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Abstract—The smart grid is the new generation of electricity
grid that can efficiently utilize new distributed sources of energy Elctricity N
(e.g., harvested renewable energy), and allow for dynamic elec- Meter 0
tricity price. In this paper, we investigate the cost minimization L]
problem for an end-user, such as a home, community, or a

Television

business, which is equipped with renewable energy devices when 1
electrical appliances allow different levels of delay tolerance. IO
The varying price of electricity presents an opportunity to | >@ .
reduce the electricity bill from an end-user's point of view g(t w(t)

by leveraging the flexibility to schedule operations of various
appliances and HVAC systems. We assume that the end userFig 1. Demand and Supply
has an energy storage battery as well as an energy harvesting =

device so that harvested renewable energy can be stored and later

used when the price is high. The energy storage battery can also

draw energy from the external grid. The problem we formulate thus can avoid the premium for using electricity at high price
here is to minimize the cost of the energy drawn from the periods when they are aware of the price for some future
external grid while usage of appliances are subject to individual period.

delay constraints and a long-term average delay constraint. The hi id d . d with
resulting algorithm requires some future information regarding In this paper, we consider an end-user equipped wit

electricity prices, but it achieves provable performance without renewable energy devices in smart gird, where the electricity
requiring future knowledge of either the power demands or the price is time varying. The renewable energy devices consist
task arrival process. Moreover, we analyze the influence of the of an energy storage battery and an energy harvesting device.
assumption that energy can be sold from the battery to the grid. poneyahie energy can be harvested and stored in the battery.
An alternative algorithm is proposed to take advantage of the - . -
ability to sell energy. The performance gap between our proposed We assume that the arrivals of demands for electrical appli-
algorithm and the optimum is shown to diminish as energy selling ances is a stochastic process (from now on, we use the terms
price approaches the electricity price. appliance and task interchangeably). Fig. 1 shows some typical
appliances at an end user. We assume that some tasks are delay
tolerant, that is, they do not need to be activated immediately
|. INTRODUCTION upon their arrival, such as washer and dish washer. They can

The next-generation electricity grid, known as the “smaR€ opportunistically scheduled when the electricity price is
grid”, provides both suppliers and consumers with full ViS_LeIapver low in order to reduce cost. For instance, if the price
ibility and pervasive control over their assets and servic&s high around 7pm and low around 2am, then some delay-
in order to achieve economy and sustainability [2]. Beintplérant tasks, such as dish washer, can be postponed to be
able to incorporate renewable energy sources (e.g., solarSgpeduled around 2am. The power demand is met by drawing
wind) is one of the key objectives of the smart grid [3]. IfNergy fro'm the battery, or purchasing extra energy from the
addition, the utility companies are allowed to dynamicaliputside grid. We also allow the battery to charge energy from
adjust the electricity price in order to control the power usagé® 9rid, because the battery can purchase and store energy
For example, price of electricity increases during high demaMd1en the price is low, and discharge when the price is high.

