
Feature Tracking Using Earth Mover’s Distance and Global Optimization

Guangfeng Ji∗
The Ohio State University

Han-Wei Shen†

The Ohio State University

Abstract

Feature tracking plays an important role in understand-
ing time-varying data sets since it allows scientists to fo-
cus on regions of interest and track their evolution and in-
teraction over time. For complex data sets, previous fea-
ture tracking methods cannot guarantee the globally best
matching results. This is because previous algorithms are
primarily local tracking techniques, where individual fea-
tures are matched independently with local search criteria.
In this paper, we propose a novel global tracking technique
to track features. The globally best match is the match
from the source feature set to the destination feature set
with a global minimal matching cost. To amend the prob-
lems of using volume-overlapping and aggregate-attribute
criteria as in the previous methods, we propose to use the
Earth Mover’s Distance (EMD) to evaluate the matching
cost. EMD takes into account the spatial distribution of
the features and provides a more accurate and robust cost
metric than those used in previous methods. The global
cost evaluation implicitly defines a search tree, for which
we use an efficient branch-and-bound approach to find the
match with the global minimal cost. With the EMD metric
and the branch-and-bound algorithm, the global matching
algorithm tracks features in a more accurate and efficient
manner.

1 Introduction

Scientists are now able to perform large scale time-
varying simulations to model phenomena that are complex
and highly unsteady. For example, meteorologists often
perform simulations to study how storms form and evolve.
In [10], scientists studied the autoignition phenomena by
tracking time-dependent features defined as high interme-
diate concentrations. To analyze data generated from those
simulations, visualization has become an essential tool. Be-
sides the basic goal of presenting an intuitive view of the
data, an important aim of visualization is to highlight salient

∗e-mail: jig@cse.ohio-state.edu
†e-mail: hwshen@cse.ohio-state.edu

data features and offer unique insight. For time-varying
data, an effective visualization tool should also compute and
track features over time in an accurate and efficient manner.

To address the needs, researchers have developed vari-
ous feature tracking techniques to study time-varying scalar
fields. Silver and Wang [18, 19, 20, 21] proposed to match
features that have a large degree of volume overlap. Sam-
taney et al.[16] and Reinders et al.[12] match features based
on some representative aggregate attributes such as posi-
tions, volumes, and masses. Ji and Shen [9, 8] tracked
time-varying isosurfaces and interval volumes using higher-
dimensional geometry. While those methods can success-
fully track time-varying features in many cases, they are
generally local tracking techniques, where the tracking of
each feature is performed independently with various lo-
cal search schemes. The local tracking techniques do not
guarantee to produce the globally best matching results in
many cases, especially when the scene is crowded with
many small features and there exist several alternatives to
match those features.

In this paper, we propose a novel global tracking algo-
rithm to address the aforementioned problem. All the fea-
tures from two adjacent time steps are considered together
in the global tracking algorithm. We first devise a method
to measure the matching cost between a source and a des-
tination feature component. Then, based on the cost met-
ric, our tracking algorithm finds the globally best match
between the two feature sets that has the minimal over-
all cost. In order to obtain meaningful tracking results, it
is essential to have a proper measure of the cost to match
two features. The cost measure should take proper consid-
eration of the important characteristics of the feature and
gives accurate matching cost. It should be robust and al-
ways offers a meaningful cost to match features. Previous
researchers have mainly used either the volume-overlapping
or similar-attribute criterion to match features. The volume-
overlapping criterion works well when the temporal sam-
pling rate is high enough so that corresponding features
have a large degree of overlap. However, the criterion
fails to track small/thin and fast-moving features where cor-
responding features do not overlap. The similar-attribute
criterion tracks features by using aggregate attributes such

1

as centroid positions, volumes and masses. But important
characteristics of the feature, such as its shape and orienta-
tion, are not considered properly. To amend the problems of
these criteria, we propose to use the Earth Mover’s Distance
(EMD) to measure the cost to match two features. EMD
represents each feature with the cells it occupies in space,
and computes the minimal cost to transport one cell distri-
bution into the other. EMD evaluates the matching cost by
using the spatial occupancy information, which includes all
the shape, orientation, position and scale attributes of the
feature. The EMD measure also offers a meaningful cost
to match non-overlapping features. Compared to the pre-
vious criteria, EMD provides a more accurate and robust
cost measure. In addition to the EMD cost measure, we
also propose a branch-and-bound method which enables ef-
ficient search of the global minimal cost. A tight estimation
of the minimal cost further speeds up the search process.
With the Earth Mover’s Distance criterion and the branch-
and-bound algorithm, features are tracked in a more accu-
rate and efficient manner.

The organization of the paper is as follows. We first re-
view previous work in section 2, and give an overview of
the algorithm in section 3. In section 4, we present the EMD
criterion to evaluate the feature matching cost. The branch-
and-bound algorithm is introduced in section 5. Test results
are presented in section 6 and the paper is concluded with
the future work of this research.

