
Eurographics Symposium on Parallel Graphics and Visualization (2007)
Jean M. Favre, Luis Paulo dos Santos, and Dirk Reiners (Editors)

Parallel Reflective Symmetry Transformation for Volume
Data

Y. Hong†1 and H. W. Shen1

1The Ohio State University, Columbus OH, USA

Figure 1: 3D volume data with symmetric features. The primary reflective planes are drawn in blue and some other orthogonal
planes are used to illustrate the visibility of symmetry continuity.

Abstract

Many volume data possess symmetric features that can be clearly observed, for example, those existing in diffusion
tensor image data sets. The exploitations of symmetries for volume data sets, however, are relatively limited due
to the prohibitive computational cost of detecting the symmetries. In this paper we present an efficient parallel
algorithm for symmetry computation in volume data represented by regular grids. Optimization is achieved by
converting the raw data into a hierarchical tree-like structure. We use a novel algorithm to partition the tree and
distribute the data among processors to minimize the data dependency at run time. The computed symmetries are
useful for several volume data applications, including optimal view selection and slice position explorion.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Symmetry; I.3.3 [Com-
puter Graphics]: Volume Rendering; I.3.3 [Computer Graphics]: Parallel Computing

1. Introduction

Symmetry detection has been well studied since the 1980’s,
mainly focused upon calculating global symmetry with re-
spect to planes passing through the center of an object. Re-
cently, [PSG∗06] introduced a symmetry transform that pro-
vides a continuous measure of the reflective symmetry of
an object with respect to all planes. The resulting symme-
try information can be applied to computer vision, computer
graphics, medical image processing and other various ar-
eas. In [PSG∗06] several examples were presented, includ-
ing alignment of objects into a canonical coordinate sys-

† Computer Science Department

tem, geometric shape matching and optimal viewpoint se-
lection. The redundant symmetry information can also be
used to recover the missing data and for object reconstruc-
tion [ZPA93].

In the field of volume visualization, symmetry informa-
tion has not been widely utilized due to the large data sizes
and hence the prohibitively expensive computation complex-
ity incurred. The volume symmetry, however, can be very
useful because many volume data intrinsically bear symmet-
ric objects. One of the most obvious applications of volume
symmetries is to speed up rendering. Since symmetry rep-
resents data redundancy to some extent, having the geomet-
rically symmetric information in hand, we can only render
half of a nearly symmetric volume object and display the

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

another half reflectively. This is especially useful in the mul-
tiresolution rendering where the reflective portion can be re-
duced to a lower resolution. Knowing the volume symmetry
can also be helpful to accelerate the computation of Plenop-
tic Opacity Function (POF) in the procedure of visibility
culling [GHS∗03].

The key problem for symmetry computation in a volume
data set is to design an efficient algorithm, which is a non-
trivial task. Today’s scientific applications are capable of
generating high resolution, high dimensional data sets with
large sizes. Although computer hardware has advanced, the
data sizes have grown faster making it almost impossible to
compute symmetry using a single PC or workstation. To ad-
dress this challenge, a viable solution is to utilize parallelism
to speedup the computational time.

In this paper, we present a parallel algorithm for sym-
metry computation with general volume data. We measure
the reflective symmetry of an object with respect to each
plane through its volume boundary [PSG∗06]. Although re-
searchers have proposed various methods for symmetry en-
coding and computation for large scale volumes, few studies
have focused on designing parallel algorithms for such a pur-
pose. The contributions of our work are three-fold. First, we
utilize a basic parallelization process for symmetry compu-
tation. Second, we propose several optimization methods to
minimize both space and run-time computation overheads.
A Monte Carlo method is applied to quickly estimate the
trends of symmetries and eliminate unnecessary computa-
tion for many non-symmetric planes. We use this method to
optimize our performance rather than calculating the actual
symmetries. Third, we investigate several possible applica-
tions in the context of volume rendering. Figure 1 shows sev-
eral volume datasets with primary reflective planes drawn in
colors. In many cases the best slicing-cross section coincides
with data’s main reflective plane.

The rest of the paper is organized as follows. First, we re-
view related work in Section 2. From Section 3 to Section
5, we describe our parallel symmetry computing algorithms,
including proof of existence of parallelization in symmetry
computation, construction of the octree tree with hierarchi-
cal representation, and data distribution with space-filling
curve traversal. Section 6 presents our adaptive planar sam-
pling scheme using a Monte Carlo method. Results on paral-
lel symmetry computation and load balancing among differ-
ent processors are given in Section 7. Concise descriptions
of symmetry applications in volume visualization are intro-
duced in Section 8. The paper is concluded in Section 9, with
an outline of future work for our research.