periods, and decreases during low demand periods. Consumet8 this work, we are interested in developing an optimal
task scheduling algorithm that minimizes the total price cost
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Electricity way is to schedule during time slot 2 and slot 3 (the red box),
Price($) resulting in a total cost of 10 dollars. However, with the help
| of battery, we can store some energy in time Slatince the
electricity price is low during this time slot. For simplicity of
exposition, we assume that the maximum energy that is stored
in one slot can be used to support up to one-slot service. Now,
let us consider an alternate schedule, where the power demand
3 } during time slot 5 is met from the stored energy in slot 3 and
J Task { , Task the demand during time slot 6 is met from the external grid,
as shown by the shadowed blue box. It can be seen that the
total cost under this scheduling policy is 7 dollars, which is
Fig. 2. An examp|e of battery’s influence on task schedu"ng the Optlmal Moreover, |f energy can be SO|d from the battery
to the grid, it implies higher flexibility in energy management
and may lead to a further cost reduction.
and Tassiulas [4] investigate an off-line version and an on-We summarize our main contributions as follows:
line version of the task scheduling problem. The authors1) We consider different types of delay constraints in our
propose two algorithms under these two cases, respectively, model. First, each task has a hard delay constraint, which
and provide a provable performance bound. However, these cannot be violated. Further, there is a “dissatisfaction”
finite-horizon problems are proven to be NP-hard, and the function of delay for each task, and we require the long-
algorithms only achieve optimality when the delay constraint ~ term average dissatisfaction to be less than a threshold.
is arbitrarily loose. In [5], the authors develop an energy  This is a generalization of the average delay constraint.
allocation algorithm to minimize the total electricity cost. 2) We propose a simple algorithm that can achieve provable
However, they do not allow renewable energy to be saved performance, which is within a bounded distance of the
for future use, which our work takes into account. In addition, optimum. Note that our algorithm does not require future
we provide individual delay constraints to all tasks, instead  knowledge of the power demand and the task arrival
of an universal worst-case delay constraint which is likely process.
to be very large. Some works adopt dynamic programming3) We revisit the cost minimization problem if selling
techniques, e.g. [6]. They can achieve optimality only if the energy from the battery to the grid is allowed. An
distribution of the power demand is known a priori. There alternative algorithm is proposed to take advantage of
are also some other works that have formulated problems the ability to sell energy. The performance gap between
using game theory, e.g., [7]. The authors in [8] [9] develop our proposed algorithm and the optimum is shown to di-
a scheduling scheme to achieve an optimized upper bound on minish as energy selling price approaches the electricity
the power peak load. In [10], we investigate an energy trading  price.
problem in the smart grid. The energy selling price is assumed4) We validate our algorithm using real electricity price
to be a fraction of the electricity price. Under the assumption  traces to compute realistic savings. We show that our
that the energy demand process is an exogenous input process, algorithm can indeed reduce cost under various system
an asymptotically optimal energy trading scheme is developed. parameter settings.
However, in this paper, energy usage is one of our controlQur paper is organized as follows: In Section I, we
variables. In [1], we only consider task scheduling problendiscuss our system model. In Section Ill, we formulate our
yet we do not allow selling energy from the battery to the gridost minimization problem with various delay constraints. In
Section IV, we develop our task scheduling algorithm and
show its performance. Energy selling situation is discussed
in Section V. After presenting simulation results in Section
In this paper, we address the task scheduling problem whil¢ we conclude our paper in Section VII.
tasks are subject to individual hard delay constraints and
average delay constraints. To the best of our knowledge, it Il. SYSTEM MODEL
is the first work that takes into account these two different We consider a set of appliances connected to the external
types of delay constraints in the area of smart grid. If there gsnart grid. Time is assumed to be slotted. The price of
no average delay constraint, a greedy algorithm could achiedectricity is time varying and denoted by(¢) in time slot
the optimal solution. We, however, also take into account theAs an example, Fig. 3 shows the average five-minute spot
average delay constraint, which is an important quality efiarket prices for the Columbus area obtained from CAISO
service metric, but makes the problem challenging. Furth§t1]. Let N, represent the set of tasks that arrive in time glot
having a battery brings about significant differences. Thehile n; represents the number of tasksih, i.e.,n; = | N/,
reason is that the battery can draw energy from external guidhere| - | denotes the cardinality of a set. For simplicity of
when the electricity price is low and discharges energy whesposition, we assume that all tasks arrive in the beginning of
the price is high. Fig. 2 shows a simple example, where a taséch slot.
(the boxes illustrated in the figure) requires a service periodWe note that there are two types of tasks, delay-tolerant
of two slots. If there is no battery, we can see that the optimahd delay-intolerant tasks. Le} denote the required service
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TABLE |

240 ‘ ‘ NOTATIONS
220 Control var
200 1 st Delay for taski € N
£ 100} i b(t) Energy drawn from (stored in) theattery
s ol r(t) Actual energy stored in the battery in slkot
g Grid var
g wor 1 P(t) Electricity price in time slot
g 120 i g(t) Energy drawn from the grid in time slat
o0k Internal var
ct Required service time for taske N;
gor dt Deadline for task € N¢
60, s o 500 w(t) Power demand in time slat
Time Slot h(t) Harvested renewable energy in time sfot
B(t) Battery level in time slot
Fig. 3. 5-minute average spot market price during the week of 10/10/2011- mi(t) Power consumption for task
10/14/2011 for Columbus Area from CAISO [11] Ut(s) Dissatisfaction function for delay for task