2 Related Work

Researchers have proposed various techniques to track
time-varying features. Banks and Singer [3] used a
predictor-corrector method to reconstruct and track vortex
tubes from turbulent time-dependent flows. Arnaud et al.[1]
tracked 2D cloud patterns and used area overlap to deter-
mine correspondence. The tracking methods basically fall
into two categories: volume overlapping based methods
[18, 19, 20, 21, 9, 8] and aggregate attributes based meth-
ods [16, 12]. Silver and Wang [18, 19, 20, 21] observed
that corresponding features in adjacent time steps usually
overlap when the temporal sampling rate of the underlying
data is high. Based on the observation, correspondences be-
tween features in consecutive time steps are identified using
a two-stage process including an overlap and a best match-
ing test. In the overlap test, spatially overlapped features
from consecutive time steps are identified and the number of
intersecting nodes is also computed. The best matching test
involves inspecting the ratio of the number of intersecting
nodes versus the average volume among all combinations of
overlapped features, with the combination of the maximum
ratio as the corresponding feature(s). Samtaney et al.[16]
tracked features using their centroid positions, masses, vol-
umes and circulations (in 2D). Each feature is matched to

the feature(s) in the next time step whose centroid position
is the closest to its centroid and the volume and mass are
also within a prescribed tolerance. Reinders et al.[12] also
calculated a set of attributes, such as centroid position, vol-
ume, mass, and best fitting ellipsoid for every feature in ev-
ery frame and used these data to track features through a
predication/verification scheme.

In [9], Ji and Shen tracked local isosurfaces and in-
terval volumes features efficiently by using higher dimen-
sional isosurfacing. The method is based on the volume-
overlapping criterion. In [8], they further reported that the
overlapping relationship between isosurfaces of two con-
secutive time steps can change only at critical isovalues in
R3 or R4 and remains unchanged between any two adjacent
critical isovalues. Therefore, the overlapping relationship
between isosurfaces from any two consecutive time steps
can be precomputed and stored in a correspondence lookup
table. With this overlapping table, isosurface tracking can
be achieved by simple table lookup and verification oper-
ations. In [22], Sohn and Bajaj built the topology of time-
varying isosurfaces. The resulting time-varying contour tree
can be used to track how isosurfaces evolve.

Chen et al.[4] extended the work by Silver and Wang [18,
19, 20, 21] to track features in distributed AMR (Adaptive
Mesh Refinement) datasets within a distributed computing
environment. The resulting feature tree allows a viewer to
watch how a multi-level isosurface changes over time, space
and across different resolutions.

It is also worth mentioning that there is a rich literature in
computer vision on motion tracking [2, 17]. The main dif-
ference between tracking 2D objects from videos and track-
ing features from simulation data is that features or regions
of interest in scientific visualization applications are often
manifested as 3D objects which tend to evolve and inter-
act, while those 2D objects in computer vision interact less
frequently.

3 Algorithm Overview

Given two feature sets in the adjacent time steps with
the source feature set S = {S0,S1, ...Sn−1} and the destina-
tion feature set D = {D0,D1, ...Dm−1}, one way to estab-
lish the correspondence between S and D is to associate ev-
ery feature in S with the feature(s) of its locally best match
in D. The locally best match can be defined by either the
volume-overlapping [18, 19, 20, 21, 9, 8] or the similar-
attribute criterion [16, 12]. While these local tracking tech-
niques are effective for various applications, there are many
cases where the local matching techniques do not offer the
globally best result (The term ”globally” refers to the case
that all the features from two adjacent time steps are con-
sidered together during feature matching). For example, in
the example shown in figure 1(a), the locally best matching

2

(a) (b)

Figure 1. Two cases to illustrate that the lo-
cal tracking techniques do not guarantee the
globally best matching result.

feature for S1 is D0 because they have the maximal over-
lap, and their centroid positions and volumes are also the
most similar. However, globally S1 should correspond to
D1 because what happens is that the entire feature set moves
downwards in figure 1(a). Similarly, in the example shown
in figure 1(b), both features in S shrink as time evolves. If
S0 is the first to be matched, it will correspond to D0 and D1.
This is because they have the maximal overlap with S0, also
the most similar centroid positions and volumes. However,
globally only D0 should be matched to S0 . From these two
examples, we can see that the local matching scheme does
not always produce the globally best matching result.

To address the problem, we propose to use a global
matching technique that takes into account the configuration
of the features all together. We assume a cost is properly de-
fined to match any source feature component to any destina-
tion feature component. The goal of the global matching is
to find the minimal cost to match the whole source feature
set S to the destination feature set D. The matching result
with the minimal cost will be the globally best match be-
tween S and D with a properly-designed cost function. A
feature component may undergo the following evolutionary
events:

• Continuation: a single feature at t matches to another
single feature at t +1.

• Amalgamation: a group of features at t match to a sin-
gle feature at t +1.

• Bifurcation : a single feature at t matches to a group of
features at t +1.

• Creation : an empty feature at t matches to a single
feature at t +1.

• Dissipation : a single feature at t matches to an empty
feature at t +1.

