
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Dynamic View Selection for Time-Varying Volumes

Guangfeng Ji and Han-Wei Shen

Abstract—Animation is an effective way to show how time-varying phenomena evolve over time. A key issue of generating a good
animation is to select ideal views through which the user can perceive the maximum amount of information from the time-varying
dataset. In this paper, we first propose an improved view selection method for static data. The method measures the quality of a static
view by analyzing the opacity, color and curvature distributions of the corresponding volume rendering images from the given view.
Our view selection metric prefers an even opacity distribution with a larger projection area, a larger area of salient features’ colors
with an even distribution among the salient features, and more perceived curvatures. We use this static view selection method and a
dynamic programming approach to select time-varying views. The time-varying view selection maximizes the information perceived
from the time-varying dataset based on the constraints that the time-varying view should show smooth changes of direction and
near-constant speed. We also introduce a method that allows the user to generate a smooth transition between any two views in a
given time step, with the perceived information maximized as well. By combining the static and dynamic view selection methods, the
users are able to generate a time-varying view that shows the maximum amount of information from a time-varying data set.

Index Terms—Static view selection, image based method, dynamic view selection, information entropy, optimization.

F

1 INTRODUCTION

Visualization of time-varying data has been a challenging problem
due to the large size and the time varying nature of the underly-
ing datasets. Previously, researchers have proposed various tech-
niques [11, 30, 10, 21, 18] to allow for a better understanding of the
time-dependent features and their evolutions through high dimensional
projection, feature tracking, and illustration. However, the most gen-
eral and commonly used method for visualizing time-varying data is
still animation, which is created by rendering each static volume data
in the time sequence. One problem for producing animations for time-
varying data is that the features of interest often evolve over time, with
their shapes, positions, and orientations changing continuously. To
provide the user with the best visualization of those features in an an-
imation, it is very important to select dynamic views that can follow
those features so that a maximum amount of information throughout
the time sequence can be perceived. As a time-varying dataset is usu-
ally large in size and time-consuming to render, selecting views by
hand can be a daunting task if it is simply done by trial-and-error. To
ensure that the large scale time-varying dataset can be explored in an
efficient and effective way, the process of view selection should be
done automatically as much as possible.

In the context of data visualization, researchers have considered
ways to automate the process of view selection [22, 4, 25, 26]. How-
ever, their focuses had not been on time-varying data, which requires
special treatments in order to maximize the amount of information
embedded in the whole time sequence. In addition, certain important
factors when selecting a good view for static data such as the perceived
colors, curvatures, and opacities in the final image were not considered
in their algorithms. In this paper, we first present an improved static
view selection technique to address some issues that were not previ-
ously considered, and then use the new static view selection method
and a dynamic-programming optimization approach to find the best
time-varying view. The goal of identifying the optimal time-varying
view is to maximize the amount of information the user can perceive
from the rendering sequence, with constraints on movement of the
views to ensure a smooth viewing path. Our static view method mea-
sures the quality of a view based on the opacity, color and curvature

• Guangfeng Ji is with The Ohio State University, E-mail: ji.15@osu.edu.
• Han-Wei Shen is with The Ohio State University, E-mail:

hwshen@cse.ohio-state.edu.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

images generated by a volume rendering technique. The contribution
of the paper is as follows:

• An optimization approach that finds the best time-varying view
in a polynomial time within a search space of exponential size.
The approach also takes into account the constraints of the move-
ment of the views.

• We properly design the probability function for the opacity dis-
tribution and incorporate it into the opacity entropy evaluation.
Our opacity entropy prefers an image with a large projection area
with an even opacity distribution. This technique avoids some
problems that can be encountered in [4].

• The color transfer function conveys important information for
volume rendering. We explicitly take into account the color in-
formation by properly designing a probability function and in-
corporating it into the color entropy evaluation.

• The curvature of the dataset contains essential geometric infor-
mation about the dataset. We explicitly take the curvature into
account during the static view selection.

In this paper, we assume that all the view points are located on
the surface of a viewing sphere. At each view point the user looks at
the center of the sphere, where the volume is located. During view
selection, the view moves on the sphere, which means the distance
between the view and the volume center is fixed. We also assume
the viewing and projection parameters are appropriately set up so that
the projection of the volume from any view will not fall outside the
window.

The organization of the paper is as follows. In section 2, we discuss
the related work. In section 3, we introduce our static view selection
method, which includes the evaluation of opacity entropy, color en-
tropy and information from curvatures. We also discuss how to incor-
porate all the three factors into a utility function. In section 4, we intro-
duce our optimization method to perform time-varying view selection
in a polynomial time from an exponential-size search space. We also
give a method to select a dynamic path between any two views which
also maximizes the perceived information. In section 5, we present
results to prove the effectiveness of our method.

2 RELATED WORK

The study of view point evaluation can be dated back to 1976, when
Koenderink and van Doorn [14, 15] introduced the idea of aspect
graph to partition the viewing regions surrounding an object. The node
of the aspect graph is a stable view, around which the topology of the

1109

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

object projection does not change within a small region. The edge of
the aspect graph represents a transition from a stable view to an ad-
jacent one. The aspect graph defines the minimum number of views
required to represent all the topologically different projections of the
object. After its introduction, aspect graph has been studied inten-
sively in computer vision, where many researchers used aspect graph
for object recognition [5, 7, 2].