time for each task € N;. Also, there is a deadline associategy 5 contiguous chunk of time, and we do not consider the
with each taski € Ny, i.e., the maximum number of time cse where the activation period of tasks can be interrupted and
slots allowed for finishing the job from its arrival tim& resymed. We notice that parteft) is met by utilizing energy
denoted byd;. The deadline is a hard constraint, namely thgom the battery, while the other part will be drawn from the
task needs to be completed before time d;. We call the griq Let ¢(¢) and b(¢) represent the amounts of energy that
task delay-intolerant it} = d;, and delay-tolerant it; < di.  are drawn from the outside grid and the battery in time &lot
For a delay-intolerant task, the only choice that we hayggpectively. Because the supply always needs to balance the
is to activate it immediately upon its arrival. However, fogemand, we have(t) = g(t) + b(t) as shown in Fig. 1. In
delay-tolerant tasks, we can opportunistically schedule thea{Bdition, we also allow the battery to charge energy from the
in order to make use of the fluctuating nature of the eIectriciB/nd’ which means thak(¢) could be negative. In particular,
price. Our goal here is to find the optimal “postponing” timey, o battery discharges/charges energy if we Higte= 0. We

st so that the total cost is minimized subject to the delad'enotebmaz as a maximal amount of energy either charging
constraints. Clearly, for the delay-intolerant tasks, we have §p discharging from the battery in one time slot. We )

sets; = 0. Let dmas denote the maximum delay allowed 1ot genote the battery level at the beginning of time glaind

any task, i.e.dpmay = max;; d;. Note that(cj, s;, d;), V%, Vi  the energy dynamics can be formulated as follows:

2921 g

are integers. It is assumed that we have an accurate short-term
estimation of the electricity price. More precisely, we know B(t+1) = B(t) +r(t) — b(t). (2)
Py £ P(t), P(t + 1), , Pt + dmas)- It Is worth pointing  g00 e havey(t) > 0, it follows that b(t) < w(t).
out'that. thisis a rea}s’onablle assumption pecause the shprt-t§ngef0re, the constraints diit) are given by
estimation of electricity price can be obtained from the history
[12]. ()| < binax 3)
Let h(t) denote the harvested renewable energy in time slot b(t) < B(t), (4)
t, and letr(t) denote our energy storage decision, i.e., the b(t) < w(t) (5)
actual energy that is stored into the battery. For simplicity of - ’
exposition, we assume thaft) amount of energy is storedwhere the second constraint means that the allocated energy
in the battery at the end of slat First, it is convenient for from the battery should be less than or equal to the current
us to assume that battery has infinite capacity. We will shaavailable energy in the battery. For storing energy in the
later that our algorithm only requires a reasonable sized finkattery,b(t) could be negative and thus Eqn. (4) and (5) do

battery. A natural constraint of(¢) is not constrain the storage process.
Note thatw(¢) depends on the decisions made during time
r(t) < h(t). (1) slott up to time slott — dymas + 1, We have
The reason that we keep(t) and h(t) different is due L s
to some technical issues used in our proof. We assume th&t) = Z ZWIl(T i e >t&T+s] <),
[ne, ct, h(t)] is i.i.d. over slots. T=t=dmas+1i=1
Let w(t) represent the total power demand in time slot )

t. We assume that each taske N; consumes energy at awherel(r+s7 +c] > t&7+s] < t) is the indicator function.
constant rater!, namely the power consumption for task The termr + s +¢] > t & 7+ s7 < t means that a task
stays the same during its activation period. In this paper, westarted before time slat and will finish after time slott.
only consider the case where the activation period of any taBkus, this task has energy consumption in time slot



A . . .
‘ can be also derived by simply adding the cost for all tasks
Electricity one by one. Thus, we have the following equation
Price ($) .
T T ng Ci71
li P(t) = 1li tP(j ¢
. 2L 1w(t) (t) Tf;;.zlzoﬂz (G +t+sh),
P(j++s' = ===
R i, (1)
‘ f ] Task | f L, Wherezszgol miP(j +t + st) is the cost of task € N, as
t s trsitelerdt depicted in Fig. 4.
Now, we can reformulate the optimization problem as
Fig. 4. Example of the scheduling of one taisk Ny follows:
1 T ne C:—l
ProblemB: min lim — E[ PG+ st +t
Our goal is decidér(t), s, b(t)) at each time slot such that r(t),st,b(t) T—oo T' ; ; ]zz:o s+t
the total price cost of the energy drawn from the external grid
is minimized. We do not explicitly consider some practical - P(t)b(t)} (12)
issues, such as energy leakage in the battery or DC/AC st (1),(2),(3),(4),(5),(7),(8).
conversion loss, but we can readily incorporate them into our
model. We summarize the notations in Table I. Now we focus on ProblenB and adopt the Lyapunov

optimization approach [5] to solve it.
I1l. PROBLEM FORMULATION

Suppose that there is an increasing convex functip(s),
satisfying U} (0) = 0, which reflects the dissatisfaction asso- In this section, we propose a task scheduling policy and
ciated with delays for task: € N;. The convexity models show that its performance is within a bounded distance of the
a typical user for whom the rate of increase in dissatisfaoptimum asI’ tends to infinity.
tion increases with delay. Notice that!(-) is different for
heterogeneous tasks. We assume that the long-term averagey Queue

dissatisfaction should be no greater than than some threshold - i
o. that is Let us construct an auxiliary virtual queug(t), whose

input and output aré_*, Uf(st) and o respectively. The

3

T ng . . . .
. 1 ueueing dynamics is depicted as
hmsupf g g Ul(sh) < a. @) d gy P