When a group of feature components are involved in
an evolutionary event such as amalgamation and bifurca-
tion, we call them a compound component. Notice that al-
though the five evolutionary events above do not include
matching between two compound components, the match-
ing between two compound components can be split into
combinations of the five evolutionary events. If we de-
note Cost(A,B) as the minimal cost to match A to B, where
A = {Si,Si+1, ...Sn−1} and B ⊆ D, the following recursive
function holds for Cost(A,B):

Cost(A,B)=

min

TA⊆A,T B⊆B

Si∈TA,D j∈T B

|TA|6=1

{ Cost(Si,T B)+Cost(A−Si,B−T B)

Cost(TA,D j)+Cost(A−TA,B−D j)
(1)

where TA can be an empty or a compound component in A
containing Si, and T B can be an empty, single or compound
component of B. This equation states that the minimal cost
to match the source feature subset A to the destination fea-
ture subset B is the minimum of the following five scenar-
ios: (We list the corresponding evolutionary event that Si
undergoes in each scenario)

• T B = /0. In this case, Si disappears;
• T B is a single component. In this case,Si continues;
• T B is a compound component. In this case, Si splits;
• TA = /0. In this case, a new component (D j) appears.
• TA is a compound component containing Si. In this

case, Si merges with some other components and be-
comes D j at the next time step.

Notice that we do not allow TA to contain just only one
component, since otherwise the continuation event will be
considered twice in equation 1.

There are two key issues in the formulation and search
for the globally best match. First, we need to have a proper
cost function to match any source and destination feature
component. The evaluation of matching cost should accu-
rately reflect the unlikelihood of matching a source com-
ponent to a destination component. Furthermore, the def-
inition should be robust enough to take all the cases into
account. Second, equation 1 actually defines a recursive
search tree structure. The root node of the tree is Cost(S,D),
We need to have an efficient way to calculate Cost(S,D) and
find the globally best match. In the following sections, we
first describe our definition of the matching cost,and then
describe an efficient branch-and-bound algorithm to calcu-
late Cost(S,D).

4 Using Earth Mover’s Distance as Matching
Cost

It is essential to have a proper cost function when
matching the source and destination feature components.

3

Figure 2. A thin feature is moving fast. The
volume-overlapping criterion will not give a
meaningful matching cost in this case.

Figure 3. A figure to illustrate why EMD is a
better metric than the aggregate-attribute ap-
proach.

The matching cost should take proper consideration of the
important characteristics of the feature components, such
as their shapes, orientations, scales, and positions. The
cost definition should also be robust in the sense that
it should always give a meaningful cost. Previous re-
searchers have mainly used either the volume-overlapping
or similar-attribute criterion to match features. If the
volume-overlapping criterion is used, the matching cost can
be defined as a function which is inversely proportional to
the overlapping degree of the source and destination fea-
ture components. However, the volume-overlapping crite-
rion cannot handle the case where two corresponding fea-
tures do not overlap, for example, when a small and/or
thin feature moves quickly so that there is no overlap be-
tween their volumes in adjacent time steps (see figure 2).
Such a definition fails to give a meaningful cost in this
case. The similar-attribute criterion describes a feature by
its aggregate attributes, such as the centroid position, vol-
ume and mass. Two features correspond when they have
close centroid positions and similar volumes and masses. If
the similar-attribute criterion is used, the definition of the
matching cost would be a function which is proportional
to the centroid distance, and the volume and mass differ-
ence. But these aggregate attributes can over-simplify the
feature description. Specifically, the aggregate attributes do
not take proper consideration of the shape and orientation
of the feature, and this can lead to inaccurate matching cost

measures. For example, in figure 3, the two features have
the same centroid positions, volumes (areas) and messes,
but different shapes. The aggregate-attribute approach gives
an inaccurate matching cost, since the shape information is
not properly considered.

Aiming to address the above problems, we propose to
use the Earth Mover’s Distance (EMD) metric [14, 15] to
measure the matching cost between any source and desti-
nation feature components. In the EMD computation, each
feature is represented by the set of cells it occupies in space,
and EMD calculates the minimal amount of work required
to transport one set of cells into the other. EMD takes a uni-
fied approach to measure the matching cost by taking into
account the feature’s spatial occupancy information, which
includes all the shape, orientation, position and scale at-
tributes of a feature (Specifically, even when the features do
not overlap). Therefore, it is more robust than the volume-
overlapping criterion and considers more attributes prop-
erly than the aggregate-attribute criterion. Furthermore, the
aggregate-attribute criterion does not answer the question
of how to unify the difference from different attributes to-
gether during the calculation of matching cost, for example,
how to appropriately integrate the centroid distance and the
volume ratio together into the cost definition. In the follow-
ing sections we first give a brief review of the Earth Mover’s
Distance and explain how it is used in our feature tracking
algorithm.