In computer graphics, several methods have been proposed to lo-
cate the optimal views for polygonal meshes. Kamada and Kawai [12]
defined a view to be optimal if it minimizes the number of degenerated
faces under orthogonal projection. Barral et al. [3] extended the idea
to cope with perspective projection. In [25, 26], Vazquez et al.utilized
the concept of information entropy from Information Theory [19] to
evaluate the quality of a viewpoint. The relative visibility of each face
is defined as its probability, and the optimal view is found by maximiz-
ing the probability distribution using the entropy function. Vazquez
et al. [24] also introduced techniques to accelerate the viewpoint en-
tropy calculation for molecular models based on different OpenGL
features. Recently, Takahashi et al. [22] discussed view selection in
the context of volume visualization. They decompose the volume into
a set of feature interval volume components, and use the surface-based
view point selection method suggested in [25, 26] to find the optimal
view for each of the components. Then they calculate the globally
optimal view by a compromise between the locally optimal views of
all the feature components. In [4], Bordoloi and Shen took a volume
rendering approach and proposed that in a good view point, the visi-
bility of a voxel should be proportional to the noteworthiness value of
the voxel. The noteworthiness value, or the weight of the voxel can be
determined by factors such as the opacity and color of the voxel. They
also discussed view similarity and how to partition the view space.

There is a rich literature in computer graphics and animation about
dynamic view selection [20, 1, 29, 9, 23]. Applicable techniques range
from direct orientation interpolation [20] to complex view planning
for complicated 3D scenes. Andujar et al. [1] proposed a camera path
planning method for walkthrough of complex scene models. Their
method is based on identifying the free-space structure of the scene
and an entropy-based measurement of the relevance of a viewpoint.
Wernert and Hanson [29] discussed the camera path planning based
on a personal ”guide” that keeps the user oriented in the navigation
space which also points to interesting subject area. Barral et al. [3]
presented a method for automatic exploration of static scenes. In their
method, the quality of a view is computed by defining a new impor-
tance function that depends on the visible pixels of each polygon.
Hong et al. [9] studied how to select camera path to navigate in the
human colon. van Wijk and Nuij [23] introduced an elegant method to
generate a smooth animation from one view to the other by zooming
and panning. There are two major differences between our work and
the previous work. First we deal with the problem of view selection for
time-varying data where the underlying phenomena are changing over
time. Second our problem involves a different scene setting from the
previous work, where our views move on a viewing sphere and look
at the center of the sphere. Our goal is to maximize the information
perceived from the time-varying data while following the view move-
ment constraints. In [4], Bordoloi and Shen considered the problem
of finding a good viewpoint for time-varying dataset. However, their
method is to find a static view point throughout the animation so that
the user can perceive the maximum summation of conditional entropy
from the time series. The conditional entropy is the relative entropy of
a datastep based on its previous step. Compared with the method, our
method tries to find a dynamic viewing path.

It is also worth mentioning that information entropy has been uti-
lized in lighting design and shape analysis [8, 27, 17]. Gumhold [8]
designed lighting for static scenes and placed light sources at locations
where the illumination information is maximized. The illumination
information is measured by the entropy function, which is calculated
based on the pixel brightness values. Based on the user perception
study, Gumhold further refined the illumination entropy definition by
perceptually binning the brightness values and incorporating an im-
portance weight based on surface curvature measured in the image.

Vazquez et al. [27] improved the method of Gumhold by defining the
information entropy over regions with similar colors measured in the
CIELUV color space, rather than only based on the brightness val-
ues. In [17], Page et al. measured the shape complexity for 2D image
contours and 3D triangle meshes by a shape information metric, and
they proposed an algorithm to compute the metric based on curvature
estimates for both discrete curves and surfaces.

3 STATIC VIEW SELECTION

Fig. 1. The figure to illustrate that the result from [4] should be improved.

The essential problem any view selection technique tries to solve is
to find a good view point through which the users are able to perceive
the maximum amount of information from the underlying scene. In
the context of volume visualization, Takahashi et al. [22] proposed a
surface-based view point optimization algorithm where the geometric
properties of interval volumes faces are considered. Their method pro-
duces good static views for data that can be decomposed into different
interval volumes. Bordoloi and Shen [4] took a direct volume render-
ing approach without the need of intermediate geometry. Their method
generates good views in general with the exception of some cases. For
example, in Figure 1, there are two voxels in the scene, one with a
weight of 0.7 and the other 0.3. Since their method prefers views from
which the visibility of the voxel is proportional to its weight, the voxel
with weight 0.7 has to occlude the other voxel to some degree in order
to achieve a higher score for their entropy formula. However, these
two voxels are readily visible through some views such as V1. From
this example, we can see that if the visibility of a voxel can be max-
imized, it does not have to be proportional to its weight. To remedy
this problem and consider additional important properties of the data,
we propose an image-based view selection method. Our method mea-
sures the quality of a static view not only based on its opacity and
projection size (which is the primary criterion of some of the previous
algorithms), but also explicitly considers the color and curvature dis-
tribution of the rendered images. Our motivation comes from the fact
that color and curvature convey very important information about the
underlying phenomenon in many applications.

3.1 Measurement of Opacity Distribution and Projection
Size

Imagine a user is visualizing a volumetric dataset using a volume ren-
dering technique. Some voxels in the volume have higher opacity val-
ues, meaning these voxels are more important. Less important voxels
are assigned with smaller opacities. Initially the user may choose a
view through which many opaque voxels are aligned in the viewing
direction and hence more occlusion occurs. In this case, some pixels
in the final image will have very high opacity values, while the opacity
values at other pixels are low. The user realizes that this is not a good
view, so s/he changes to a view where less occlusion occurs in the vol-
ume, so that the user can see many voxels more clearly. In this case,
the opacity value in the image will be more evenly distributed. Besides
this, the user may also generally prefer a rendering image with a larger
projection area. From this example, it can be seen that an important
factor that contributes to the selection of good views is the distribution
of opacity values and the size of the projection area in the resulting
image. An image with an even opacity distribution and a large projec-
tion area should be more favorable than one with an uneven opacity

1110

JI et al.: DYNAMIC VIEW SELECTION FOR TIME-VARYING VOLUMES

distribution and/or a small projection area. A function is desired to re-
flect the property. The Shannon entropy function [19] can be utilized
to perform the measurement.

