi +cτi > t&τ+sτi ≤ t) is the indicator function.
The termτ + sτi + cτi > t & τ + sτi ≤ t means that a task
i started before time slott and will finish after time slott.
Thus, this task has energy consumption in time slott.
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Fig. 4. Example of the scheduling of one taski ∈ Nt

Our goal is decide(r(t), sti, b(t)) at each time slot such that
the total price cost of the energy drawn from the external grid
is minimized. We do not explicitly consider some practical
issues, such as energy leakage in the battery or DC/AC
conversion loss, but we can readily incorporate them into our
model. We summarize the notations in Table I.

III. PROBLEM FORMULATION

Suppose that there is an increasing convex functionU ti (s),
satisfyingU ti (0) = 0, which reflects the dissatisfaction asso-
ciated with delays for task i ∈ Nt. The convexity models
a typical user for whom the rate of increase in dissatisfac-
tion increases with delay. Notice thatU ti (·) is different for
heterogeneous tasks. We assume that the long-term average
dissatisfaction should be no greater than than some threshold
α, that is,

lim sup
T→∞

1

T

T∑

t=1

nt∑

i=1

U ti (s
t
i) ≤ α. (7)

For any taski ∈ Nt, since we have to finish it before the
deadline, it yields

sti + cti ≤ d
t
i.

Therefore, the constraint for the postponing timesti is given
by

0 ≤ sti ≤ d
t
i − c

t
i. (8)

Hence, the cost minimization problem can be formulated as

ProblemA: min
r(t),st

i
,b(t)

lim
T→∞

1

T

T∑

t=1

E
[
g(t)P (t)

]
(9)

s.t. (1), (2), (3), (4), (5), (7), (8),

whereP (t)g(t) represents the total price of the energy drawn
from the grid during time slott.

Since g(t) = w(t) − b(t), we can rewrite ProblemA as
follows:

min
r(t),st

i
,b(t)

lim
T→∞

1

T

T∑

t=1

E
[
w(t)P (t)− b(t)P (t)

]
(10)

s.t. (1), (2), (3), (4), (5), (7), (8).

Notice that limT→∞
∑T
t=1 w(t)P (t) represents the total

cost of the power demand from the time horizon, while it

can be also derived by simply adding the cost for all tasks
one by one. Thus, we have the following equation

lim
T→∞

T∑

t=1

w(t)P (t) = lim
T→∞

T∑

t=1

nt∑

i=1

cti−1∑

j=0

πtiP (j + t+ sti),

(11)

where
∑cti−1
j=0 πtiP (j + t + sti) is the cost of taski ∈ Nt as

depicted in Fig. 4.
Now, we can reformulate the optimization problem as

follows:

ProblemB: min
r(t),st

i
,b(t)

lim
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)

− P (t)b(t)
]

(12)

s.t. (1), (2), (3), (4), (5), (7), (8).

Now we focus on ProblemB and adopt the Lyapunov
optimization approach [5] to solve it.

IV. TASK SCHEDULING POLICY

In this section, we propose a task scheduling policy and
show that its performance is within a bounded distance of the
optimum asT tends to infinity.

A. Virtual Queue

Let us construct an auxiliary virtual queueQ(t), whose
input and output are

∑nt
i=1 U

t
i (s

t
i) and α respectively. The

queueing dynamics is depicted as

Q(t+ 1) = max{Q(t) +

nt∑

i=1

U ti (s
t
i)− α, 0} (13)

Lemma 1: If the virtual queue is rate stable, i.e.,
lim supT→∞Q(T )/T = 0 with probability 1, then the con-
straint (7) is satisfied.

Proof: Suppose that the virtual queue is rate stable. Then
we have

lim sup
T→∞

E[Q(T )]/T = 0. (14)

Note that for any timeT , by adding Eqn. (13) from slot 0 to
slot T − 1, the following inequality always holds:

Q(T ) ≥ Q(0)− Tα+

T−1∑

t=0

nt∑

i=1

U ti (s
t
i).

Dividing by T and taking expectation yields:

E[Q(T )]/T ≥ E[Q(0)]/T − α+
1

T

T−1∑

t=0

nt∑

i=1

E[U ti (s
t
i)].

We take the limsup for both sides, it yields:

α ≥ lim sup
T→∞

1

T

( T∑

t=1

nt∑

i=1

U ti (s
t
i)
)
.



5

B. Lower Bound the Minimum Cost

In this subsection, we will obtain a lower bound on the
minimum cost of ProblemB. The following lemma shows
that the performance achieved by using a stationary and
randomized algorithm forms a lower bound.