4.1 Earth Mover’s Distance

Distribution information is often used in many areas to
represent features. For example, in computer vision, im-
ages are often represented by a one-dimensional distribution
of image intensities or three-dimensional distribution of im-
age colors. In scientific visualization, a volumetric feature
can be represented by the set of cells it occupies in space.
To measure the difference (or distance) between two dis-
tributions, Rubner et al.[14, 15] propose the Earth Mover’s
Distance (EMD). EMD reflects the minimal amount of work
that must be performed to transport one distribution into the
other. Intuitively, we can treat one distribution as a mass of
earth properly spread in space and the other as a collection
of holes in the same space. EMD measures the minimal
amount of work needed to fill the holes with earth. We can
always assume there is enough earth to fill the holes, since
otherwise we can switch what we call earth and hole. Here,
a unit of work corresponds to transporting a unit of earth by
a unit of distance. Formally, EMD assumes that the ground
distance function, which measures the cost to transport a
unit of the source distribution into a unit of the destination
distribution, is given. EMD then lifts the distance between
the individual units to the whole distribution.

In our tracking algorithm, we represent a feature by the
cells it occupies in space. For example, isosurfaces [11]

4

extracted from a volume data can be represented by all the
cells (isocells) that contain the isosurface patches. Inter-
val volumes [6, 5] can be represented by all the cells lying
within the user-specified value range. We use EMD to mea-
sure the distance between two features.

In our algorithm, the Euclidean distance between cells in
space is used as the ground distance. EMD naturally lifts the
distance between two individual cells to define the distance
between two features. When two features are close in space
with similar shapes and orientations, the EMD value be-
tween these two features will be small since they have very
similar spatial occupancies. In contrast, if two features are
far away and/or have different shapes and/or orientations,
the EMD value between these two features will be large,
since their spatial occupancies are different. In our imple-
mentation, we penalize more on matching two features that
are far away. We used the following nonlinear ground dis-
tance function GD to achieve this:

GD(Ci,C j) = EuclideanDistance(Ci,Ci)P (2)

where Ci and C j are two cells, and P > 1 is used to penalize
matching features that are far away.

Notice that EMD allows partial match. This means if we
match a feature distribution F to another distribution which
is a subset of F , the EMD value will be 0. The property will
be useful during the identification of compound component
candidates (this will be explained in section 5.4). However,
when calculating EMD between any source and destination
feature components, partial match can cause some problem.
For example, the EMD value between a feature and any of
its subset which has a smaller feature size will be 0 if par-
tial match is allowed, and this is undesired. Moreover, the
matching cost definition should penalize matching two fea-
tures with different scales. To remedy this problem, when-
ever we calculate the EMD value between any two features,
we will make sure the two features have the same capacity.
To achieve this, we first assign uniform capacity to each cell
of a feature. When matching two features, we scale the ca-
pacity of all the cells of each feature uniformly so that the
two features to be matched will have the same capacity. By
the scaling operation, we avoid the partial matching prob-
lem and EMD will penalize matching features with differ-
ent scales. Actually EMD is a true metric when comparing
distributions with the same capacity.

4.2 Efficient EMD Computation

Computing EMD is based on a well-known linear
programming problem, the transportation problem. The
transportation problem defines a bipartite network with S as
a set of suppliers and C as a set of consumers. Xi(0≤ i≤ n)
is the total supply of supplier i and Yj(0 ≤ j ≤ m) is the
total capacity of the consumer j. Ti j is the cost to ship a unit

Figure 4. A feature (in a 16× 16 grid)) and its
simplification (in a 4×4 grid)).

of supply from supplier i to consumer j. The transportation
problem is to find a set of flows Fi j that minimize the
overall cost:

∑(0≤i≤n) ∑(0≤ j≤m)(Ti j×Fi j)

subject to the following constraints:

Fi j ≥ 0 (0≤ i≤ n and 0≤ j ≤ m)

∑(0≤i≤n) Fi j = Yj (0≤ i≤ n)

∑(0≤ j≤m) Fi j ≤ Xi (0≤ j ≤ m)

The constraints force the consumers to fill up all of their
capacities and each supplier can not transport more than its
supply. We assume the total demand does not exceed the
total supply, as we can switch what we call supplier and
consumer if necessary. Efficient algorithms are available
to solve the transportation problem. In our implementa-
tion, we used the transportation-simplex method which is
a streamlined algorithm based on the simplex method [7].
Actually we can further improve the efficiency of the EMD
computation. During the EMD computation between two
distributions, it is unnecessary to use the whole distribution.
Researchers have used a so-called signature [14, 15] of the
distribution to further speed up the EMD calculation.

Now we describe a method to simplify the feature distri-
bution information. This is very similar to the vertex clus-
tering algorithm to simplify meshes [13]. To accelerate the
EMD computation, we put the features into a coarser grid
by simply merging n3 cells into a single large cell (A 2D
example is shown in figure 4). This large cell may contain
many feature cells at the original resolution. We use the
average location of the feature cells as the location in the
merged cell, and the capacity of the merged cell equals to
the total capacity of the feature cells in the original n3 cells.
The process can be efficiently done by a linear scan of all
the feature cells. After the simplification, the size of the
feature distribution is reduced significantly. However, the
simplified feature distribution maintains the same signature
with the original one, that is, they show the same spatial

5

distribution pattern. So the EMD values using the simpli-
fied features will be just as accurate.