In Information Theory, the Shannon entropy function is used to
measure the amount of information contained in a random sequence
of symbols. Suppose the symbols occur in the set {a0,a1, ...,an−1}
with the occurrence probability {p0, p1, ..., pn−1}, the average infor-
mation of the sequence, called entropy, is defined as

H(x) = −
n−1

∑
i=0

pi · log2(pi) (1)

One nice property of the entropy function is that it is a concave
function. It only has one local maximum value, which is also the
global maximum value. It reaches this maximum value log2n when
p0 = p1 = ... = pn−1 = 1/n, that is, the distribution of the probabil-
ity is perfectly even among all the symbols. As the probability moves
away from the perfectly even distribution along a straight line in any
direction, the probability becomes less and less evenly distributed, and
the value of the entropy function will also decrease.

The Shannon entropy function can be utilized to measure the infor-
mation contained in an opacity image. We now explain how the prob-
ability is designed so that the entropy function gives a higher value
when the opacity value is more evenly distributed and the projection
area is larger, while it gives lower values otherwise. Given an opacity
image which contains n pixels with opacity value {α0,α1, ...,αn−1},
we define the probability pi of the ith pixel as

pi =
αi

∑n−1
j=0 α j

(2)

The image entropy is calculated by equation 1. Although the en-
tropy is evaluated over all the image pixels, the background pixels ac-
tually do not contribute to the entropy. The reason is that the opacity
value of any background pixel is 0, so it will not affect the probability
and entropy contribution of any foreground pixel. Furthermore, since
0 · log20 is defined as 0, background pixels will not contribute to the
final entropy value of the whole image. Therefore, we can define the
image entropy just over the foreground area. The image entropy gets
the maximum value when all the foreground pixels occur in the same
probability, that is, all the foreground pixels have the same opacity
values.

The entropy function also takes into account the size of the projec-
tion area, which is the foreground of the image. The reason is that the
maximum entropy value of an image is log2 f , where f is the size of
the foreground. Therefore, the entropy of an image with a large fore-
ground area and even distribution gets a higher value than one with
smaller foreground areas. In summary, our opacity entropy function
prefers an image with a large projection area with an even opacity dis-
tribution.

3.2 Measurement of Color Distribution
Opacity is just one factor that influences the selection of good views.
Another important factor that determines the quality of a view is color.
In volume rendering, colors are often assigned to voxels by using a
color transfer function. A well-designed color transfer function should
highlight salient features by using perceptually attentive colors, and
map unimportant voxels to some less attentive colors. The measure-
ment of a view’s quality should keep the fidelity of the color transfer
function. This means that in the color-mapped volume, even though
some colors (the less attentive colors assigned to unimportant vox-
els, for example) may occur more frequently than some other colors
(attentive colors assigned to salient features, for example), the less fre-
quently salient feature colors actually carry more information. There-
fore a good volume rendering image should contain more of these col-
ors and thus more information about the salient features. Furthermore,
we always want to highlight as many salient features as possible in
the limited screen area. If the volume contains multiple salient fea-
tures, these features should be mapped to the final images equally, i.e,
the projected areas for different colors should be as even as possible

among all the salient features. Based on the analysis, it can be seen
that a good view should maximize the area of the salient colors while
maintaining an even distribution among these colors.

To measure the color distribution of the volume rendering image,
we also utilize the Shannon entropy function. The entropy function
and the probability evaluation should be designed so that the entropy
function gives a higher value for an image with more evenly distributed
and larger areas of salient colors, while giving lower values for images
with less evenly distributed and/or smaller areas of salient colors. Sup-
pose there are n colors {C0,C1, ...Cn−1}, where C1,C2, ...Cn−1 occurs
in the color transfer function and C0 is the background color (actually
C0 can be a spectrum of colors, which includes every pixel of the im-
age which is not perceptually similar to any of C1,C2, ...Cn−1). Given
any pixel in the rendered image, we can determine which feature it be-
longs to by measuring the perceptual color distance between the pixel
color and the feature color. If it does not belong to any feature (ei-
ther the feature it should belong to is highly occluded, or it comes
from unimportant voxels), it will be assigned to C0. Please note that
a perception-based color space should be used during the process. We
choose the CIELUV color model [6] since it provides a perceptually
equal color space, i.e., the distance in CIELUV space reflects the per-
ceptual color difference. Suppose the total window area is T and the
color areas of C1,C2, ...Cn−1 are A1,A2, ...An−1 respectively. The area
for C0 is then A0 = T −∑n−1

i=1 (Ai). The probability is defined as

pi =
Ai

T
(3)

It is a probability definition since T = ∑n−1
i=0 (Ai). The color en-

tropy function is defined as in equation 1. We can see that the entropy
reaches its maximum value when A0 = A1 = ... = An−1, that is, all
the color areas are even. Due to the inclusion of A0, large background
area will incur small total salient color area, and thus uneven prob-
ability distribution and small entropy value accordingly. Therefore,
the entropy function and our probability definition prefer larger total
salient color area and more even distribution among all salient colors.
It should be noted that the probability definition can lead to a small
undesired effect. This happens when we see each of the salient colors
and the background with the same area, which reaches the maximum
of the entropy. The entropy will get smaller if the area of salient colors
is enlarged, and this is undesired. However, this is less likely to hap-
pen in practice since the background area for any given view is usually
large enough so that the volume rendering images from all the views
can be projected into the window. We can also intentionally increase
the window size to avoid the problem. Furthermore, even if the error
occurs, it can be as large as log(n)− log(n− 1), which is a negligi-
ble number for a relatively large n. A similar approach has been used
in [25] to deal with the background issue.