2. Related Work

2.1. Symmetry Applications

Many graphics applications can use symmetry information.
The alignment problem is one of the symmetry applications

which was mentioned in [PSG∗06]. Alignment of objects
into a canonical coordinate frame is a task, especially useful
in volume visualization, view selection and image composi-
tion. To perform volume alignment, an origin is selected and
a set of axes are chosen to establish the dimensional orien-
tations. Better alignment will increase users’ understanding
of the visualized volume data. In medical visualization doc-
tors prefer to align volume objects in a natural way. Volume
data, however, usually is visualized at the origin of the data
center and aligned by data principal axes. In some cases the
centers of datasets are misaligned with the centers of volume
objects which makes it difficult to adjust the view-direction.
The Lobster is such a case. Symmetry information can be ap-
plied to search for optimal alignment. [PSG∗06] introduced
principal symmetry axes and center of symmetry: three per-
pendicular planes with maximal symmetries form the three
principal axes and the origin.

Cross sections are used to explore the internal structures
of volume objects. Generally the main intersection plane
should be chosen across an object’s center of mass and
should lie along the principle symmetric plane. It is also rea-
sonable to place further cross-sections along perpendicular
symmetric planes on the volume data. This can be solved by
application of symmetry alignments. Dual-rendering tech-
nique can be used to display contrasting visual information
along the symmetric cross-sections. Section 8.1 will discuss
this issue in detail.

As geometric properties of symmetric features are essen-
tially related to objects’ shape, they can be used to construct
shape descriptors. In a volume database system objects in
the dataset are classified by their global symmetries. This is
based on the observation symmetry properties are often con-
sistent within a class of objects [PSG∗06]. Volume segmen-
tation is fulfilled by comparing objects’ local symmetries: m
local maxima planes in symmetry are firstly selected; Then
for each voxel the contributions for each of m local maximal
planes are calculated and built into a feature vector; Finally
clustering these feature vectors according to their proximi-
ties in the m dimensional feature space.

2.2. Symmetry Computation

Most existing symmetry detection methods deal with dis-
crete symmetries; perfect symmetry or imperfect symmetry
under rotation, reflection, or translation. Efficient algorithms
have been designed to compute perfect symmetry. Atallah
presented a substring matching algorithm [ATA85] to find
perfect symmetry based upon the fact that a circular string is
perfectly symmetric if it consists of two identical substrings.
Ishikawa et al. [ISM∗92] and Minovic et al. [MIK93] used
an octree representation to find the symmetry of a 3D object.
In [SS97], extended Gaussian images were used to detect
symmetry of an object based on the idea that if an object
is symmetrical, so is its extended Gaussian image. Gener-
ally speaking, these models work only with perfect symme-

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

try and only care about reflection about a given plane. Their
computational complexities are relatively small, compared
with symmetry measurement with respect to all the planes
though the object.

Perfect symmetry, however, is rare in reality. Only in a
few cases is there only one unique perfect symmetry plane
through an object. Zabrodsky et al. [ZPA93,ZPA95] defined
the continuous symmetry distance to quantify the degree of
symmetry in objects, which is the L2 distance between a
given shape and the smallest shape that is perfectly symmet-
ric with respect to the same plane. Kazhdan et al. [KCD∗03]
extended this concept to define a shape descriptor that cal-
culates the symmetry of an object with respect to all the
planes going through the center. Kazhdan et al. applied the
Fast Fourier Transform to compute the convolution for all
angles that define corresponding reflective planes. They also
used Fourier Decomposition to create a multiresolution ap-
proximation based on the fact that global features will be
symmetric in low resolutions. Their method is efficient in
computing the descriptor from a volumetric representation.
However, there isn’t necessary for parallelization of the com-
putation to obtain scaling performance.

Extending [KCD∗03], Podolak et al. [PSG∗06] consid-
ered the continuous symmetry with respect to all planes
through the object’s bounding volume. This extension
greatly increases the computation complexity, which is up
to O(n5logn) even using convolution. To improve the effi-
ciency, Podolak et al. designed Monte Carlo sampling algo-
rithm by exploiting sparsity in the data volume. Our work
differs from this research in that we exploit parallelism in
symmetry computation instead of relying upon stochastic
methods.