EMD provides an accurate matching cost between any
source and destination feature components. Another impor-
tant issue is how to calculate Cost(S,D) efficiently. In the
next section, we will explain how we achieve this by using
a branch-and bound search algorithm.

5 Global Optimization Based on Branch-
and-Bound

5.1 The Search Tree

Equation 1 implicitly defines a search tree structure. The
root of the tree is Cost(S,D). We assume that the feature
components are considered sequentially from S0 to Sn−1.
Following equation 1, at the first level of the search tree,
each node represents one of the following matching possi-
bilities that involve the first feature S0:

• Match S0 to an individual component in D.

• Match S0 to a compound component in D.

• Match S0 to an empty component.

• Match any compound component containing S0 to an
individual component in D.

In the example shown in figure 5 where we want to find
the correspondence between three source features and three
destination features, we will consider the following possi-
ble matches at the first level of the tree: S0 →D0, S0 →D1,
S0 → D2, S0 → D12, S0 → /0, S01 → D0, S01 → D1, and
S01 → D2. For simplicity, we limit the possible compound
components to only S01 and D12 (A method to identify com-
pound component candidates will be introduced in section
5.4). From the first level of the tree, following each branch
we will consider matching the first feature in the remain-
der of the source features at the second level. Similarly to
the first level, all the four combinations listed above will be
considered as long as the feature has not been covered in the
ancestor nodes. Using the same example, when following
the branch of S0 → D0, the following matches will be con-
sidered at the second level: S1 → D1, S1 → D2, S1 → D12,
S1 → /0. Notice that all matches involving the compound
component S01 are excluded following this branch since S0
has already been matched in the parent node. Any matches
to D0 are excluded for the same reason. This process will
repeat until all the source feature components have been
matched. Note that there might be still some destination
features remaining with no correspondence. We then match
an empty component to each of the remaining destination
features and add these to the search tree. We can see that the
search tree considers all the possible match combinations.
The match with the minimal overall cost, which defines a

Figure 5. An example of two feature sets to
be matched.

Figure 6. Part of the search tree for the case
in figure 5.

unique path from the root to one of the leaf nodes, provides
the globally best match for each source feature component.

If we follow the previous description to build the tree,
the size of the tree can be huge. Accordingly it will take a
long time to find the minimal Cost(S,D). In the next two
sections, we introduce methods to reduce the size and ac-
cordingly the search time of the tree. We first present a
branch-and-bound method that is able to significantly re-
duce the size of the search tree. Then a way to get a tight
estimation of the minimal cost is introduced to further speed
up the process. We also describe a method to identify com-
pound component candidates.

5.2 Branch and Bound

The search tree contains all the possible matches be-
tween the source and destination feature sets. At each
branch of the tree, we consider all the matches which corre-
spond to all the evolutionary events that can happen to the
first feature in the current source feature set. We calculate
the EMD value for each match and sort the matches based
on the EMD value in an ascending order. The tree is tra-
versed using a depth-first method, with the node that has
the smallest EMD traversed first at each level of the tree.

6

Figure 7. An example to illustrate how the
branch-and-bound operation is applied to en-
able efficient tree search.

This enables a branch-and-bound operation, which can sig-
nificantly reduce the size of the search tree.

During the depth-first traversal of the tree, we keep the
minimal cost of all the legitimate matches (MinLgtCost)
that have been found so far. A match is legitimate if and
only if every component in the source and destination fea-
ture sets occurs in the match exactly once. Whenever
a legitimate match is reached, we use its cost to update
MinLgtCost if the cost is smaller. This MinLgtCost can
be used to prune the tree in the following way. As the tree
is being traversed, at each node we evaluate the total cost
of the path from the root to the current node, and store it
as CostSubsets. CostSubsets is the overall cost to match a
subset of the source features and a subset of the destina-
tion features. If CostSubsets is smaller than MinLgtCost,
the depth-first traversal continues. Otherwise the entire
branch following the current node can be pruned. This is
because if the cost to match only the subsets of the fea-
tures (CostSubsets) is already larger than MinLgtCost, all
the matches following the current node will certainly have
matching cost larger than MinLgtCost, and hence none of
these matches can be optimal.

Figure 7 shows an example of this branch-and-bound
operation. The search process currently reaches the node
S1 → D0 and the MinLgtCost = 30. Suppose the matching
cost of the path from the root to the current node, which is
a summation of the costs S0 → D1 and S1 → D0, is 35. If
the search process keeps traversing down the node S1 →D0,
all the legitimate matches found along the branch will have
cost greater than 35, and of course greater than MinLgtCost,
which is currently 30. Therefore, there is no need to traverse
down this branch. The pruning operation can be applied to
remove this branch.