It is also noteworthy to mention that we choose a lighting model
which involves only ambient and diffuse lighting calculation. Spec-
ular lighting is not included since it can alter the color of pixel by
the color of the light. The color entropy evaluation works well for a
well-designed color transfer function where colors are used to high-
light different features (for example, colors are used to depict different
components in a segmented volume). If a color transfer function just
simply assigns gray-scale or rainbow colors according to different val-
ues, the color entropy may not reflect the feature information contained
in the view.

3.3 Measurement of Curvature Information
Opacity and color are two important factors that measure the quality
of a view. In addition to opacity and color, there are other proper-
ties that also contribute to the information provided in a volume ren-
dering image. One of such properties is the curvature. Previously,
Lee et al. [16] utilized curvature to identify the mesh importance in-
formation. They introduced the idea of mesh saliency as a measure
of regional importance for graphics meshes, and the mesh saliency is
defined in a scale-dependent manner using a center-surround opera-
tor on Gaussian-weighted mean curvatures. In our method, we notice
that low curvatures imply flat areas and high curvatures mean highly

1111

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

irregular surfaces, which often contain more information (If the vol-
ume is noisy, a smoothing operation should be performed beforehand).
Therefore, it is important to take the curvature information into ac-
count during the selection of good views.

One problem of considering curvature information in view selec-
tion is how to present the curvatures in a volume rendering image. We
achieve this with two steps. First we calculate the curvature at each
voxel position of the volume, using the method proposed by Kindl-
mann et al. [13]. When the volume is rendered, the color of a voxel is
determined by its curvature. Voxels with high curvature are assigned
with high intensity colors, while voxels below a certain low-curvature
threshold are assigned with the color (0,0,0). The opacity of the voxel
is determined independently, which can be based on its original data
value, or some other properties such as the gradient. After the render-
ing is performed and the image is generated, the intensity of the image
reflects the amount of curvature perceived from the visible part of the
volume, that is, an image with high intensity means that the user can
see many high-curvature voxels from that view.

3.4 The Final Utility Function
Opacity, color and curvature all contribute to the information per-
ceived from a rendering of the volume. We need a function to in-
corporate all the factors. This utility function [28] u from a view v
should have the following basic form:

u(v) = α ·opacity(v)+β · color(v)+ γ · curvature(v) (4)

where α + β + γ = 1. One problem with the utility function is that
the opacity, color and curvature contributions are not normalized. We
should normalize each of the factors into [0,1] before the summation.
The maximum value of the entropy function of an image with a pro-
jection size of n is log2n. So if we find the maximum projection size
M of the images among all the views, each of the entropies can be
normalized by dividing over log2M. The maximum value of the color
entropy is log2n, where n is the number of colors (see section 3.2).
Therefore, the color entropy can be easily normalized by a division
over log2n. The normalization of the curvature contribution can also
be easily done by a division over the maximum projection size M,
since the maximum intensity of each pixel is 1.

If we possess any prior knowledge of the volume, it is often desir-
able to give different weights to different factors. One scenario is that
people often design very sophisticated opacity transfer function, but
use a simple gray-scale or rainbow color transfer function. In this case,
it is desirable to put more weight into opacity(v) than color(v), since
opacity conveys more information. However, in another case where
different colors are used to highlight different features in a segmented
volume, it is desirable to put large weight to color(v). In practice, we
can choose proper weight for every factor based on the characteristic
of the data and transfer function and the nature of the application.

4 DYNAMIC VIEW SELECTION

In this section, a dynamic view selection algorithm is presented. The
goal of dynamic view selection is to allow the user to find a view-
ing path which shows the maximum amount of information from the
time-varying dataset, and the path should show near-constant angular
velocity (all the views lie on the surface of a viewing sphere). We
formulate this into the following three principles that a good dynamic
viewing path should follow:

• The view should move at a near-constant speed.

• The view should not change its direction abruptly.

• The information perceived from the time-varying data should be
maximized among all the viewing paths.

In the following subsections, we first discuss the issue of how to
select time-varying views that follow the three principles. Then we
present a method that allows the user to find a path between any two
views in a given timestep that maximizes the perceived information
while obeying the other two principles.

4.1 Time-Varying View Selection
The problem of time-varying view selection is that given a view at
t = 0, among all the possible paths along which the view can move
smoothly to the final timestep at a near-constant angular velocity, find
the path that gives the maximum perceived information. If in average
a view can move to one of n possible views at the next timestep, and
there are total t timesteps, the complexity of the problem can be nt .
This search space is exponentially large. It is impractical to try all
these paths and find the optimal one.