The scientific and visualization community is witnessing
a rapid growth of data. It is normal to see a scientific simula-
tion producing petabytes of data.To visualize large volumes,
computer scientists have utilized parallel computing to al-
leviate the burden incurred by the large data sets. In some
cases, parallelism is the only valid choice since no single
machine can process so much data in a reasonable amount
of time.

Various parallel computing algorithms have been de-
scribed for volume visualization. For example, researchers
have used a SIMD machine to speed up isosurface extrac-
tion [HH92], a dynamic block distribution scheme for un-
structured isosurface extraction [Ell95], and a parallel algo-
rithm to render large scale particle systems [CA97]. Shen et
al. [SHL∗96] devised a parallel isosurface extraction algo-
rithm based on span space subdivisions. Ma et al. [MPH∗94]
proposed a parallel algorithm that distributes data evenly to
the available computing nodes and produces the final im-
age using binary-swap composition. A parallelized shear-
warp volume rendering algorithm was provided in [SL03].
Some other research [LMC02] achieved scalable volume
rendering by utilizing lossy compression techniques to ren-

der time-varying scalar data sets. Optimizations, including
visibility culling, were also introduced into parallel environ-
ment to further reduce the rendering time of large-scale data
sets [GS01, GHS∗03].

3. Background

In this section, we provide background information for sym-
metry distance and briefly explain how to exploit parallelism
to speed up computation. Zabrodsky et al. [ZPA95] and
Kazhdan et al. [KCD∗03] described the concept of symme-
try distance, SD( f ,γ), using the L2 norm:

SD( f ,γ) = min
g|γ(g)=g

‖ f −g‖.

Here f is defined as a scalar-valued function and γ is the re-
flection plane. Symmetry distance, SD( f ,γ), describes a L2
distance between f and the closest perfect symmetric func-
tion g. Kazhdan et al. [KCD∗03] further simplified SD( f ,γ)
by replacing the closest symmetric function g with the aver-
age of f and γ( f ):

SD( f ,γ) = ‖ f − f + γ( f )
2

‖=
‖ f − γ( f )‖

2
. (1)

Here γ( f ) is the reflection of f with respect to γ . Podolak
et al. proved in [PSG∗06] that the calculation of the normal-
ized symmetry distance, SD2( f ,γ)

‖ f‖2 , can reduce to a series of
dot products between f and γ( f ), if f is normalized. Their
method is essentially the same as [KCD∗03].

If function f is defined as volume data N×N×N points,
f can be decomposed into a collection of concentric spheres,
all centered around the object center. The problem to mea-
sure reflective symmetry with respect to the reflection plane
γ translates to approximately calculating a series of symme-
tries of concentric spheres. That is:

SD( f ,γ)≈

√√√√ N

∑
r=0

SD2( fr,γ). (2)

fr is the function defined on the ball with radius r. Equa-
tion 2 naively shows the parallelism in symmetry compu-
tation. By assigning individual fr to different processors, a
preliminary parallel algorithm is obtained. It can be seen that
such an algorithm will not work efficiently because of the
imbalanced work-loads at run-time. With the increasing ra-
dius r, the data described in fr becomes larger exponentially,
which is intolerable for most applications.

Kazhdan et al. [KCD∗03] mentioned that the function f
should be transformed to a volumetric representation that de-
scribes not only the space locations of points but also the

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

distance to the object defined by the function f . It is un-
necessary in our work since we start with the volume data
directly. In order to smooth the noise and capture the imper-
fect symmetries, we apply a Gaussian Distance Transform
(GDT) to the volume data when we compute the reflective
volume symmetry. The GDT has the similar form as pre-
viously described in [KCD∗03] and [PSG∗06], but with a
different notation:

GDT (x1,x2,M,σ) = e−D2(x1,x2,M)/σ 2
, (3)

D(x1,x2,M) is the difference between two values x1 and
x2 in volume data M, and σ is a user-defined coefficient to
limit the Gaussian curve. Equation 3 is a Gaussian curve-like
function that reaches the maximal value when x1 and x2 has
the same value and gradually decreases when x1 and x2 differ
from each other. When computing reflective symmetry, the
difference between values of point x and its reflection γ(x) is
smoothed by Equation 3 and is summed together to compute
the final global symmetry.