T—o00 Mg
Q(t+1) = max{Q(t) + > _Ul(s}) —a,0}  (13)
=1

IV. TASK SCHEDULING PoLIcy

t=1 i=1

For any taski € Ny, since we have to finish it before the

deadline, it yields . . .
Lemma 1. If the virtual queue is rate stable, i.e.,

si4ch < d. limsup,_, ., Q(T)/T = 0 with probability 1, then the con-
straint (7) is satisfied.

Proof: Suppose that the virtual queue is rate stable. Then
we have

Therefore, the constraint for the postponing tigiés given
by
0<st<d —cl. 8
=f=hTa ® lim sup E[Q(T)]/T = 0. (14)
Hence, the cost minimization problem can be formulated as T—o0
Note that for any timel’, by adding Eqn. (13) from slot O to

T
ProblemA: : li E P slot T — 1, the following inequality always holds:
roblem T(t)rgﬁ(t) Jim ;:1 [g®)P@)]  (9)

T—1 ng
st (1),(2).(3),(4). (5),(7). (), Q(T) 2 Q(0) = Ta+ Y Y Ui(s))-
where P(t)g(t) represents the total price of the energy drawn ) =0 1_:1 )
from the grid during time slot. Dividing by 7" and taking expectation yields:
Since g(t) = w(t) — b(t), we can rewrite ProblenfA as 1 T=1
follows: E[Q(T))/T > E[QUO))/T ~ a+ SN EULs).

T t=0 i=1
T(t)nlitnb(t) fim > E[wt)P(t) - b(t)Pt)]  (10)  we take the limsup for both sides, it yields:
’ T ng
s.t. (1)7(2)7(3)7(4)7 5)7(7)7(8) 3 1 Tt
_ . . CYZII;II_;S;PT(Z ZUz(sz))
Notice thatlim7_, >, , w(t)P(t) represents the total t=1 i=1
cost of the power demand from the time horizon, while it [ |



B. Lower Bound the Minimum Cost We will show some properties of the drift via the following

In this subsection, we will obtain a lower bound on th&mma. N _ o
minimum cost of ProblenB. The following lemma shows Lemma 3 The conditional Lyapunov drift satisfies that
that the performance achieved by using a stationary and B <
randomized algorithm forms a lower bound. ~ E{(LE+1) — LOIZ0)}

Let C°P* be the minimum cost to Proble®. And let C be t

D U;(s;) — a|Z(t
the minimum cost to the following Probleq. +Q) Z alZ( )]

R (B0~ )E[r0) - 01200 (18)
ProblemC: min lim —» E T P(j+s; +1
r(t)slb(t) Teo T ; {; ; (] ) whereD 2 5 (NmaaUnnaz + 07 + 7000 + blnaz)-
P(Ob(t Proof: We refer to Appendix for theroof. ]
- Py By addingVE[Y7", S50 wtP(j-+si-+)— P(1)b(1)| 2(1)]
st (1),(2),(3),(7),(8). on both sides of Egn. (18), we have

Note that ProblemC and C have the same objective E[(L(t+ 1) — L(t)| Z(t)]
function, but ProblenC has fewer constraints. Thus, we know .
that C°?* is lower bounded by, i.e.,C < C°P*, tor
Lemma 2: C can be achieved by an optimal stationary and + VE[Z Z mP(j+ s+ 1) - PO Z(1)]

randomized policy, that is, the control acti6i(t), 3¢, b(t)) in =10
each time slot is only a function of:f, ¢!, h(t)]. In particular, <D+Q@) ZUt ) — al|Z(t)]
we have
- ) +(B(t)—9)E[ ()— b(t)| Z(t)]
[ZZWtPJ+t+S) Pb(H)] =€, (15) e
I +VE[Y Y wlP(j + st +1t) — P()b()|Z(1)]
e[ 3 v el <o G pe J@(tg +(B0) ~ OE[()1Z(0)] +
E[7(¢) — b(t)] > 0, 17 ci—1
)~ o) 2 @ Z]E s+ VY alP(j+ st +1)|Z(1)]