To solve the problem more efficiently, we can employ the dynamic
programming approach. Let’s first consider selecting time-varying
views with the first and third principles in mind, that is, we want to
find a time-varying view that moves at a near-constant speed, and
the information perceived from that path is maximized out of all
possible paths. Suppose the camera is moving with speed V , with
Vmin ≤ V ≤ Vmax. Vmin and Vmax are used to bound the speed of the
view so that when Vmin is close to and Vmax, the view moves at a
near-constant speed. We use Pi, j to denote the position of the jth view
at t = i, and MaxIn f o(Pi, j) is the maximum amount of information
perceived from Pi, j to some view at the final timestep. The following
recursive function holds:

MaxIn f o(Pi, j) = maxNumo fViews−1
k=0 {u(Pi, j)−Cost(Pi, j,Pi+1,k)

+MaxIn f o(Pi+1,k)}

where u(Pi, j) measures the information perceived at the view Pi, j .
Cost(Pi, j,Pi+1,k) measures the cost to move from Pi, j to Pi+1,k. If the
jth view point and the kth view are within [Vmin,Vmax], the cost is 0,
otherwise the cost is +∞. The equation basically says the maximum
amount of information perceived from Pi, j to some view point at the
final timestep will be equal to the sum of the information perceived
at Pi, j , and the maximum information perceived from Pi+1,k to some
view at the final time step. Pi+1,k represents a view point at t = i + 1
that can be reached within [Vmin,Vmax] distance from Pi, j . We will con-
sider all the views Pi+1,k at timestep i+1. The following C-style code
performs the calculation of all the MaxIn f o(Pi, j).

for (i=0; i<NumofViews; i++)
MaxInfo[NumofTimeSteps-1, i]=
u[NumofTimeSteps-1, i];

for (i=NumofTimesteps-2; i>=0; i--)
for (j=0;j<NumofViews; j++)
{

MaxInfo[i, j]=0;
for (k=0; k<NumofViews; k++)
{

double Info=u[i, j]-Cost(j,k)
+MaxInfo(i+1, k);
if (Info>MaxInfo[i, j])
{

MaxInfo[i, j]=Info;
NextViewIndex[i, j]=k;

}
}

}

The initial condition is MaxIn f o(Pn−1,i) = u(Pn−1,i) for i ∈
[0..Numo fViews− 1]. The dynamic programming process calculates
all the MaxIn f o{Pi, j} backwards in time, according to the recursive
function. NextNodeIndex{Pi, j} records the view index at the next
timestep that gives the maximum information from Pi, j to some view
at the final timestep, and it can be used to recover the time-varying
path. The dynamic programming process finishes all the computation
in O(n · v2) time, where n is the number of total timesteps, and v is
the number of total views. This process only takes a polynomial time
complexity.

The above dynamic programming calculates an optimal path based
on the restriction that the view should move with the speed within

1112

JI et al.: DYNAMIC VIEW SELECTION FOR TIME-VARYING VOLUMES

(a) (b)

Fig. 2. An example of a partition of a view point’s local tangent plane
and one of the possible allowed turns encoded in matrix.

[Vmin,Vmax]. But it does not prohibit the view from making sharp
turns, which is undesirable when viewing the animation. It is also
impossible to use the information stored at NextViewIndex to find the
optimal path that does not make sharp turns, since NextViewIndex
only records the optimal paths that move at a near-constant speed.
To address this problem, at each view point on the viewing sphere,
we partition its local tangent plane into many different regions,
and restrict the allowed turns. Figure 2 illustrates a partition of
eight regions and a matrix that encodes the allowed turns. We use
MaxIn f o(Pi, j,r) to denote the maximum amount of information
perceived from Pi, j to some view point at the final timestep, and Pi, j
was entered from region r from its previous view. Then the following
recursive function holds:

MaxIn f o(Pi, j,r) = maxt=0..Numo f Regions−1,k∈Regiont{u(Pi, j)
−Cost(Pi, j,Pi+1,k)+MaxIn f o(Pi+1,k,t)}

The following C-like code calculates all the MaxIn f o(Pi, j,r):

for (i=0; i<NumofViews; i++)
for (j=0; j<NumofRegions; j++)

MaxInfo[NumofTimeSteps-1, i, j]=
u[NumofTimeSteps-1, i];

for (i=NumofTimesteps-2; i>=0; i--)
for (j=0; j<NumofViews; j++)

for (r=0; r<NumofRegions; r++)
{

MaxInfo[i, j, r]=0;
for (all ts and each k in region t)
{

int o=FindRegionNum(k, j);
if (!AllowedTurn[r, o])

continue;
double Info=u[i, j]-Cost(j, k)
+MaxInfo(i+1, k, t);
if (Info>MaxInfo[i, j, r])
{

MaxInfo[i, j, r]=Info;
NextViewIndex[i, j, r]=k;
NextRegionIndex[i, j, r]=t;

}
}

}

where o is the region number leaving the jth view, and o can be eas-
ily determined based on the the projection to local tangent plane at
the jth view. NextViewIndex and NextRegionIndex record the view
and region index at the next timestep that offers the maximum infor-
mation to some view at the final timestep. These two data structures
can be used to recover the path. The dynamic programming process
finishes all the computation in O(n · r · v2) time, where n is the num-
ber of timesteps, v is the number of views, and r is the number of
regions. This process only takes a polynomial time complexity. After

the dynamic programming is done, given the initial view at t = 0, the
results stored at MaxIn f o, NextViewIndex and NextRegionIndex can
be used to find the maximum perceived information and the optimal
time-varying view associated with the initial view.

4.2 Viewing Path Between any Two Views in a Given
Timestep

Another case of dynamic view selection is to find a viewing path be-
tween any two viewpoints in a given timestep. This viewing path
should also follow the three principles, i.e., moves between these two
viewpoints smoothly with a near-constant angular velocity, and maxi-
mizes the perceived data information at the same time. This technique
can be very useful to showcase a static dataset. When generating an
animation, keyframes are usually specified by the user, and interme-
diate frames are generated by interpolation. If different viewpoints
are assigned in the different keyframes, spherical linear interpolation
(SLERP) is a common technique to interpolate the intermediate view
positions. SLERP does give a viewing path with constant angular ve-
locity, but it does not take the perceived information into considera-
tion. Next we will explain how we maximize the perceived informa-
tion and take all three principles into consideration.