In fact, whenever a node with its current overall cost
(CostSubsets) greater than MinLgtCost is found out, an

even larger portion of the tree can be pruned away in ad-
dition to the branch following the node. Recall that for each
source feature, we have sorted all of its matching candidates
based on their EMD values in an ascending order. Thus,
at the current level of the tree, there is no need to try any
remaining matching candidates of the current source fea-
ture, since the overall cost of the path from the root to any
of those nodes will be larger than CostSubsets, and hence
larger than MinLgtCost. An example is also illustrated in
figure 7. The branch at the node S1 → D0 has already been
cut away. We know that the matching candidates of S1 have
been sorted in the EMD-value ascending order. Therefore,
for any matching candidates Di of S1 that appear behind D0,
the matching cost of S1→Di is greater than that of S1→D0,
therefore, the cost of the path from the root to any of these
matching candidates is greater than 35. None of the legit-
imate matches along these branches can have cost smaller
than MinLgtCost (30). Therefore, all these branches can be
pruned right away.

5.3 Further Speedup by a Good Estima-
tion of the Minimal Cost

Branch-and-bound is a very powerful operation. As
soon as a good evaluation of the current minimal cost
(MinLgtCost) is reached, it can be used to cut away the
search tree efficiently. When the global optimization is per-
formed by the branch-and-bound operation, MinLgtCost of
all the legitimate matches found so far keeps decreasing un-
til a global minimum is reached, which defines the glob-
ally best match. We can initialize MinLgtCost to an arbi-
trary large value and let the tree pruning process to find the
global minimum. However, a tighter bound of MinLgtCost
can accelerate the tree pruning process significantly. If
MinLgtCost starts with a very large value, at the beginning
stage of tree traversal, very few pruning operations can be
applied. In fact, it may take many runs to reach a reasonable
MinLgtCost. However, a tighter MinLgtCost can accelerate
the tree pruning process from the very beginning and speed
up the whole process.

We find a tighter bound of MinLgtCost using a greedy
method. First among all the matches between any source
and destination feature components, we find the match with
the smallest EMD. This may be a match between two single
components, between single and compound components, or
between single and empty components. After the match
is discovered, we remove the features associated with this
match from the feature space. Then the above process
repeats recursively in the remainder of the feature space.
When at some point either the source or destination feature
set becomes empty, we will match an empty component to
those remaining unmatched components. Although the re-
sult of this greedy process is not the global minimum in
most cases, it is a good estimation of MinLgtCost. Using

7

this estimation, the tree pruning operation can be applied
from the very beginning of the tree buildup process. The
whole search process therefore can be substantially acceler-
ated using this good estimate of the minimal cost.

5.4 Using EMD to Identify Compound
Component Candidates

To identify all the evolutionary events, at each branch of
the search tree, we need to consider matches between sin-
gle and empty components (for creation and dissipation),
between two single components (for continuation), and be-
tween single and compound components (for amalgamation
and bifurcation). For better efficiency, we need to have
a good way to identify compound component candidates,
rather than trying every possible combination of the feature
components.

Our method to identify compound component candidates
is based on the EMD’s property that EMD allows partial
matching. Suppose feature Oi and O j form a compound
component and they merge to feature Ok in the next time
step. If we represent Oi, O j and Ok by the cells they occupy
in space and assign the weight of each individual cell to be
1, the EMD value between feature Oi and Ok (EMDik) and
that between feature O j and Ok (EMD jk) should be small
compared to the EMD value between other components
and Ok. In addition, the summation of EMDik and EMD jk
should be close to the EMD value between Ok and the union
of Oi and O j. Furthermore, compound component should
lie within the close neighborhood of each other. Notice that
we want EMD to allow for partial matching here, therefore,
during the identification of compound components, we do
not scale the capacity of any feature distributions, which
was used to make their capacities equivalent.

In our algorithm, we stay conservative during the iden-
tification of compound components. For any features that
map to the same feature Ok with small EMD values and
the summation of the EMD values is also close to the EMD
value between the union of these features and Ok, we con-
sider it as a compound component candidate. Additional
criterion such as spatial closeness can be applied to rule
out some plausible cases. We may identify some false-
positive cases, but this will be taken care of by the global
optimization algorithm. Notice that compound components
identified by this method are only candidates to identify
possible amalgamation/bifurcation. Whether amalgama-
tion/bifurcation takes place still depends on the result of the
global optimization.

It is also necessary to calculate the EMD value between a
feature component and an empty component, which is used
to detect creation/dissipation. We assume the empty com-
ponent be a cell in space with its weight equal to that of
the feature component being matched. The centroid of the
empty component, i.e, the position of the cell, can be pred-

t=0 t=1

t=2 t=3

Figure 8. Time varying features from a force
field data set are tracked and the tracking re-
sult determines the coloring of the features.
Four snapshots are shown.

icated by using the trajectory along which the feature has
evolved. The Euclidean distance can be used as the ground
distance function. In our implementation, we want to penal-
ize more on creating or dissipating large components. So
the nonlinear function in equation 2 is used as the ground
distance.

In order to detect amalgamation/bifurcation, we need to
calculate the EMD value between single and compound
components. This is simply achieved by merging the dis-
tribution of each individual component in the compound
component as the distribution of the compound component.
Then the EMD computation can be applied in a straightfor-
ward way.