The key problem is to compute SD( f ,γ) efficiently. In
Section 4, we discuss in detail the method for a parallel im-
plementation.

4. Algorithm Overview

Our parallel symmetry computation algorithm consists of
three stages: preprocessing, compressed data compositing
and run-time computation. In the preprocessing stage, we
distribute the data blocks among different processors using
a hierarchical space-filling curve to maintain load balance.
Section 5.1 introduces the statical data allocation technique
along a space-filling curve that improves load balancing.
Then, for each processor, we build a hierarchical wavelet tree
and compress the corresponding wavelet coefficients using a
combination of run-length and Huffman encoding [KS99].
Section 5.3 shows the wavelet compression technique and
explains how multiresolution data can be used for symme-
try computation. A histogram of possible reflective points is
calculated in this stage. Clusters in the histogram are used to
determine which blocks will be frequently used in the sub-
sequent stages and those blocks are allocated to each proces-
sor.

In the compressed data composition stage, the locally-
built wavelet trees are sent back to the host node by us-
ing the binary swap algorithm introduced in [MJC∗94]. The
basic idea is similar to that used in image composition in
[MJC∗94], except we replace the over operator with the ap-
pend operator. The main goal of this stage is to grow the
local wavelet tree residing in each processor to reduce data
request at run-time. Pairing-up processors will exchange half
of their local compressed wavelet blocks with each other.
Exchanging blocks are selected by a user-defined multireso-
lution error tolerance. Each processor will add the received
blocks from its partner to its own compressed wavelet block
links.

In the final stage, the processors compute the symmetry
distances from the distributed data according to Equation 1.
If the necessary data are not available REQUEST/REPLY
mechanism is called (see Section 5.4). The final global sym-
metry is generated by compositing the partially calculated
symmetries at different processors. Several optimizations
can be applied to our algorithm which will be discussed in
the section 5.

4.1. Parameterizations

In our implementation, we use spherical coordinates to rep-
resent the reflection planes which can be parameterized by
normals of the planes and the distances from the origin to
those planes. When working in 3D, the normal n̂ can be ex-
pressed as:

n̂ =

sinθ cosφ

sinθ sinφ

cosθ


where θ ∈ [0 π

2 ] and φ ∈ [0 2π]. The distance from origin
to the plane is r ∈ [0 rmax].

4.2. Algorithms

In the following, we propose our parallel algorithm for cal-
culating symmetry distance of a N×N×N volume dataset
defined by function f . The following describes the main
work-flow of our parallel algorithm. Some details, such as
data exchanges and compression, are described in Section 5.

The brute-force algorithm is a trivial solution to calculate
symmetry. For every possible plane reflection γ for every
point separately, we execute the three stages described pre-
viously. The complexity of the brute-force algorithm for a
p-processor parallel system, is O(K6logK) + O(p), where
K = N

p and the second term of complexity, O(p), stands for
the communication and composition cost. If using convolu-
tion the complexity becomes O(K5log2K) + O(p). It takes
approximately 100 seconds on average to compute symme-
try on volume data with 128×128×72 grid.

In Algorithm 1, we use a multiresolution technique to
speed up the symmetry calculation. Points are sampled ac-
cording to their gradient magnitudes. Points with gradient
magnitudes smaller than a user-defined threshold are thrown
away. Our assumption is that points with smaller gradients
most likely bear trivial importance, contributing little ob-
jects’ surfaces. Furthermore, we utilize the wavelet tree by
partially reconstructing the block data f based upon the user-
defined error tolerance. In detail, we do not reconstruct data
stored in the wavelet tree completely from the root down to
the leaves during the retrieval. We stop reconstruction at a
higher level of wavelet tree if the error-tolerance is satisfied.
The complexity of Algorithm 1, for a p-processor parallel
system, is O(K5C)+ O(logp), where C is related to the er-
ror tolerance. The calculated symmetries are interpolated to

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

obtain higher accuracy by taking advantage of the continuity
property shown in [PSG∗06].