Fig. 3. The solid curve is the SLERP path. Our algorithm will consider
all the neighbors of the SLERP path that lie within the dotted area. All
the neighbors are parameterized by u and v.

Given any two views on a viewing sphere, there are an infinite num-
ber of paths that connect these two views. One factor in our design of
the dynamic path is that it should follow the general direction of the
SLERP path, since the SLERP path is the shortest path that connects
the two points with constant angular velocity. Therefore, we only al-
low the view to move at the neighboring views of the SLERP path (as
shown in Figure 3). We also need to put restriction on the direction of
the allowed movement so that the view will not go back and forth in a
circular manner. We achieve this by parameterizing all the neighbors
relative to the SLERP path, as illustrated in Figure 3. A movement
is allowed only if the u parameter is increasing and the v parameter
difference is within a threshold. We call these paths monotonic paths.
We can also enforce the direction change by adopting the local coor-
dinates and the admissible turn matrix in Figure 2. When evaluating
the quality of different paths, the summation of information should not
be used, since some paths can go through more view points than oth-
ers. One good criterion can be the average information. The pseudo
code below illustrates how to use the propagation method similar to
the single-source shortest path algorithm to find the optimal path.

ActiveSet={Source viewpoint S};
PathLength=0;
PathInfo[S, PathLength]=u(S);

Initialize all the other PathInfos to a
minimum value;
NextActiveSet=empty;

while(ActiveSet is not empty)
{

PathLength++;
for each view V in ActiveSet

for each neighbor N of V

1113

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) (b) (c) (d) (e)

Fig. 4. The figure shows the static view selection results based on opacity entropy for the shockwave dataset. (a) shows the worst view, (b) is the
best view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to different viewing
angles where the shockwave is rotated around the Y axis in a full circle.

(a) (b) (c) (d) (e)

Fig. 5. The figure shows the static view selection results based on opacity entropy for the tooth dataset. (a) shows the worst view, (b) is the best
view, and (c) and (d) are the opacity images for (a) and (b) respectively. (e) plots the change of opacity entropy with respect to the viewing angle
when the tooth is rotated around the X axis in a full circle.

if (the movement from V to N is
monotonic)

{
PathInfo[N, PathLength]=max(
PathInfo[N, PathLength],
u(V)+PathInfo[V, PathLength-1]);
Put N in NextActiveSet;

}
ActiveSet=NextActiveSet;

}

For all the PathInfo[D, n] where D is the
destination
{

Find the one with the maximum average
information and it will be the optimal
path.

}

Notice the above process only runs on the neighborhood of the
SLERP path. If the neighborhood vertices and edges among the ver-
tices are stored in an adjacency matrix, the algorithm takes O(V 2)
time. If the vertices and edges are stored in an adjacency list, the al-
gorithm takes O(E +V logV) time, where V is the number of vertices,
and E is the number of edges.

5 RESULTS AND DISCUSSION

We have implemented and tested both the static and dynamic view se-
lection algorithms on a Pentium IV 1.4GHz machine with an nVidia
GeForce 6800 graphics card. Our view selection algorithms take as in-
put the opacity, color and curvature images rendered from the dataset,
which can be generated by any volume rendering technique. In our im-
plementation, we choose a hardware-based volume slicing technique
with 3D texture mapping to generate those images. 256 sample views
were used for each dataset, and these views are evenly distributed on
the viewing sphere.

The test result for the 512×64×64 shockwave dataset is shown in
Figure 4. The opacity entropy value is used during the test to show
its effectiveness in determining view quality. Figure 4 (a) shows the
worst view which has the smallest opacity entropy, and Figure 4 (b)
shows the best view with the highest opacity entropy. Figures 4 (c)
and (d) illustrate the opacity images of the worst and best views re-
spectively. It took 6.92 seconds to compute the opacity entropy values
for the 256 views and find the best and worst views, and the size of
all the images is 256×256. By using entropy and the proposed prob-
ability function, our opacity entropy evaluation takes both the opacity
distribution and the projection area into consideration, and the opacity
entropy prefers an image with an even opacity distribution and a larger
projection area. To illustrate how the opacity entropy varies according
to different viewing angles, the view is rotated along the Y axis in a
complete circle. Figure 4 (e) plots the change of opacity entropy with
respect to different views.

We also used the 128× 128× 80 tooth data to test the view selec-
tion algorithm based on the opacity entropy, and the result is shown in
Figure 5. Figure 5 (a) shows the worst view with the smallest opacity
entropy, and Figure 5 (b) shows the best view with the largest opac-
ity entropy. Figures 5 (c) and (d) are their opacity images. It took
7.18 seconds to compute the opacity entropy values for the 256 views
and find the best and worst views, and the size of all the images is
256× 256. The variation of opacity entropy with respect to different
views is also plotted in the Figure 5 (e), where the viewing angle is
rotated incrementally around the X axis.

We used the 1283 vortex dataset to show the effectiveness of the
color entropy function. The data set contains many components and
we use the color transfer function to highlight components which may
go through topological changes in future timesteps. Other components
are assigned a gray-scale color. Figure 6 (a) shows the worst view with
the smallest color entropy, and Figure 6 (b) shows the best view. It can
been easily seen that Figure 6 (b) conveys more information about the
five topologically important features than Figure 6 (a). In Figure 6
(a), the total projection area of the five highlighted features is small,
and the projection area ratio among the highlighted features is very

1114

JI et al.: DYNAMIC VIEW SELECTION FOR TIME-VARYING VOLUMES

(a) (b) (c)

Fig. 6. The figure shows the static view selection results based on color
entropy for the vortex dataset. (a) shows the worst view, (b) is the best
view, and (c) plots the change of color entropy with respect to different
viewing angles when the vortex is rotated around the Y axis in a full
circle.