6 Results

We have tested our algorithm using a 1283 time-varying
force field data set and a vorticity magnitude data set of
the same resolution. The machine we used was a Pentium
XEON 3GHz with 3G main memory.

The force field data set was generated by distributing el-
lipsoidal sites in space. The force of each point in space
is the summation of the force it gathers from every site.
Each ellipsoidal site has its own weight, which determines
its influence to any given point in space. The force from

8

t=1 t=3

t=5 t=7

Figure 9. Time varying features from the vor-
ticity data set are tracked and the tracking re-
sult determines the coloring of the features.
Four snapshots are shown.

an ellipsoidal site is anisotropic, i.e, stronger in some direc-
tions and weaker in other directions. Those ellipsoidal sites
are moving in space with their weights changing too. Fig-
ure 8 shows the tracking result from the time-varying force
field. The feature we track is the time-varying isosurface
with an isovalue of 0.9. In the figure, each feature is col-
ored in such a way that it has the same color as the feature
it evolves from. When amalgamation happens where a fea-
ture evolves from multiple features, the current feature will
get the color of the previous dominant feature. The domi-
nance is defined by volume in our example, i.e., the current
component would follow the color of the previous largest
feature from which it evolves. In the case that a new feature
is created, a new color is assigned to it. We also numbered
part of the features for later explanation. These numbers are
generated by feature extraction software and do not reflect
the correspondence relationship between features.

There are multiple thin/small or fast-moving features in
this example. For instance, F6

0 (feature 6 at t=0) is a thin
feature. Although it is not moving very fast, it does not
overlap with F6

1 which is the feature it will evolve into. F0
0

and F5
0 are small components which move fast relative to

their own sizes. They have no overlap with the features
they will evolve into either. It is hard for the tracking al-
gorithms based on volume overlapping to detect the corre-

Time step 0-1 1-2 2-3
EMD computation time 0.042 0.037 0.029

Global optimization time 0.039 0.031 0.041

Table 1. The timing (in seconds) for the case
in figure 8.

Feature 1st EMD 2nd EMD 3rd EMD 4th EMD
F3

0 F1
1 F3

1 F1
1 F3

1 F10
1

(2.65) (4.03) (8.46) (22.09)
F6

0 F6
1 DIS F13

1 F10
1

(7.68) (23.25) (36.30) (40.61)
F11

0 F13
1 F7

1 F0
1 F9

1
(3.29) (23.65) (33.67) (34.10)

Table 2. The EMD values for F3
0 , F6

0 and F11
0 .

The first four smallest values are shown. DIS
means a feature dissipates.

spondence. But by using the EMD metric and global op-
timization, our algorithm detected the correspondence for
those features correctly, as shown in the figure. In t=2, fea-
ture F1

2 and F2
2 move quickly. Feature F1

2 and F2
2 should

correspond to F1
3 and F4

3 , respectively. However, from the
overlapping relationship, F1

3 overlaps with both F1
2 and F2

2
and the overlap between F1

3 and F2
2 are larger than that be-

tween F1
3 and F1

2 . Therefore, it is very likely that the track-
ing algorithms based on volume overlapping correspond F1

3
to F2

2 and treat F1
2 and F4

3 as dissipation and creation re-
spectively. If the features are matched by using attributes
such as centroid and volume, F1

3 is closest to F2
2 and they

have similar volumes. Therefore, tracking algorithms based
on similar-attribute are likely to correspond F1

3 to F2
2 as the

volume-overlapping algorithms. By taking the global con-
figuration into account and performing a global optimiza-
tion based on the EMD values, our algorithm gave the cor-
rect result, as illustrated in the figure.

Timing results for the previous example are shown in ta-
ble 1. The EMD values of some features are also shown in
table 2. For each feature, the first four smallest EMDs are
shown. We can see that the EMD value between a feature
and the feature(s) it will evolve into is very small (in many
cases it is the smallest). The EMD value between the fea-
ture and other features is usually much larger. This property
makes the branch-and-bound method very efficient.

We also performed tests on the vorticity magnitude data
set. The features we tracked are the time-varying isosurface
with an isovalue of 6.9. Features are colored in the same
way as in the previous example and reflect how the fea-

9

Time step 0-1 1-2 2-3 3-4 4-5
EMD computa 0.063 0.079 0.079 0.094 0.093

-tion time
Global optimi 0.042 0.039 0.010 0.012 0.017
-zation time

Table 3. The timing (in seconds) for the case
in figure 9.

ture evolves. Four snapshots from the tracking results are
shown in figure 9. Our global tracking algorithm gives ac-
curate results with high efficiency. The result of the volume-
overlapping based algorithms depends on a threshold value
which measures what degree of overlapping should be con-
sidered as correspondence. If the threshold is set too high,
there will be many creation/dissipation events. If the thresh-
old is too small, features may get classified as continuation
when they are not. Similar problems exist for the similar-
attribute based algorithms. The result of those algorithms
depends on the threshold values that are used to determine
if the centroid positions, volumes, and masses etc are within
the tolerance. However, by taking the global configuration
of the features into consideration, our algorithm can deter-
mine the tracking results effectively without using thresh-
old values. Timing results for the example in the figure 9 is
shown in table 3.