Proof: C is achieved oveall possiblecontrol policies, not =0
just stationary and randomized policies. However, we apply . B
Theorem 4.5 in [13] in order to prove our result, that @, (9 B(t) VP(t))E[b(t)|Z(t)}, (19)
can be achieved by a stationary and randomized pd;ﬁt:)y whereV is a control parameter.
We will show how to project Problen€ to Eqgn. (4.31)-  We now describe our schemieeterogeneous task schedul-
(4.35) in [13]. First, fu,ct, h(t)] COTreSpOﬂdS to the i.i.d. ing algorithm (HTSA) The idea ofHTSAIs to minimize the
statew(t). And % Zt 1]E[Z o th( + st +t) — right-hand side (RHS) of Eqn. (19) subject to the energy-

availability constraint (4) angs).

Pﬁ)b(t)} corresponds toyo(t). Eqn. (16) means that the Heterogeneoustask scheduling algorithm (HTSA):
long-term average dissatisfaction achieved by the stationary

policy is no greater than. Eqn. (17) implies that the average *° In each time slot, the harvested energy'(¢) is deter-

allocated energy from the battery is no greater than the stored mined by

energy. Eqns. (16) and (17) imply the battery ledl) and . h(t), if B(t)—6<0,

the virtual queueQ(t) are required to be mean rate stable. r(t) = 0 otherwise (20)
Therefore, the result that’ can be achieved by an optimal ’

stationary and randomized poli¢j(t), 3%, b(t)) holds directly | each time slot, the postponing time! for taski € N,

by applying Theorem 4.5 if.3]. is determined by:
|
i—1
C. HTSA: Heterogeneous Task Scheduling Algorithm 5" = arg oss?%iﬁfcé QUL () +V Z Pt s)).
We define the Lyapunov functio(t) = 1(Q(t)* + =0 1)

(B(t) — 0)%), where ¢ is a parameter specified later. The _ . o
intuition behind it is that, by minimizing the drift of the « In each time slot, the battery charge/discharge is given

Lyapunov function, we forceB(t) to approachd. We also by:

define several constamisnm = maxy N, Mgz = maxy h(t), ) ,

Cmaz = MaXy; C ,and U, = maxy ; Ult(dg)' whereU,,, 4. b*(t) _ mln{bmaxyw(t)}a if 60— B(t) - VP(t) <0,
reflects the maX|mum dissatisfaction among all tasks. —bmaz; otherwise

Let Z(t) = (Q(t), B(t)). The conditional Lyapunov drift is (22)
given byE{(L(t + 1) — L(¢)|Z(t)}. wherew(t) is determined by Eqn. (6).



Define a constan®,,,., as the highest electricity price, i.e.,V P(t))E[b(t)|Z(t)] is not maximized. We compare the sta-
P = max; P(t). By settingd = byae + V P, from  tionary and randomized policy in Lemma 2 aitlSA In
Eqn. (22), we can see that whé¥(t) < b,,.., it always has particular, we have that
6—B(t)—V P(t) > 0. In other words, the battery always draws
energy from the grid, namely(t) = —b,ae, when the battery D — aQ(t) + (B(t) — O)E[r"(t)| Z(t)] +

level is less tharb,,... This implies that when the battery ne ci—1
discharges, there is always enough energy in the battery, i.e., Z]E HUL () +V Z TP+ st + )| Z(t )]
B(t) > by Therefore, the energy constraint of Eqn. (4) is =1 j=0
indeedredundant +(0— B(t) — VP(t))E[b*( )|Z(t)}
< D —aQ(t) + (B(t) - O)E[F(t)|Z(t)] +
D. Performance Analysis ci—1

In this subsection, we will prove thaTSA achieves a ZE BT () +V Z i P(j + 8 + )12 (D)
performance that is within a bounded distance of the optimum =0
via the following theorem. + (0 —B(t) - VP(t )) [b(t)|Z(t)]

Theorem 1 By settingf = by,qz + V Prar and B(0) = 6, + bimaz|0 — B(t) — VP(t)], (24)

HTSAhas the following property:
9 propery where the last term is an upper bound on the téfm B(t) —

