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ABSTRACT
Smart-devices can render high quality location services when
endowed with the ability to analyze information conveyed
through video feed. In this paper, we aim to provide track-
ing services by using a mobile smart camera such as in google
glasses and smartphones considering the following three ob-
jectives: (1) No additional deployment, (2) No user-side
instrumentation or hardware upgrades, and (3) Easy adop-
tion in practice. Existing RF or VLC based solutions for
indoor tracking can provide location and orientation only
when there are dense deployments of APs or VLC bulbs
(anchor points) in user’s field of view. Vision-Track is the
first vision based solution that can track the camera’s loca-
tion and orientation indoors even when no anchor point is
in line-of-sight (LOS). Vision-Track deployed in an indoor
college building provides a median localization accuracy of
49 cm.

CCS Concepts
•Hardware→Wireless devices; Sensor applications and
deployments; •Computer systems organization→ Real-
time systems;
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1. INTRODUCTION
Camera-based assistance for day-to-day human activity is

opening up a new horizon with the advent of smart-glasses,
enhanced smartphone cameras, intelligent security cameras,
etc. Popular commercialized smart-glasses like Google glasses
and Microsoft’s HoloLens can record daily activities and fur-
ther analyze them to make intelligent decisions. These fea-
tures when integrated with the knowledge of location, can
benefit many applications associated with indoor navigation
such as tracking, vision aid for visually impaired people,
object tagging, security and activity monitoring. Crowd-
sourced video associated with accurate location coordinates
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can be used to create holistic views of buildings and events
can be used by virtual reality based applications. In addi-
tion, the location services can enhance customized smart-
devices for performing stereo-vision, object scanning and
thermal imaging.

Both location and orientation are important for different
applications like gaming, virtual reality, indoor navigation,
etc. where precise directionality is needed. Conventional
WiFi based localization techniques [13, 3, 14, 9] can pro-
vide indoor localization with an error of 2-3 m but fails to
provide the orientation of the user. A small subset of the
RF-localization solutions like Ubicarse [4] can provide both
location and orientation. But, it requires the APs to be in
LOS of the user. Therefore, to provide continuous location
services in indoor settings, RF-localization requires dense
deployments of APs in the user’s field of view, which entails
expensive modifications to existing infrastructure. Finger-
printing based approaches [11] require offline training and
have a meter level error margin. Inertial sensors can mea-
sure location and orientation but they are known to suffer
from error accumulation [15]. Recent works on VLC (Vis-
ible Light Communication) [2, 6, 5] encode data in terms
of light intensity changes imperceptible to human eyes but
can be decoded successfully using light sensors. VLC can
enable users with accurate localization services akin to GPS
in outdoor environments, only if the VLC-bulbs are closely
spaced. So the key question is - How can we achieve accu-
rate location and orientation information when no anchor
point (AP or VLC-bulb) is in LOS?

Vision-Track is the first vision based solution that can
continue to track the camera’s location and orientation even
when no anchor point is in sight. Thus it is specifically
designed with sparse deployment in mind. The system is
implemented as a smart-glass app that makes use of the
camera to record video and perform real-time computation.
Vision-Track user starts with initial location and orientation
obtained through standard VLC or RF based localization
techniques. A smart-device with a single camera is either
carried in person or attached to a moving cart (like a battery
operated passenger carrying cart inside an airport). The
camera captures a video of the scene ahead in a way such
that the ceiling is included in the camera’s view. The user
will be tracked in real-time for stretches where no anchor
point is visible.

The system is tested extensively in college buildings. Ex-
perimental evaluations demonstrate a 49 cm median error
for Vision-Track. The contributions are as follows: (i) The
Vision-Track solution that can accurately track the camera’s



movement and orientation starting from a known location
and orientation. (ii) Extensive experimental evaluation.