7 Conclusions and Future Work

In this paper, we propose a global optimization algorithm
to track time-varying features. Our algorithm is readily used
to track any features that can be represented by the spatial
distribution of cells. The algorithm can also be easily ex-
tended to track any features which can be represented by
some other distribution information so that EMD can be
used to measure feature dissimilarity. EMD is used as a bet-
ter metric to measure the matching cost between any source
and destination feature components. An efficient global op-
timization process is applied to find the globally best match
among two feature sets. The efficiency comes from the
branch-and-bound search algorithm, and a tighter estimate
of the minimal cost further speeds up the search.

Reinders et al.[12] used a predication scheme exten-
sively in their research to predict how the feature attributes
change over time. We believe that the predication scheme
will also be beneficial to our algorithm, especially during
the EMD computation between a source and destination
feature component. In the future work, we will attempt to
incorporate the predication scheme into our work. It is also
interesting to track sub-features, such as the tip on a surface,
and to see how the sub-features change when time evolves.

References

[1] Y. Arnaud, M. Desbois, and J. Maizi. Automatic tracking and characterization
of african convective systems on meteosat pictures. Journal of Applied Meteo-
rology, 31(5):443–453, 1992.

[2] D.H. Ballard. Computer Vision. Prentice-Hall,Inc, Englewood, New Jersey,
1982.

[3] D. Bank and B. Singer. A predictor-corrector technique for visualizing unsteady
flow. IEEE Transactions on Visualization and Computer Graphics, 1(2):151–
163, 1995.

[4] J. Chen, D. Silver, and L. Jiang. The feature tree: Visualizing feature tracking
in distributed amr datasets. In Proceedings of IEEE symposium on Parallel and
Large-Data Visualization and Graphics 2003, pages 103–110, 2003.

[5] I. Fujishiro, Y. Maeda, and H. Sato. Interval volume: A solid fitting technique
for volumetric data display and analysis. In Proceedings of IEEE Visualization
1995, pages 151–158, 1995.

[6] B. Guo. Interval set: A volume rendering technique generalizing isosurface
extraction. In Proceedings of IEEE Visualization 1995, pages 3–10, 1995.

[7] F.S. Hillier and G.J. Liberman. Introducetion to Mathematical Programming.
McGraw-Hill, 1990.

[8] G. Ji and H-W. Shen. Efficient isosurface tracking using precomputed corre-
spondence table. In Joint Eurographics - IEEE TCVG Symposium on Visual-
ization 2004, 2004.

[9] G. Ji, H-W. Shen, and R. Wenger. Volume tracking using higher dimensional
isosurfacing. In Proceedings of Visualization 2003, pages 209–216, 2003.

[10] W. Koegler. Case study: Applications of feature tracking to analysis of au-
toignition simulation data. In Proceedings of IEEE Visulazation 2001, pages
461–464, 2001.

[11] W.E. Lorensen and H.E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of ACM SIGGRAPH 1987, pages 163–
169, 1987.

[12] F. Reinders, F.H. Post, and H.J.W. Spoelder. Visualization of time-dependent
data using feature tracking and event detection. The Visual Computer,
17(1):55–71, 2001.

[13] J. Rossignac and P. Borrel. Multi-resolution 3d approximations for rendering
complex scenes. In Geometric Modeling in Computer Graphics 1993, pages
455–465, 1993.

[14] Y. Rubner, L.J. Guibas, and C. Tomasi. The earth mover’s distance, multi-
dimensional scaling, and color-based image retrieval. In Proceedings of DARPA
Image Understanding Workshop, pages 661–668, 1997.

[15] Y. Rubner, C. Tomasi, and L.J. Guibas. A metric for distributions with appli-
cations to image databases. In IEEE International Conference on Computer
Vision 1998, pages 59–66, 1998.

[16] R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing features and track-
ing their evolution. IEEE Computer, 27(7):20–27, 1994.

[17] J. Shi and C. Tomasi. Good features to track. In IEEE Conference on Computer
Vision and Pattern Recognition 1994, pages 593–600, 1994.

[18] D. Silver. Object-oriented visualization. IEEE Computer Graphics and Appli-
cations, 15(3), 1995.

[19] D. Silver and X. Wang. Volume tracking. In Proceedings of Visualization 1996,
pages 157–164, 1996.

[20] D. Silver and X. Wang. Tracking and visualizing turbulent 3d features. IEEE
Transactions on Visualization and Computer Graphics, 3(2):129–141, 1997.

[21] D. Silver and X. Wang. Tracking scalar features in unstructured datasets. In
Proceedings of Visualization 1998, pages 79–86, 1998.

[22] B.S. Sohn and C. Bajaj. Time-varying contour topology. IEEE Transactions on
Visualization and Computer Graphics, 12(1):14–25, 2006.

10