Let Copt be the minimum cost to ProblemB. And let C̃ be
the minimum cost to the following ProblemC.

ProblemC: min
r(t),st

i
,b(t)

lim
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)

− P (t)b(t)
]

s.t. (1), (2), (3), (7), (8).

Note that ProblemC and C have the same objective
function, but ProblemC has fewer constraints. Thus, we know
thatCopt is lower bounded bỹC, i.e., C̃ ≤ Copt.

Lemma 2: C̃ can be achieved by an optimal stationary and
randomized policy, that is, the control action(r̃(t), s̃ti, b̃(t)) in
each time slot is only a function of [nt, cti, h(t)]. In particular,
we have

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + t+ s̃ti)− P (t)b̃(t)
]

= C̃, (15)

E
[ nt∑

i=1

U ti (s̃
t
i)− α

]
≤ 0, (16)

E
[
r̃(t)− b̃(t)

]
≥ 0, (17)

Proof: C̃ is achieved overall possiblecontrol policies, not
just stationary and randomized policies. However, we apply
Theorem 4.5 in [13] in order to prove our result, that is,C̃
can be achieved by a stationary and randomized policyb̃(t).

We will show how to project ProblemC to Eqn. (4.31)-
(4.35) in [13]. First, [nt, cti, h(t)] corresponds to the i.i.d.

statew(t). And 1
T

∑T
t=1 E

[∑nt
i=1

∑cti−1
j=0 πtiP (j + sti + t) −

P (t)b(t)
]

corresponds tōy0(t). Eqn. (16) means that the
long-term average dissatisfaction achieved by the stationary
policy is no greater thanα. Eqn. (17) implies that the average
allocated energy from the battery is no greater than the stored
energy. Eqns. (16) and (17) imply the battery levelB(t) and
the virtual queueQ(t) are required to be mean rate stable.
Therefore, the result that̃C can be achieved by an optimal
stationary and randomized policy(r̃(t), s̃ti, b̃(t)) holds directly
by applying Theorem 4.5 in[13].

C. HTSA: Heterogeneous Task Scheduling Algorithm

We define the Lyapunov functionL(t) = 1
2 (Q(t)2 +

(B(t) − θ)2), where θ is a parameter specified later. The
intuition behind it is that, by minimizing the drift of the
Lyapunov function, we forceB(t) to approachθ. We also
define several constantsnmax = maxt nt, hmax = maxt h(t),
cmax = maxt,i c

t
i, andUmax = maxt,i U

t
i (d

t
i), whereUmax

reflects the maximum dissatisfaction among all tasks.
Let Z(t) = (Q(t), B(t)). The conditional Lyapunov drift is

given byE{(L(t+ 1)− L(t)|Z(t)}.

We will show some properties of the drift via the following
lemma.

Lemma 3: The conditional Lyapunov drift satisfies that

E{(L(t+ 1)− L(t)|Z(t)} ≤

D +Q(t)E
[ nt∑

i=1

U ti (s
t
i)− α|Z(t)

]

+ (B(t)− θ)E
[
r(t)− b(t)|Z(t)

]
, (18)

whereD , 1
2 (n2

maxU
2
max + α2 + r2

max + b2max).
Proof: We refer to Appendix for theproof.

By addingV E[
∑nt
i=1

∑cti−1
j=0 πtiP (j+sti+t)−P (t)b(t)|Z(t)]

on both sides of Eqn. (18), we have

E[(L(t+ 1)− L(t)|Z(t)]

+ V E[

nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)− P (t)b(t)|Z(t)]

≤ D +Q(t)E
[ nt∑

i=1

U ti (s
t
i)− α|Z(t)

]

+ (B(t)− θ)E
[
r(t)− b(t)|Z(t)

]

+ V E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + sti + t)− P (t)b(t)|Z(t)
]

= D − αQ(t) + (B(t)− θ)E
[
r(t)|Z(t)

]
+

nt∑

i=1

E
[
Q(t)U ti (s

t
i) + V

cti−1∑

j=0

πtiP (j + sti + t)|Z(t)
]

+ (θ −B(t)− V P (t))E
[
b(t)|Z(t)

]
, (19)

whereV is a control parameter.
We now describe our scheme,heterogeneous task schedul-

ing algorithm (HTSA). The idea ofHTSA is to minimize the
right-hand side (RHS) of Eqn. (19) subject to the energy-
availability constraint (4) and(5).