2. CHALLENGES
To develop a practically usable solution, the following

challenges need to be addressed:
Lack of depth information: The video feed captured

by commodity smart devices lacks depth information of the
captured objects. In addition, the association of the ob-
served objects with their real entities is not evident from
the video. Arbitrary camera movement: The camera
may be subject to arbitrary motions and wobbling due to
human factor or cart’s arbitrary movements. Identify-
ing points in the ceiling: The points that are tracked
by Vision-Track to derive the relative motion of the camera
must be at a known height. The ceiling points are desirable
for this purpose. But Vision-Track needs to identify among
a set of points which ones correspond to the ceiling which is
a non-trivial problem. Error accumulation in inertial
sensors: Error accumulation in smartphone’s sensors, like
gyroscope or accelerometer, inflates with time.

3. THE CAMERA MODEL
The Pinhole camera model [12] describes the geometric

relationship between the 2D image-plane (i.e, pixel positions
in a camera capture) and the 3D ground coordinate system.
Let the image plane be represented by the UV -plane and
the camera coordinate system be represented by the (XY Z)
space. Let us assume that the perpendicular ray emanating
from the center of the camera frame is along the Z-axis,
V -axis is parallel to Y -axis and U -axis is parallel to X-axis
(see Figure 1). The origin of the (XY Z) space is shifted
from the image plane by a distance equal to the focal length
f of the camera. Let the point (x1, y1, z1) correspond to
(u1, v1) pixel location in the image plane. The geometrical
relationship between the two coordinate systems, using the
pinhole model is given by,

u1

fu
=

x1

z1
,

v1
fv

=
y1
z1

,
(1)

where fu and fv are the focal lengths of the camera1. The

Camera Plane

Camera Coordinate System

Figure 1: Geometric relationship between image
plane and the camera coordinate system. Illustration
assumes f = fu = fv

1The ideal depiction in Figure 1 shows them to be same, but
the model allows them to have different values

pinhole model translates each pixel location to a unique di-
rection in 3D space. The focal lengths can be estimated us-
ing camera calibration techniques such as based on a chess-
board pattern.

4. VISION-TRACK: ACCURATE INDOOR
TRACKING

The objective is to localize the user when no anchor point
is in sight. The location and the orientation obtained from
the last invocation of VLC or RF based location update is
used as the starting configuration. Vision-Track computes
the relative displacement and relative change of orientation
from this configuration to track the global coordinates of the
user. For ease of exposition, we make the following assump-
tions:

• The user is moving in the same floor: This can be re-
laxed by leveraging the WiFi signature of the user. As
the user moves from one floor to another, the change in
the WiFi signature can be used to restart the tracking
mechanism.

• The height of the camera from the floor is not chang-
ing with time: Vision-Track can be coupled with Ul-
trasonic depth sensing to get the depth. Alternatively,
the height of ceiling can be measured using camera by
tracking both the ceiling points and the floor points
simultaneously. However, the only constraint is we
need to know the floor-to-ceiling height (which can be
known from most CAD drawings.)

• The orientation of the camera is parallel to the floor,
i.e., the camera is looking at a direction parallel to the
ground: This can be relaxed by incorporating the
gyroscope measurements.

• The ceiling height is uniform: Later we evaluated this
assumption of uniformity of ceiling height by studying
the error in tracking when there is error in height of
ceiling (non-uniform).

We discuss about how the last two assumptions can be re-
laxed in §7.

The V -axis of the camera is in the opposite direction of
gravity as shown in Figure 1 and the UV axes are respec-
tively parallel to the XY axes of the camera coordinate sys-
tem. The user’s trajectory is therefore traced out in the
XZ plane of the ground coordinate system. Prior works
such as [7], have addressed this problem by detecting com-
plex objects such as chair, wall, cabinet, etc., followed by
tracking these objects. However, implementing accurate ob-
ject detection schemes for a wide range of indoor objects
and maintaining an up-to-date database with their loca-
tions along with their variety of features is challenging. In
sparse deployment scenarios, a user may have to move sig-
nificant distances before encountering another anchor point.
So, Vision-Track should accumulate minimal error with dis-
tance of movement.