Algorithm 1 Algorithm: Multiresolution Method
1: Compress the distributed volume data into a local

wavelet tree Tloc
2: Composite the global Tglobal by binary swap
3: for each plane γ do
4: for each sampled point x do
5: Retrieve f(x) from Tglobal , controlled by the user-

defined error tolerance
6: x′← γ(x)
7: Retrieve f(x’) from Tglobal , controlled by the user-

defined error tolerance
8: D( f ,γ)+← GDT ( f (x), f (x′),γ)
9: end for

10: end for
11: Composite the global symmetry by binary swap

5. Optimization Methods

This section introduces several optimization techniques used
in Algorithm 1.

5.1. Data Distribution in Space-Filling Curve

For efficiency in a parallel algorithm, it should ensure that
all the processors have an equal amount of workload at run
time. However, when symmetry computation is performed,
the processors with data blocks near the center will have
heavier workloads than other processors, if data blocks are
distributed in a spatially uniform way. This phenomenon was
observed in [PSG∗06]. Portions of a model away from the
center naturally have lower reflective symmetries since their
reflective counterparts are outside the bounding volume and
can be skipped (section 5.2). This imbalanced workload dis-
tribution should be avoided. The basic idea for our opti-
mization method is to utilize the spatial coherence in vol-
ume data. In general, a volumetric data set usually exhibits
strong spatial coherence. Kazhdan et al. [KCD∗03] demon-
strated that Equation 2 is stable even with the presence of
high-frequency noise. It allows the objects to be slightly de-
formed so that imperfect symmetries can still be captured.

In our algorithm, a space-filling curve is utilized to as-
sign the data blocks to different processors. The space-filling
curve is used for its ability to preserve spatial locality, such
that the traversal path along the curve always visits the adja-
cent blocks before it leaves the local neighborhood. Data are
distributed to processors following the space-filling curve in
a consecutive round-robin manner. Volume blocks will then
tend to be distributed evenly among the processors, breaking
the spatial clumping on few processors. Each processor com-
pute symmetries of the blocks statically assigned to it. Static
data distribution is especially desirable when dealing with

large-scale datasets. Moreover, the hierarchical property of
a space-filling curve also makes it suitable to be applied to
hierarchical data. Figure 2 shows how 16 2D blocks are tra-
versed in a space-filling curve.

Figure 2: A 2D example of data distribution along the
Hilbert space-filling curve. Block numbers are centered in
dash boxes. Data are distributed to processors in round-
robin along the red line. The black line stands for the possi-
ble 2D shape.

5.2. Bounding Data Representation

For some symmetry planes, parts of the object will be re-
flected outside of the object’s bounding volume. It is unnec-
essary to compute the symmetry distances for those regions.
Figure 3 illustrates the situation when some of the data are
reflected out of the bounding box.

Figure 3: A 2D example of object (in blue line) that is par-
tially reflected (green line) out of its bounding shape.

An optimization method used to accelerate the computa-
tion is the octree organization of data. The octree is built in
a bottom-up manner, with bounding information stored in
each node. To speed up the computation, when computing
the reflective symmetry, given a reflective plane γ , we hierar-
chically test blocks with γ and the node’s bounding volume.
If the testing results show that reflected blocks are outside
the object’s bounding volume we skip those blocks.

5.3. Wavelet Compression and Multiresolution
Symmetry Computation

In this paper, we apply an efficient wavelet-based compres-
sion method [KS99] for volume data compression to save

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

storage space and reconstruction time at run-time. We have
selected the Haar wavelet because it has a simple basis which
is relatively easy to compute [KS99].

Our procedure of a bottom-up blockwise wavelet-tree
construction is standard. Starting with subdividing the vol-
ume data into a sequence of blocks, each 3D wavelet trans-
form will produce an average-filtered subblock and sev-
eral wavelet coefficient subblocks. The average-filtered sub-
blocks from adjacent leaf nodes in the wavelet tree are
grouped into a lower resolution data block in the wavelet
hierarchy. We recursively apply the 3D wavelet transform
and subblock grouping process until the root of the tree is
reached. The wavelet coefficients are compared against a
user-provided threshold and set to zero if they are smaller
than the threshold for lossy compression. The wavelet coef-
ficients are compressed using run-length encoding combined
with a Huffman encoder [KS99].

5.4. Data Dependency Reduction

Theoretically a point in volume data can have reflected coun-
terparts anywhere in the bounding volume. However, it is not
practical to transfer the entire wavelet tree to every proces-
sor, even at a high compression rate, assuming large data
sizes. It is also unreasonable to transmit large amounts of
data blocks on the fly, for the same reason. We apply a hy-
brid method to address the data dependency problem.