Heterogeneoustask scheduling algorithm (HTSA):

• In each time slott, the harvested energyr∗(t) is deter-
mined by

r∗(t) =

{
h(t), if B(t)− θ < 0,

0, otherwise.
(20)

• In each time slott, the postponing timesti for taski ∈ Nt
is determined by:

st∗i = arg min
0≤st

i
≤dt

i
−ct

i

Q(t)U ti (s
t
i) + V

cti−1∑

j=0

πtiP (j + t+ sti).

(21)

• In each time slott, the battery charge/discharge is given
by:

b∗(t) =

{
min{bmax, w(t)}, if θ −B(t)− V P (t) < 0,

−bmax, otherwise,
(22)

wherew(t) is determined by Eqn. (6).
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Define a constantPmax as the highest electricity price, i.e.,
Pmax = maxt P (t). By setting θ = bmax + V Pmax, from
Eqn. (22), we can see that whenB(t) < bmax, it always has
θ−B(t)−V P (t) > 0. In other words, the battery always draws
energy from the grid, namelyb(t) = −bmax, when the battery
level is less thanbmax. This implies that when the battery
discharges, there is always enough energy in the battery, i.e.,
B(t) > bmax. Therefore, the energy constraint of Eqn. (4) is
indeedredundant.

D. Performance Analysis

In this subsection, we will prove thatHTSA achieves a
performance that is within a bounded distance of the optimum
via the following theorem.

Theorem 1: By settingθ = bmax + V Pmax andB(0) = θ,
HTSAhas the following property:

1) The battery levelB(t) satisfies:

B(t) ≤ θ + bmax + hmax. (23)

2) There existsM > 0, such thatQ(t) is bounded byM
for all t, whereM is a constant.

3) The cost achieved byHTSAsatisfies:

lim sup
T→∞

1

T

T∑

t=1

E
[ nt∑

i=1

cti−1∑

j=0

πtiP (j + s∗i + t)− P (t)b∗(t)
]

≤ Copt + Pmaxbmax +
D + (bmax + hmax)2

V
.

Proof: 1). We will use mathematical induction to prove
it. i). We haveB(0) = θ < θ+ bmax+hmax. ii). Assume that
B(t) ≤ θ+bmax+hmax. iii). For time slott+1, let us consider
two subcases. First, ifB(t) ≤ θ, we can see that the maximum
increased energy in the battery during one time slot ishmax+
bmax, which is under the caser(t) = hmax andb(t) = −bmax.
Thus, we haveB(t+1) ≤ θ+bmax+hmax. Second, ifB(t) >
θ, from Eqn. (22), we can see thatb(t) > 0 andr(t) = 0 when
B(t) > θ, that is, as long as the battery level is greater thanθ,
it discharges and there is no energy replenishment. Therefore,
it follows thatB(t+1) ≤ B(t) ≤ θ+hmax+bmax. Hence, we
conclude thatB(t+ 1) ≤ θ+hmax+ bmax, which means that
underHTSA, the battery level is always bounded. Therefore,
the required battery size is finite.

2). Without loss of generality, we assume thatU ti (1) 6= 0
and denoteUmin , mint,i U

t
i (1). Note thatQ(t)U ti (s

t
i) is

an increasing function ofsti and U ti (0) = 0. Consider Eqn.
(21), when st∗i = 0, we have the value of Eqn. (21) to

be V
∑cti−1
j=0 πtiP (j + t). Thus, if we haveQ(t)U ti (1) ≥

V
∑cti−1
j=0 πtiP (j + t), that is, the cost whensti = 1 is higher

than the cost whensti = 0, it follows thatst∗i = 0. This means
that whenQ(t) > V cmaxπmaxPmax

Umin
, we have the input ofQ(t),

i.e., U ti (s
t
i), equals 0. Similarly to part 1), we can show that

Q(t) ≤M , V cmaxπmaxPmax
Umin

+ nmaxUmax.
3). Recall thatHTSA minimizes the RHS of Eqn. (19).