(a) (b) (c)

Fig. 7. The figure shows the dynamic view selection results for the TSI
dataset. (a) shows the worst view, (b) is the best view, and (c) plots the
change of the final information with respect to the viewing angle when
the TSI dataset is rotated around the Y axis in a full circle.

uneven. This leads to a very small color entropy value. In contrast, in
Figure 6 (b), the five highlighted features have a large projection area
and an even projection area distribution, and therefore a large value for
the color entropy. It took 16.3 seconds to compute the color entropy
values for the 256 views and find the best and worst views, and the
size of the color images is 256×256. Figure 6 (c) plots the change of
color entropy with respect to different views where the viewing angle
is rotated incrementally around the Y axis.

Fig. 8. The figure shows two paths which move from one view point to
the other. The right path is generated by SLERP interpolation with an
average information of 0.51. The left path is generated by our method.
The path is smooth and gives an average information of 0.56.

Figure 7 gives the view-selection result for the Terascale Super-
nova Initiative (TSI) dataset. The dataset modelled the core collapse
of supernovae and was generated by collaboration among Oak Ridge
National Lab and eight universities. In the paper, we visualize the en-
tropy scalar component of the dataset, which is derived from pressure
and density scalar values. When exploring the dataset, we used the
rainbow color transfer function. Therefore, in our view selection test,
color information is not considered. Two factors, curvature and opac-
ity, are considered in the calculation of view information. We want to
design a utility function which puts more weight for views that show

more jagged area. In our design, we set the coefficients for curvature
and opacity to 0.8 and 0.2 respectively. Figure 7 (a) shows the worst
view, and Figure 7 (b) is the best view. It is obvious that Figure 7
(b) shows more detailed information about the jagged area than Fig-
ure 7 (a). It took 18.7 seconds to evaluate the curvature information
and opacity entropy for all the 256 views and find the best and worst
views, and the size of the images is 256×256. To show how the view
utility function varies, Figure 7 (c) plots the change of utility value
with respect to different views, where the view is rotated incremen-
tally around the vertical (Y) axis.

We also used the TSI dataset to test our dynamic view selection al-
gorithm. The supernova is a very dynamic phenomenon where the fea-
tures are morphing and rotating rapidly in space. Our previous static
view selection algorithm shows that at a given timestep, very little in-
formation about the phenomenon can be perceived if the volume is
viewed from some bad views. If the view for an animation is fixed,
much of the phenomenon would be occluded for many timesteps (see
Figure 9 (f)-(i)). Recall that the goal of our algorithm is to find a view-
ing path with the maximum amount of information, which also follows
the constraint that the camera moves at a near-constant angular veloc-
ity. We used our static view selection to calculate the view information
of every view point at every timestep and used our dynamic program-
ming algorithm to find the best path. All the timesteps use the same
view point set on the sphere. Figure 9 (a) shows the best path in which
viewpoint P0,0 moves in time with the speed within (0.9, 1.2) (The ra-
dius of the viewing sphere is 1). Although the supernova phenomenon
is morphing rapidly, we still perceive a maximum amount of infor-
mation following our dynamic viewing path. It took 4.31 seconds for
the dynamic programming process to find the optimal path. Figure 9
(a) shows part of the path, which demonstrates near-constant angu-
lar velocity (the distance in Figure 9 (a) is distorted). Furthermore,
following the path, the overall information perceived from the time-
varying data is maximized. Figures 9 (b)-(e) show four snapshots of
the time-varying dataset captured by the time-varying view path, and
Figures 9 (f)-(i) show the images seen from the original view at the
timesteps corresponding to (b)-(e) respectively. The user can appar-
ently see more turbulent side of the phenomenon all the time from the
time-varying views.

We also used the TSI dataset to show a viewing path selected from
any two views in a given timestep. The TSI dataset at t = 0 is used, and
Figure 8 shows both the SLERP and the optimized paths. It took 0.08
seconds to find the optimized path. The average information perceived
by the SLERP path is 0.51, while the optimized path gives 0.56.

6 CONCLUSION AND FUTURE WORK

In this paper, we present methods for both static and dynamic view
selection. Our static view selection algorithm analyzes opacity, color
and curvature images generated from different view points. We prop-
erly design the probability functions and use entropy to evaluate opac-
ity and color distributions. Our algorithm also prefers a view which
shows high curvature information. Depending on the characteristic of
the data set and the opacity and color transfer function, and the nature
of the application, we can design different utility functions to assign
different weights to the three factors. Based on our static view selec-
tion and dynamic programming, our dynamic view selection method
maximizes the information perceived from the time-varying dataset
following a near-constant angular velocity path. The optimization is
achieved in a polynomial time. Our results show the effectiveness of
the static and dynamic view selection.

In addition to dynamic view point planning, another important pa-
rameter for animation would be lighting design. Gumhold [8] dis-
cussed light source placement for static polygonal meshes. We would
like to conduct the research for lighting design for time-varying polyg-
onal and volumetric data in our future work.