VP(t))E[b*(t)|Z(t)], since we only need to consider the case
B(t) < 0+ binas + homas- (23) 0B~ VP) <0
From the fact thaB(¢) < 0+bmaz+hmaz, We haved > 6—
2) There existsM > 0, such thatQ(t) is bounded by  B(t) = VP(t) > —(bmaz + hmaz + V Pmaz) = —(0+ himaz)-
for all t, where M is a constant. It follows that |0 — B(t) — VP(t)| < bmaz + hmaz +V Praz-
3) The cost achieved bMTSAsatisfies: Rearranging the RHS of Eqgn. (24), it yields:

1) The battery leveB(t) satisfies:

hmsuprE[ilz TEP(j+ 57 + 1) — POV (8)] D+Q() ZUt 5) — alZ(t)]
=1 j=0

T— 00
2 +(B(t)79)E[N( ) = b(t)|Z(1)]
P b D+ (bma;c;L hmaz)” e
VE P(j 45 +1t)— Pt)b(t)| Z(t
Proof: 1). We will use mathematical induction to prove * [Z ZO U+8+1) (Dp(®)IZ( )}

it. i). We haveB(0) = 0 < 0+ bimnaz + hmaz- ii). Assume that

B(t) < 0+bpmae+hmae- lii). For time slott+1, let us consider + bm‘”"w B(t) - VP()]

two subcases. First, B(t) < 6, we can see that the maximum < D+ VC + (bmaz + hmaz + V Praz)bmaz- (25)
increased energy in the battery during one time slat s, + . . ,
bmas, Which is under the caset) = huae andb(t) = —bmas. wherg for the last inequality, we have used the following
Thus, we haveB(t+1) < 0+bmaz +hmaz. Second, ifB(t) > expressions:

6, from Eqn. (22), we can see thigt) > 0 andr(t) = 0 when n

B(t) > 6, that is, as long as the battery level is greater than E[Z ULE) — a|Z(t) Z Ul —a]l <0 (26)

it discharges and there is no energy replenishment. Therefore, i=1

it follows that B(t+1) < B(t) < 0+ hmaz +bmaz- Hence, we  (B(t) — O)E[F(t) — b(t)|Z(t)] = ( (t) — OE[F(t) — b(t)]
conclude that3(t +1) < 0+ hmaz + bimas, Which means that (B(t) — OE[(t)] < ( + hinaz)h 27)
underHTSA the battery level is always bounded. Therefore, — = (bna e

the required battery size is finite. Eqn. (26) is derived from Eqn. (16) becaug#, b(t)) is

2). Without loss of generality, we assume tligi(1) # 0 a stationary policy which is independent &ft). Similarly,
and denotel,;, = min,; Uf(1). Note thatQ(¢)Uf(s}) is Egn. (27) is from Eqn. (17) and(t) < 0 + bmaz + hmas-
an increasing function of; and U;(0) = 0. Consider Edn.  Thys, combining Eqn. (24) and (25), we have
(21), when st* = 0, we have the value of Eqgn. (21) to

be VEJ o T P(j +t). Thus, if we haveQ(t)Uf(1) > E[(L(t+1) = L()|Z(t)]

VY i, miP(j+t), that is, the cost wher! = 1 is higher ne i1

the’%%yth?a cost(when)ﬁ =0, it follows thats’* = 0. This means ~ + VE]D Y #lP(j+si* +1t) — P(t)b*(t)|Z(t)]

that whenQ(t) > VemazmazLmaz e have the input of)(t), i=1 j=0 i

i.e., Ul(st), equals 0. Similarly to part 1), we can show that < D + (bpaz + hmaz)? + VC + V Prazbmas

Qt) < M & YemeeTmeaPmar 4 0 U < D+ (bmaz + hmaz)? + VCP + VPrazbmas, (28)

3). Recall thatHTSA minimizes the RHS of Eqn. (19). 5
However, the existence of constraint Eqn. (5) has preventetiere the last inequality holds becauses a lower bound of
b(t) being selected irf0, byqz). Thus, the term(@ — B(t) — C°FL.