However, the existence of constraint Eqn. (5) has prevented
b(t) being selected in(0, bmax). Thus, the term(θ − B(t) −

V P (t))E
[
b(t)|Z(t)

]
is not maximized. We compare the sta-

tionary and randomized policy in Lemma 2 andHTSA. In
particular, we have that

D − αQ(t) + (B(t)− θ)E
[
r∗(t)|Z(t)

]
+

nt∑

i=1

E
[
Q(t)U ti (s

t∗
i ) + V

cti−1∑

j=0

πtiP (j + st∗i + t)|Z(t)
]

+ (θ −B(t)− V P (t))E
[
b∗(t)|Z(t)

]

≤ D − αQ(t) + (B(t)− θ)E
[
r̃(t)|Z(t)

]
+

nt∑

i=1

E[Q(t)U ti (s̃
t
i) + V

cti−1∑

j=0

πtiP (j + s̃ti + t)|Z(t)]

+ (θ −B(t)− V P (t))E
[
b̃(t)|Z(t)

]

+ bmax|θ −B(t)− V P (t)|, (24)

where the last term is an upper bound on the term(θ−B(t)−
V P (t))E

[
b∗(t)|Z(t)

]
, since we only need to consider the case

θ −B(t)− V P (t) < 0

From the fact thatB(t) < θ+bmax+hmax, we haveθ ≥ θ−
B(t)−V P (t) ≥ −(bmax +hmax +V Pmax) = −(θ+hmax).
It follows that |θ−B(t)−V P (t)| ≤ bmax +hmax +V Pmax.

Rearranging the RHS of Eqn. (24), it yields:

D +Q(t)E
[ nt∑

i=1

U ti (s̃
t
i)− α|Z(t)

]

+ (B(t)− θ)E
[
r̃(t)− b̃(t)|Z(t)

]

+ V E
[ nt∑

i=1

cti−1∑

j=0

P (j + s̃ti + t)− P (t)b̃(t)|Z(t)
]

+ bmax|θ −B(t)− V P (t)|

≤ D + V C̃ + (bmax + hmax + V Pmax)bmax. (25)

where for the last inequality, we have used the following
expressions:

E
[ nt∑

i=1

U ti (s̃
t
i)− α|Z(t)

]
= E

[ nt∑

i=1

U ti (s̃
t
i)− α

]
≤ 0 (26)

(B(t)− θ)E
[
r̃(t)− b̃(t)|Z(t)

]
= (B(t)− θ)E

[
r̃(t)− b̃(t)

]

≤ (B(t)− θ)E
[
r̃(t)

]
≤ (bmax + hmax)hmax. (27)

Eqn. (26) is derived from Eqn. (16) because(s̃ti, b̃(t)) is
a stationary policy which is independent ofZ(t). Similarly,
Eqn. (27) is from Eqn. (17) andB(t) < θ + bmax + hmax.

Thus, combining Eqn. (24) and (25), we have

E[(L(t+ 1)− L(t)|Z(t)]

+ V E[

nt∑

i=1

cti−1∑

j=0

πtiP (j + st∗i + t)− P (t)b∗(t)|Z(t)]

≤ D + (bmax + hmax)2 + V C̃ + V Pmaxbmax

≤ D + (bmax + hmax)2 + V Copt + V Pmaxbmax, (28)

where the last inequality holds becauseC̃ is a lower bound of
Copt.
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By taking the expectation with respect toZ(t) on both sides
of Eqn. (28) and take the summation fromt = 0 to T , it yields
that

E[(L(T + 1)− L(0)]

+ V

T∑

t=1

E[

nt∑

i=1

cti−1∑

j=0

πtiP (j + st∗i + t)− P (t)b∗(t)]

≤ TD + T (bmax + hmax)2 + V TCopt + V TPmaxbmax.
(29)

If we setB(0) = θ, we haveL(0) = 0. Rearranging Eqn.
(29) and dividing byV T on both sides, we have

1

T

T∑

t=1

E[

nt∑

i=1

cti−1∑

j=0

πtiP (j + st∗i + t)− P (t)b∗(t)]

≤ Copt + Pmaxbmax +
D + (bmax + hmax)2

V
. (30)

Taking the limsup asT →∞ yields ourresult.

From part (2) in Theorem 1, sinceQ(t) is bounded, combin-
ing with lemma 1, we can see that the average delay constraint,
i.e., Eqn. (7), is satisfied.

Eqn. (30) shows that the cost induced by our algorithm
is within a bounded distance of the optimum by setting the
parameterV to be sufficiently large. It is worth pointing out
that the algorithm does not require the future knowledge of
the statistics of power demand and the task arrival process.

Discussion:Since our focus here is a family or a community,
it is assumed here that the scheduling actions will not influence
the electricity price. However, if the the scheduling policy is
adopted for a large scale of power grid, it will lead to an
impact on the electricity price, which will form the basis of
our future work.