ACKNOWLEDGEMENTS

This work was supported by NSF ITR Grant ACI-0325934, NSF RI
Grant CNS-0403342, DOE Early Career Principal Investigator Award
DE-FG02-03ER25572, NSF Career Award CCF-0346883, and Oak

1115

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 9. The figure shows the dynamic view selection result for the TSI dataset. (a) shows the path of the time-varying view, which exhibits constant
angular velocity. (b)-(e) show four snapshots captured by our time-varying view. (h)-(i) show the image from the original static view at the timestep
corresponding to (b)-(e) respectively.

Ridge National Laboratory Contract 400045529. The TSI data set
was provided by John M. Blondin (NCSU), Anthony Mezzacappa
(ORNL), and Ross J. Toedte (ORNL). Thanks go to Kwan-Liu Ma
for providing the the vortex data set made available through the NSF
ITR project.

REFERENCES

[1] C. Andujar, P. Vazquez, and M. Fairen. Way-finder: Guided tours through
complex walkthrough models. Computer Graphics Forum, 23(3):488–
508, 2004.

[2] T. Arbel and F. Ferrie. Viewpoint selection by navigation through entropy
maps. In Proceeding of International Conference on Computer Vision,
pages 248–254, 1999.

[3] P. Barral, G. Dorme, and D. Plemenos. Scene understanding techniques
using a virtual camera. In Proceeding of Eurographics 2000, 2000.

[4] U. D. Bordoloi and H.-W. Shen. View selection for volume rendering. In
IEEE Visualization Conference 2005, pages 487–494, 2005.

[5] C. Cyr and B. Kimia. 3d object recognition using shape similarity-based
aspect graph. In Proceeding of International Conference on Computer
Vision, pages 254–261, 2001.

[6] M. D. Fairchild. Color Appearance Models. John Wiley and Sons, 2005.
[7] K. Gremban and K.Ikeuchi. Planning multiple observation for object

recognition. International Journal of Computer Vision, 12(2/3):137–172,
1994.

[8] S. Gumhold. Maximum entropy light source placement. In IEEE Visual-
ization Conference 2002, pages 275–282, 2002.

[9] L. Hong, S. Muraki, A. Kaufman, D. Bartz, and T. He. Virtual voyage:
Interactive navigation in the human colon. Computer Graphics, 31:27–
34, 1997.

[10] G. Ji, H.-W. Shen, and R. Wenger. Volume tracking using higher di-
mensional isocontouring. In IEEE Visualization Conference 2003, pages
209–216, 2003.

[11] A. Joshi and P. Rheingans. Illustration-inspired techniques for visualizing
time-varying data. In IEEE Visualization Conference 2005, pages 86–93,
2005.

[12] T. Kamada and S. Kawai. A simple method for computing general posi-
tion in displaying three-dimensional objects. Proceeding of International
Conference on Computer Vision, 41(1):248–254, 1988.

[13] G. Kindlmann, R. Whitaker, T. Tasdizen, and T. Moller. Curvature-based
transfer functions for direct volume rendering: Methods and applications.
In IEEE Visualization Conference 2003, pages 513–520, 2003.

[14] J. Koenderink and A. van Doorn. The sigularities of the visual mapping.
Biological Cybernetics, 24:51–59, 1976.

[15] J. Koenderink and A. van Doorn. The internal representation of solid
shape with respect to vision. Biological Cybernetics, 32:211–216, 1979.

[16] C. H. Lee, A. Varshney, and D. W. Jacobs. Mesh saliency. In Proceedings
of ACM SIGGRAPH, pages 659–666, 2005.

[17] D. Page, A. Koschan, S. Sukumar, B. Abidi, and M. Abidi. Shape analysis
algorithm based on information theory. In Proceeding of the International
Conference on Image Processing, pages 229–232, 2003.

[18] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and
tracking their evolution. IEEE Computer, 27(7):20–27, 1994.

[19] C. E. Shannon. A mathematical theory of communication. In Bell System
Technical Journal, pages 379–423 & 623–656, 1948.

[20] K. Sheomake. Animation with quaternion curves. Computer Graphics,
19:245–254, 1985.

[21] D. Silver and X. Wang. Volume tracking. In IEEE Visualization Confer-
ence 1996, pages 157–164, 1996.

[22] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-driven
approach to locating optimal viewpoints for volume visualization. In
IEEE Visualization Conference 2005, pages 495–502, 2005.

[23] J. J. van Wijk and W. A. Nuij. Smooth and efficient zooming and pan-
ning. In IEEE Symposium on Information Visualization 2003, pages 15–
23, 2003.

[24] P.-P. Vaquez, M. Feixas, M. Sbert, and A. Llobet. Realtime automatic
selection of good molecular views. Computers and Graphics, 30:98–110,
2006.

[25] P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. Viewpoint selection
using viewpoint entropy. In Vision Modeling and Visualization Confer-
ence 2001, pages 273–280, 2001.

[26] P.-P. Vazquez, M. Feixas, M. Sbert, and W. Heidrich. Automatic view se-
lection using viewpoint entropy and its application to image-based mod-
eling. Computer Graphics Forum, 22(4):689–700, 2003.

[27] P.-P. Vazquez and M. Sbert. Perception-based illumination information
measurement and light source placement. In Proceeding of ICCSA, pages
306–316, 2003.

[28] J. von. Neumann and O. Morgenstern. Theory of Games and Economic
Behavior. Princeton University Press, 1944.

[29] E. Wernert and A. Hanson. A framework for assisted exploration with
collaboration. In IEEE Visualization Conference 1999, pages 241–248,
1999.

[30] J. Woodring, C. Wang, and H.-W. Shen. High dimensional direct ren-
dering of time-varying voulmes. In IEEE Visualization Conference 2003,
pages 417–424, 2003.

1116