Given a point x its reflective counterpart γ(x) is known
hereafter as:

γ(x) = x+2rn̂−2(n̂.x)n̂

where the reflective plane γ is determined by the distance r
and normal n̂.

In the preprocess stage, we can calculate the histogram
of locations of γ(x) statically. Our strategy is to distribute
the wavelet blocks most used in symmetry computation to
every processor. A heuristic is used to distribute the center
parts of the volume data. This static data distribution scheme
reduces the amount of requests and exchanges for data that
are frequently needed during parallel computation.

When a processor needs data γ(x) in a block that it does
not hold, the computation continues, but the unavailable γ(x)
is inserted into a request queue, Req_Queue, which lists
unavailable γ(x). At synchronization, Req_Queue is broad-
casted, and the processor continues its remaining computa-
tion. Processors holding the needed data will respond and
send back the blocks corresponding to γ(x), which will be
accepted into Recv_Queue by the requesting processor.

The data request and the computation is over-
lapped in time by using a multi-threading to deal with
REQUEST/REPLY issues, two extra threads, send_thread
and recv_thread, are invoked: send_thread monitors
Req_Queue. If Req_Queue is full, send_thread broadcasts

it. recv_thread monitors Recv_Queue. If Recv_Queue is
full, Recv_thread informs the main thread to fetch available
γ(x).

6. Adaptive Planar Sampling Method

Two kinds of uniform samplings are used in Algorithm 1.
One is spatial voxel sampling and the other is plane sam-
pling. In the following section we will discuss uniform pla-
nar sampling and its performance downsides.

6.1. Uniform Planar Sampling

To perform uniform planar sampling, we first parameterize
the planes over (r,θ ,φ) (see 4.1 for details), and sample the
planar space uniformly along the three axes. The pseudocode
for planar sampling is:

Algorithm 2 Uniform Planar Sampling
1: for rmin To rmax do
2: for θ=0 To π

2 do
3: for φ=0 To 2π do
4: Sample voxels with respect to plane (r,θ ,φ)
5: Perform symmetry computation on plane

(r,θ ,φ)
6: end for
7: end for
8: end for

Once a plane is fixed, the corresponding spacial voxel
sampling is performed. The optimization methods described
previously are mainly focused on voxel sampling, includ-
ing octree representations, empty space avoidance, and data
compressions. There has not been any optimization thus far
in the planar sampling space. However, many planes can
usually be easily rejected to avoid unnecessary computation.

6.2. Inefficiencies in Uniform Planar Sampling

We first point out two potential inefficiencies if we simply
apply uniform planar sampling. The first one is the redun-
dancy of numerous of low-symmetry planes. Fig. 4 shows
a histogram of computed symmetries for the lobster dataset
in 301×324×56. There are a total of 1238591 planes sam-
pled. We notice that most of the planes (around 85%) are in
low symmetry while only a very small potion of planes bear
relatively large symmetries (around 2%). Much redundant
computation time was spent on those low symmetry planes.
The red line in Fig. 4 indicates the approximate computation
time for each bin.

Another problem is that uniform planar sampling can miss
primary symmetry planes as illustrated in Fig. 5(a). The
green object is uniformly planar sampled by blue planes.
The red plane represents the primary symmetry plane that is
missed between two blue sampled planes. Many blue planes

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

Figure 4: A histogram of symmetries for Lobster (301×
324× 56).The colorbar on the right side represents the dif-
ferent symmetry spans from low to high. The red line depicts
the computation time trend for the bins.

are only related to unsymmetrical potions, leading to unnec-
essary computation. Fig. 5(b) illustrates the primary plane
for the lobster dataset. The green primary plane lies between
two parallel planes (yellow and blue). Although plane inter-
polation can compensate to some extent, it is not guaranteed
that interpolations will work for all data sets. Increasing the
sampling rates can alleviate this problem but will incur much
more computation overhead as a result. For example, in Fig.
5(b) the step value for r is set to 3, while the exact value for
the primary plane is r = 201.5. So uniform plane sampling
will miss the primary plane unless the r step value is adjusted
to 0.5 which would increase the computation cost six fold.

(a) uniform sampling (b) Lobster’s Example

Figure 5: (a) shows uniform sampling (blue) can miss
sampling the primary plane (red) while wasting unnec-
essary sampling on low symmetric potions (green). (b)
shows the Lobster dataset is sampled with step = 3 for
plane parameter r. The true green primary plane occurs at
(r,θ ,φ)=(201.000000 1.570796 0.785398) while two sam-
pled planes are adjacent, missing the true primary plane.