V. ENERGY SELLING

In this section we allow the system to sell energy back
to the grid. Note that in our previous discussion,g(t) ≥ 0
always holds due to the constraint in Eqn. (5), i.e.,b(t) ≤
w(t). However, If we allow energy selling, this constraint is
relaxed, which implies thatg(t) < 0 is possible. We present
our corresponding algorithm as follows:

Joint task scheduling and energy selling algorithm
(JTSES):

• In each time slott, the harvested energyr∗(t) is deter-
mined by

r∗(t) =

{
h(t), if B(t)− θ < 0,

0, otherwise.
(31)

• In each time slott, the postponing timesti for taski ∈ Nt
is determined by:

st∗i = arg min
0≤st

i
≤dt

i
−ct

i

Q(t)U ti (s
t
i) + V

cti−1∑

j=0

πtiP (j + t+ sti).

(32)

• In each time slott, the battery charge/discharge is given
by:

b∗(t) =

{
bmax, if θ −B(t)− V P (t) < 0,

−bmax, otherwise.
(33)

Notice that the only difference betweenJTSESand HTSA
is b(t), whereb(t) can be larger thanw(t) in JTSES.

Surprisingly, we can show that under this algorithm, our
scheme can actually achieve asymptotic optimality as shown
by the following theorem.

Theorem 2: If the user is allowed to sell energy to the
grid at the price ofP (t), by settingθ = bmax + V Pmax
andB(0) = θ, JTSESachieves a performance that could be
arbitrarily close to the optimum asT tends to infinity.

Proof: Notice that when the constraint Eqn. (5) does not
exist, b(t) thus can be selected in(0, bmax). Therefore, RHS
of Eqn. (19) is maximized byJTSES. It can be seen that the
extra termbmax|θ − B(t) − V P (t)| in Eqn. (24) no longer
exists. Following the same line of the proof of Theorem 1, it
yields theconclusion.

Theorem 2 implies that the gapPmaxbmax diminishes if
energy selling is allowed. Furthermore, it is worth pointing
out that inJTSESthe task scheduling and energy management
have been decoupled due to the removed Eqn. (5).

In [10], we investigate an energy trading problem in the
smart grid. The energy selling price is assumed to beβP (t),
whereβ is a constant between 0 and 1. Under the assumption
that the energy demand processw(t) is an exogenous input
process, an asymptotically optimal energy trading scheme is
developed. However, in this work, due to the fact thatw(t)
is determined by the task scheduling decision, the asymptotic
optimality is only achieved under the case when the energy
selling price is equal to the energy buying price, i.e.,β = 1.
Furthermore, we can show the performance ofJTSESunder
the selling priceβP (t) via the following theorem.

Theorem 3: If the energy selling price isβP (t), by setting
θ = bmax+V Pmax andB(0) = θ, JTSESachieves an average
cost that is within a bound of(1−β)Pmaxbmax of the optimum
by settingV to be sufficiently large.

Proof: As discussed in Theorem 2, whenβ = 1, JTSES
achieves the optimal value, which is denoted asJ∗1 . Note that
whenβ < 1, the optimumJ∗β will be higher since the benefit
brought about by selling the energy to the grid is reduced, i.e.,
J∗β ≥ J

∗
1 .

Note that JTSESis sub-optimal for the case ofβ < 1,
therefore the costJβ achieved byJTSESfor the caseβ <
1 is higher thanJ∗β , i.e., Jβ ≥ J∗β . Also note that the gap
between the two casesβ = 1 and β < 1 is bounded by
(1−β)Pmaxbmax under the same schemeJTSES, namelyJβ ≤
J∗1 + (1−β)Pmaxbmax. Thus, we haveJ∗β ≤ Jβ ≤ J

∗
1 + (1−

β)Pmaxbmax ≤ J∗β + (1 − β)Pmaxbmax, which proves our
results.

VI. CASE STUDY

The remainder of the paper evaluates the algorithms pre-
sented in the previous section.
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A. Experiment Setup

We adopt the 5-minute average spot market prices for
Columbus Area from CAISO [11]. The profile depicted in
Fig. 3 shows the electricity price for the period 10/10/2011-
10/14/2011. The arrival process of all tasks here are assumed
to be Poisson process with different intensityλi, although
Theorem 1 holds for any general arrival process. Without loss
of generality, we consider four types of appliances in our
simulations. The first three tasks are delay-tolerant, while the
last one is delay-intolerant. The arrival intensities for these
tasks are set to be 2, 0.5, 0.035 and 100, respectively. And
the energy consumption rate for these tasksπti are set to be
5.2kw, 3.5kw, 2.4kw and 60w. The “dissatisfaction” functions
are assumed to beU(x) = x2. The average delay constraint
thresholdα is set to be 10000, and the parameterV is set to
be 100.