By taking the expectation with respect&{t) on both sides  « In each time slot, the battery charge/discharge is given

of Egn. (28) and take the summation frare= 0 to 7', it yields by:
that
bmaz, if 6 —B(t)— VP(t) <0,
b*(t) = 33
BT ) = LO) ® { ez, Othervise 33
N ZE i: Z TtP(j + st* +t) — P(t)b*(t)] Notice that the only difference betwedTSESand HTSA
t=1 i1 j=0 is b(t), whereb(t) can be larger thamw(¢) in JTSES
< TD + T(bmas + himaz)? + VICP + VT Prowbimas. Surprisingly, we can show that under this algorithm, our

(29) scheme can actually achieve asymptotic optimality as shown
by the following theorem.
If we setB(0) = 6, we haveL(0) = 0. Rearranging Eqn.  Theorem 2 If the user is allowed to sell energy to the

(29) and dividing byVT" on both sides, we have grid at the price of P(t), by settingd = byaz + V Pras
T om 1 and B(0) = 0, JTSESachieves a performance that could be
1 =N . arbitrarily close to the optimum &B tends to infinity.
~SNE EP(j + st +t) — P(t)b*(t y P Y
T ; [; j;) mP( s ) P (®) Proof: Notice that when the constraint Egn. (5) does not

exist, b(t) thus can be selected i), b,,,..). Therefore, RHS
(30) of Egn. (19) is maximized byTSESIt can be seen that the
extra termb,,...|60 — B(t) — VP(¢)| in Eqn. (24) no longer
Taking the limsup ad” — oo yields ourresult. exists. Following the same line of the proof of Theorem 1, it
B yields theconclusion. ]
From part (2) in Theorem 1, sin€g(t) is bounded, combin-  Theorem 2 implies that the gaB,nqzbmae diminishes if
ing with lemma 1, we can see that the average delay constraifergy selling is allowed. Furthermore, it is worth pointing
i.e., Eqn. (7), is satisfied. out that inJTSEShe task scheduling and energy management
Eqgn. (30) shows that the cost induced by our algorithiave been decoupled due to the removed Eqn. (5).
is within a bounded distance of the optimum by setting the In [10], we investigate an energy trading problem in the
parametefV’ to be sufficiently large. It is worth pointing outsmart grid. The energy selling price is assumed toal L),
that the algorithm does not require the future knowledge @hereg is a constant between 0 and 1. Under the assumption
the statistics of power demand and the task arrival processhat the energy demand process$t) is an exogenous input
DiscussionSince our focus here is a family or a communityprocess, an asymptotically optimal energy trading scheme is
itis assumed here that the scheduling actions will not influengeveloped. However, in this work, due to the fact tht)
the electricity price. However, if the the scheduling policy ifs determined by the task scheduling decision, the asymptotic
adopted for a large scale of power grid, it will lead to a@ptimality is only achieved under the case when the energy
impact on the electricity price, which will form the basis O%e”ing price is equa| to the energy buymg price, i+ 1.
our future work. Furthermore, we can show the performanceJ6SESunder
the selling price3P(t) via the following theorem.
V. ENERGY SELLING Theorem 3 If the energy selling price i$P(t), by setting

In this section we allow the system to sell energy bac@ bﬁ”JFVPﬁW“’ abnng )ﬂ_ 9, JTSESachle;/ehs an average
to the grid. Note that in our previous discussigiff) > 0 cost that is within a ?fun Cél Iﬂ) mazbmas Of the optimum
always holds due to the constraint in Eqn. (5), ilgt) < by settlngY o b.e sy |C|e_nty arge.

w(t). However, If we allow energy selling, this constraint is Proof: As discussed in Theorem 2, wheh= 1, JTSES
relaxed, which implies thag(t) < 0 is possible. We presentach|eves the optimal value, which is denoted/gs Note that
our corresponding algorithm as folts: when g < 1, the optlnjumjﬁ will be higher smcg the beneﬁF

Joint task scheduling and enemy selling algorithm Sioiggiabout by selling the energy to the grid is reduced, i.e.,

B =<1

(JTSES:
| h ti | he h d is d Note thatJTSESis sub-optimal for the case of < 1,
* gir?:c(i: b)t/|me slot, the harvested energy (¢) is deter- o refore the cost/g achieved byJTSESfor the cases <

1 is higher thanJj3, i.e., J3 > J3. Also note that the gap
h(t), if B(t)—0<0 between the two case8 = 1 and 8 < 1 is bounded by
ri(t) = (31) (1—8)Pnazbmaz Under the same scherd&SESnamely.J; <
Ji+ (1= B)Prazbmaz- Thus, we have]* <Jg < Jf+(1-

« In each time slot, the postponing timet for taski € N,  8)Pmazbmaz < Jj + (1 — /3)Pmazbmax, which proves our

0, otherwise

is determined by: results. m
i—1
st =arg_min QMU (s) +V D wlP(j +1+s0). VI, CASESTUDY
T =0 The remainder of the paper evaluates the algorithms pre-