Tracking Ceiling Points: Vision-Track observes the
mobility of selected ceiling points across the captured video
frames to measure user’s movement w.r.t. ground frame of
reference. Distinct points such as corners, edges etc., can
be observed and tracked in a video referred to as good fea-
tures to track. These feature points can be tracked across
frames by using the Lucas-Kanade optical flow method [8]



with good accuracy. The OpenCV version of Android sup-
ports accurate real-time tracking of feature points.

Consider a point Pi whose position at time t in the camera
plane is (ui(t), vi(t)), and in the camera coordinate system
is (xi(t), yi(t), zi(t)). The height of camera from the ground
(ha) is derived from the outcome of the earlier VLC or RF
based localization. Thus, the height of the point with respect
to the camera is yi = hi − ha, where hi is the height of Pi

from the floor. From equation 1, the other two coordinates
of Pi can be derived as,

zi(t) =
fv(hi − ha)

vi(t)
,

xi(t) =
ui(t)fv(hi − ha)

fuvi(t)
.

(2)

For points on the ceiling, their height (hc) can be obtained
by communication with the anchor points that was the last
one in sight or from the CAD drawing. It can also be mea-
sured by using additional sensors such as a depth sensor.

Observe that from the above equations we can obtain the
location of the camera with respect to the observed point if
its height from the ground is accurately known, but this is
not sufficient to localize the camera, as the location of the
observed point is unknown. Instead we resort to finding the
instantaneous velocity so that we can integrate it to measure
the relative displacement and track the motion of the camera
from its previous known location.

The negative of the velocity vector of the observed point
will provide the velocity vector of the user. The instanta-
neous velocity (Vi(t)) of the user in the camera coordinate
system is given by:

V z
i (t) = −∂zi(t)

∂t
=

fv(hi − ha)

vi(t)2
∂vi(t)

∂t
,

V x
i (t) = −∂xi(t)

∂t

=
ui(t)fv(hi − ha)

fuvi(t)2
∂vi(t)

∂t
− fv(hi − ha)

fuvi(t)

∂ui(t)

∂t
.

(3)

where V z
i (t), V x

i (t) are the velocities along z and x axes
respectively.
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Figure 2: Instantaneous velocity estimated by track-
ing different ceiling points from an indoor walking
video capture. All ceiling points are overlapping with
true velocity.

The main challenge in realizing the above idea is to iden-
tify if a point is a ceiling point or not. If a point is not
on the ceiling, then its actual height is lower (as ceiling has

the highest height). By mistakenly using hi = hc during
computation of V z

i (t), we end up with a larger than true
value. Consider a scenario where the camera is moving for-
ward along the z-direction without changes to its orienta-
tion. Now if we compare two points - one on the ceiling and
one not on the ceiling, then the velocities along the z-axis
must be the same for both. But as explained above, the
measured velocity for the point not on the ceiling will be
more than its correct velocity. So, the measured velocity of
the ceiling point will be the lower of the two. If the cam-
era’s orientation is not changing significantly, we expect this
criteria to hold. Based on this observation the speed based
algorithm computes the speed of all the observed points and
picks the one with the minimum speed. To limit the search
space and to reduce false measurements, we only consider
points lying in the top part of the camera frame. If multiple
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Figure 3: Human walking causes wobbling that can-
cels by itself. Black line denotes the true location

ceiling points are observed then the ceiling points that are
closer to the camera will have more distinguishable move-
ment in the camera plane and hence, will be more robust for
purposes of computing instantaneous velocity. This can also

be observed from Eqn 3, where any error in ∂vi(t)
∂t

is magni-
fied more significantly for smaller values of vi(t). Similarly
errors in the height estimation will also get magnified more
for far away ceiling points. Coincidentally, our criteria for
picking up the point with the lowest velocity on the z-axis
also typically favors the closest ceiling point when multiple
ceiling points are in view.