B. Performance Evaluation

We start by comparing our algorithm and a naive scheme,
which activates the task immediately upon its arrival. Consider
the first type of delay-tolerant task, which has a deadline of
100 slots, while the required service time is two slots. Fig. 5
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shows the reduction in cost for scheduling this type of task
using our algorithm. The total cost saved in these five days is
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$35.40, which is 19.82% of the total cost. If we extend the
hard delay deadline to 200 slots, the corresponding percentage
of saved cost increases to27.20%. This is because if we have
a less stringent delay constraint, we can gain more benefit.

Next, we will show how the battery influences the perfor-
mance. The deadline for other two types of delay-tolerant tasks
are set to be 10 and 20, respectively. We set the battery size
to be 2bmax + V Pmax + hmax. Fig. 6 shows the shows the
energy drawn from the battery, i.e.,b(t), versus time in the
whole period. Fig. 7 and Fig. 8 illustrate the energy levelB(t)
and virtual queue lengthQ(t), respectively, both of which are
bounded. These results conform to our analytical result in the
previous section.

Fig. 9 depicts the percentage reduction in cost versusbmax.
We can see that the percentage reduction in cost increases as
bmax grows. This is because a large battery maximum output
can lead to a higher shaved cost which can be seen from
Eqn. (22).

In Fig. 10, we illustrate the relationship between the percent-
age of reduced cost and the parameterV . It can be seen that
whenV is small, the reduced cost is less than the counterpart

whenV is large. The reason is that the termD+(bmax+hmax)2

V

in Eqn. (30) cannot be neglected whenV is small.
Fig. 11 shows the cost reduction under bothHTSA and

JTSESwith different selling price. The parameterβ in JTSES
are assumed to be 1 and 0.9, respectively. We can see that
when β = 1, i.e., the selling price is equal to the buying
price, JTSESalways outperformsHTSA. The reason is that
selling energy is allowed inJTSES, which leads to further
cost reduction. On the other hand, ifβ becomes smaller, the
reduced cost also decreases. This observation is consistent with
our theoretical result.

VII. C ONCLUSION

In this paper, we investigate the cost minimization problem
for an end-user, which is equipped with renewable energy
devices when electrical appliances allow different levels of
delay tolerance. The varying price of electricity implies an
opportunity to reduce the electricity cost by utilizing the
flexibility to schedule various appliances. We assume that
the end user has an energy storage battery and an energy
harvesting device so that harvested renewable energy can be
stored and used when the price is high. The problem we
formulate here is to minimize the cost of the energy from
the external grid while usage of appliances are subject to
individual delay constraints and a long-term average delay
constraint. Our proposed algorithm,HTSA, requires some fu-
ture information of the electricity price, but achieves provable
performance without requiring future knowledge of either the
power demands or the task arrival process. Further, when
energy can be sold from the battery to the grid, we develop
an alternate algorithmJTSES. The performance gap between
JTSESand the optimum is shown to diminish as energy selling
price approaches the electricity price.

APPENDIX

Proof: First, By squaring Eqn. (13) and noting that
max[x, 0]2 ≤ x2, we have

1

2
Q(t+ 1)2 −

1

2
Q(t)2

≤
1

2
(

nt∑

i=1

U ti (s
t
i)− α)2 +Q(t)(

nt∑

i=1

U ti (s
t
i)− α)

≤
1

2
n2
maxU

2
max +

1

2
α2 +Q(t)(

nt∑

i=1

U ti (s
t
i)− α).

Similarly, by Eqn. (2), we have

1

2
(B(t+ 1)− θ)2 −

1

2
(B(t)− θ)2

≤
1

2
r(t)2 +

1

2
b(t)2 + (B(t)− θ)(r(t)− b(t))

≤
1

2
r2
max +

1

2
b2max + (B(t)− θ)(r(t)− b(t)).
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Thus, we have

L(t+ 1)− L(t)

≤
1

2
n2
maxU

2
max +

1

2
α2 +Q(t)(

nt∑

i=1

U ti (s
t
i)− α)

+
1

2
r2
max +

1

2
b2max + (B(t)− θ)(r(t)− b(t)).

Taking expectations on both sides conditioning onZ(t), it
yields theresult.
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