(32)  sented in the previous section.
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We adopt the 5-minute average spot market prices for
Columbus Area from CAISO [11]. The profile depicted in 18.5%
Fig. 3 shows the electricity price for the period 10/10/2011-
10/14/2011. The arrival process of all tasks here are assume
to be Poisson process with different intensity, although
Theorem 1 holds for any general arrival process. Without los:
of generality, we consider four types of appliances in our
simulations. The first three tasks are delay-tolerant, while the
last one is delay-intolerant. The arrival intensities for these
tasks are set to be 2, 0.5, 0.035 and 100, respectively. An
the energy consumption rate for these tasksare set to be
5.2kw, 3.5kw, 2.4kw and 60w. The “dissatisfaction” functions
are assumed to bE(z) = z2. The average delay constraint
thresholda is set to be 10000, and the paraméiers set to
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B. Performance Evaluation Fig. 9. Reduction in cost versus the battery size

We start by comparing our algorithm and a naive scheme,
which activates the task immediately upon its arrival. Consider
the first type of delay-tolerant task, which has a deadline shows the reduction in cost for scheduling this type of task
100 slots, while the required service time is two slots. Fig. &sing our algorithm. The total cost saved in these five days is
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whenV is large. The reason is that the tef-(bmazthmaz)®
in Eqgn. (30) cannot be neglected whe&nis small.

Fig. 11 shows the cost reduction under bdifi SA and
JTSESwith different selling price. The parametgrin JTSES
are assumed to be 1 and 0.9, respectively. We can see that
when g = 1, i.e., the selling price is equal to the buying
price, JTSESalways outperformddTSA The reason is that
selling energy is allowed iRITSES which leads to further
cost reduction. On the other hand,dfbecomes smaller, the
reduced cost also decreases. This observation is consistent with
our theoretical result.

VII. CONCLUSION

In this paper, we investigate the cost minimization problem
for an end-user, which is equipped with renewable energy
devices when electrical appliances allow different levels of
delay tolerance. The varying price of electricity implies an
opportunity to reduce the electricity cost by utilizing the
flexibility to schedule various appliances. We assume that
the end user has an energy storage battery and an energy
harvesting device so that harvested renewable energy can be
stored and used when the price is high. The problem we
formulate here is to minimize the cost of the energy from
the external grid while usage of appliances are subject to
individual delay constraints and a long-term average delay
constraint. Our proposed algorithid,TSA requires some fu-
ture information of the electricity price, but achieves provable
performance without requiring future knowledge of either the
power demands or the task arrival process. Further, when
energy can be sold from the battery to the grid, we develop
an alternate algorithrdTSES The performance gap between
JTSESand the optimum is shown to diminish as energy selling
price approaches the electricity price.

$35.40, which is 19.82% of the total cost. If we extend the

hard delay deadline to 200 slots, the corresponding percentage

of saved cost increases 23.20%. This is because if we have

a less stringent delay constraint, we can gain more benefltmax[m 0]2 < 22, we have
Next, we will show how the battery influences the perfor-

mance. The deadline for other two types of delay-tolerant tasks 1 5 1 9

are set to be 10 and 20, respectively. We set the battery size §Q(t +1)7 §Q(t)

APPENDIX

to be 2b,,400 + V Prae + hmas- Fig. 6 shows the shows the ¢ nt

energy drawn from the battery, i.ei(t), versus time in the < 5(2 Uf(sh) — a)® + Q(t)(z Uj(si) —
whole period. Fig. 7 and Fig. 8 illustrate the energy leBét) ' '

and virtual queue lengtt)(t), respectively, both of which are 1

2 t
bounded. These results conform to our analytical result in the <3 2 MmaaUmaz + a +Q) Z Ui (
previous section.

Fig. 9 depicts the percentage reduction in cost vebsus. Similarly, by Egn. (2), we have
We can see that the percentage reduction in cost increases as
bmaz grows. This is because a large battery maximum output 1 5 1 5
can lead to a higher shaved cost which can be seen from §(B(t+ 1) -0)" - §(B(t) —0)

Eqgn. (22). o 1 .5
In Fig. 10, we illustrate the relationship between the percent- = §r(t) + §b(t) +(B() = 0)(r(t) — b(t))
age of reduced cost and the paraméfert can be seen that 1, 1

) ) <
whenV is small, the reduced cost is less than the counterpart -2 maz

Proof: First, By squaring Egn. (13) and noting that



Thus, we have

Taking expectations on both sides conditioning 2ft), it
yields theresult. u
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1 1 ot
< grmaeUmas + 307+ QU Uiel) — o)
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