Different velocity estimates and their positions such as
ceiling and wall are presented in Figure 2. As shown in the
figure, the point corresponding to the minimum estimate of
V z
i (t) corresponds to the ceiling and also provides closest to

the true velocity.
Wobbling of camera height: Human walking causes

wobbling of different body points. If the camera is on a
smart-glass, then it will be subjected to wobbling of the
head. Wobbling causes increments and decrements to the
camera height that lead to positive and negative errors that
tend to cancel each other out as shown in Figure 3. This
can be explained from Eqn 3, where the sign of the error
(positive/negative) in height estimation determines the sign
of the error in velocity estimation.

5. EXPERIMENTS
What is the localization accuracy in tracking the

camera while carried by a walking human or attached
to a moving cart? Vision-Track is able to track a user and



a moving cart in a corridor and office room with an error ac-
cumulation of less than 10% and 5% respectively up to 30
meters. What is the impact of different camera heights
(height with respect to ceiling), different camera fps
(frames per second) and ceiling height measurement
errors? Vision-Track has less than a meter of error accu-
mulation (in tracking 30 meters) for different camera heights
with >20 fps and with height errors up to 10 cm, relax-
ing the rigid camera placement requirement. What is the
accuracy of Vision-Track in tracking over a curving
trajectory? Vision-Track when combined with Android
gyroscope and/or geomagnetic field orientation successfully
tracked users moving on curved trajectories.

Vision-Track Experimental details: Vision-Track is
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Figure 4: Complex trajectory tracking by Vision-
Track system: (a) Shape of trajectory followed
(b)Tracking D shape

implemented in Python which uses OpenCV and fuses the
gyroscope and Android orientation sensors with video pro-
cessing to track the user. Gyroscope is known to lead to
error accumulation which can be corrected by location and
orientation estimations from the nearest anchor point. We
have used iPhone 6 to capture the video and sensor readings.
The obtained video and log files from sensors are merged
during processing. The ground truth is measured using red
colored position markers placed on the ground and an ad-
ditional camera capturing the experiment for ground truth
matching. Also for the following analysis camera direction
is normalized to known directions so that multiple runs of
experiments will be free of initial orientation errors.

Figure 5: Vision-Track error: distance and fps from
30 meter tracking experiments.

Tracking linear mobility in corridor, office room:
We first evaluate error accumulation for mobility of camera

along the office corridor. Figure 5(a) depicts the tracking
error: (a) Camera placed on a moving cart (red line), (b)
Camera carried by walking human (blue line). As shown in
the figure, the tracking error accumulates slowly for case (a).
Our analysis shows that non-uniformity in height of points
in the ceiling can be a reason for error accumulation. For
example, projecting or embedded objects in the ceiling can
alter the height of such points. Also, when the ceiling objects
are completely camouflaged with the indoor settings, points
on the wall can be misjudged as ceiling objects. In case (b),
where the camera is carried by the user, we have observed
an error of 40 centimeters for every 5 meters, which is more
compared to (a). This is due to two reasons: (i) orientation
error accumulation over time for gyroscope, which is a well-
studied problem [15], and, (ii) wobbling caused by human
mobility as discussed in §4.

Figure 6: Vision-Track error: camera-to-ceiling
height and camera-to-ceiling error from 30 meters
tracking experiments.

Impact of different camera heights, fps and ceil-
ing or, camera height measurement errors: Varying
heights of users lead to various possible camera mounting
heights. There are many choices for the vertical placement
of the smart device (e.g., head mounted or carried in hand).
To study the impact of the camera mounting height, we
have conducted experiments by placing camera at different
heights. Figure 6(a) shows the error observed for different
camera placements with respect to the ceiling. The observed
error is less than a meter and varies by tens of centime-
ters. Figure 5(b) shows the vision-track error accumulated
for tracking a distance of 30 meters. We conclude that 20
fps is sufficient to track with error accumulation of less than
5%. Figure 6(b) shows the error observed in tracking 30 me-
ters distance when there are different ceiling height errors.
As shown in the figure, the height can be relaxed to ± 5
cm to have an error of less than 35 centimeters for every 30
meters.

Tracking complex trajectories such as ’D’ shape:
This experiment evaluates the precision in tracking a curved
trajectory. For this experiment, the video is recorded by the
user moving on a ’D’ shaped trajectory shown in Figure 4
(a). Figure 4 (b) shows the trajectory traced by Vision-
Track for two experiments using (i) Gyroscope, (ii) Android
orientation obtained by using API’s in [1]. The initial ori-
entation of the gyroscope is calculated using the direction
of the geomagnetic field and the gravity vector. Using the
orientation from these two sensors, Vision-Track traces the
trajectory tracked by the moving camera. Both tracking
error and orientation error contribute to the overall error.



Additionally, we observed that the orientation error is more
when using the Android orientation sensors as observed from
Figure 4(b).

6. RELATED WORK
Vision-track explores vision to track the position of the

user and it is related to following works on visual odometry.
Visual Odometry: It is the branch of vision where single
or multiple mobile cameras are used to predict users’ motion.
It involves matching of huge number of feature points across
images from multiple cameras from various locations. How-
ever, these solutions are computationally expensive as they
require dense feature point matching. Additionally, single
camera based visual odometry techniques (monocular visual
odometry) provide the motion of camera/user by a scale fac-
tor [10] and therefore need additional information to track
the user. In contrast, Vision-Track smartly identifies feature
points belonging to the ceiling to measure cameras motion
using a single camera. Additionally, Vision-Track employs
feature based tracking with aided intelligence from gyro-
scope and inertial sensors of smart-devices and captures fea-
ture points corresponding to greatest height (ceiling points).
Further, Vision-Track uses minimal information of the ceil-
ing height to facilitate tracking objects using the observed
feature points.

7. DISCUSSION AND FUTURE WORK
(1) Power Optimized Vision-Track: The current version of

Vision-Track needs to record video continuously for tracking
feature points. However, we observed that lower fps video
can be used in case of a slow moving user. So, we want to
develop an inertial-sensor (foot-steps/accelerometer) trigger
based fps selection as a part of our future work. In the event
of stationary users, Vision-Track can increase its sleep-cycle
to optimize the power. (2) Vision-Track to emulate antenna
array: The accurate tracking information can be used in
different SAR based localization techniques like Ubicarse[4].
(2) Vision-Track to track road from a moving car: The sim-
ilar idea in inverted fashion can be applied to vehicular do-
main by tracking the points at lowest possible height with
respect to the car. The potential feature points on the road
are lane markers, dividers etc. which can be tracked to im-
prove speed estimation accuracy of vehicles. (2) Assumption
on knowledge of height: Vision-Track assumes the height of
the camera to be fixed, to track the ceiling points. However,
it limits the user from free use of smart devices. This lim-
itation can be addressed by tracking both ceiling and floor
points. For example, consider equation 3, irrespective of
height ha (height of camera from floor which is unknown),
the ceiling points correspond to the least possible velocity.
Therefore, feature points corresponding to ceiling can be fil-
tered out. Similarly, by observing the lower portion of the
frame, one can obtain the points at lowest possible height
(floor). If the orientation of the camera is assumed to be
fixed (can be detected from gyroscope), the velocity of ceil-
ing point should be same as that of floor point along Z-axis.
Equating both, will solve ha eliminating the assumption on
height. However, this technique needs robust filtering to
deal with noises such as human movement which happen at
floor height and is left for future work.

8. CONCLUSION

Vision-Track attempts to enhance the range of RF or VLC
based location services by providing continuous tracking ser-
vices with no modification to the infrastructure. Vision-
Track leverages the high pixel density of cameras in today’s
smart-phones to observe and analyze specially chosen fea-
ture points in indoor environment to accurately find the rel-
ative displacement and orientation of the smart-device car-
ried by the user. The system evaluated in indoor college
buildings demonstrates sub-meter level accuracy in tracking
a user over long distances (30m).
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