6.3. Adaptive Planar Sampling

We adopt adaptive methods to save unnecessary compu-
tation and to increase symmetry precision.The concept of

adaptive planar sampling is similar to importance sampling.
We give more consideration to planes that are most likely
to have higher symmetries than other planes. Fig. 6(a) illus-
trates this idea. The center of the 1 green objects has more
symmetry than its sides. So, more samples (red ones) are
taken in the vicinity to further improve the symmetry com-
putation, thereby the yellow primary plane is also sampled.
Fig. 6(b) shows the symmetry values for different sampling
planes in Fig. 6(c), where more samples are computed near
the areas with the peak symmetries.

(a) adaptive sam-
pling

(b) uniform sampling (c) uniform sampling

Figure 6: Adaptive Planar Sampling: Lobster dataset

The key point for adaptive planar sampling is to know
in advance where in the data possibly shows higher sym-
metries. Since the planar sampling will depend on the pre-
dicted symmetries, a quick and relatively precise method is
required to examine the data before the complete computa-
tion as in Algorithm 1 runs. To achieve this goal, we use
a Monte Carlo method to quickly obtain these symmetries,
which in turn will be used as gauges to adjust planar sam-
pling rates accordingly. Our use of Monte Carlo method is
different from [PSG∗06] in that we only apply it to guess
the symmetries with respect to every plane on the other hand
Podolak et al. [PSG∗06] solely used Monte Carlo integration
for computing the discrete symmetries.

6.4. Monte Carlo Method for Approximate Symmetries

Previously stated, the volume data are allocated to proces-
sors in a round-robin manner along a space-filling curve.
Each node only holds a potion of the complete data. In
[PSG∗06] authors had proved that reflective symmetry can
be computed by integrating the product of f (x) and its reflec-
tive counterpart γ( f (x)). In this paper we apply Monte Carlo
integration to approximate the local symmetries in each pro-
cessor and sum up the results across processors to obtain the
final results. The pseudocode for the parallel Monte Carlo
symmetry approximation is shown below:

The value of Max_Iter is user-defined, which is usually
two or three millions for a standard 256× 256× 256 vol-
ume data set. Generally, the higher the value of Max_Iter is
chosen the more precise the symmetries are approximated.
However,higher value of Max_Iter will lead to higher com-
putational costs. What we want is to approximate the sym-
metries but not to precisely calculate them, which is the main

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

Algorithm 3 Parallel Monte Carlo Symmetry Approxima-
tion

1: Each node execute the following:
2: for Count=1 To Max_Iter do
3: Randomly select 2 voxels x and x′ from the allocated

f
4: Use x and x′ to determine a plane γ ′

5: Bin the plane γ ′ to a proper plane γ

6: Calculate symmetry D( f ,γ)+ = f (x) f (x′)
p(x)p(x′)

7: end for
8: Each node send the D( f ,γ) to root node
9: The root node sums D( f ,γ) and produces the approxi-

mation by averaging the results with Max_Iter.

task of Algorithm 1. The approximations can be used to ad-
just planar sampling lately.

p(x) and p(x′) are the probabilities for selecting voxel x
and x′. Importance sampling is applied to accelerate sam-
pling efficiency. We only randomly choose voxels whose
values are above a user-defined threshold. p(x) and p(x′)
then can be defined easily in the preprocessing stage by
counting all voxels whose values are higher than the user-
defined threshold and dividing by the total number of voxels
in the volume data. p(x) actually is the occurrence frequency
in the volume data.

2 spacial points x and x′ can define 1 reflective plane γ . To
compute planes’ symmetries we bin the planes which have
close norms and distances to the origin. It is possible that
several improper planes are in the same bin, which can lead
to imprecision in the final results, because of the arbitrarily
selecting of points x and x′. To address this [PSG∗06] added
an extra Jacobian determinant weight to balance the planar
bin size. We cannot simply apply the Jacobian determinant
as a weight since there isn’t a mesh for the volume data. Our
solution is to remove the improper planes from the bins by
comparing the plane’s parameters. For example, a plane γ ′ is
voted in plane bin γ in Step 5 in Algorithm 3. We calculate
the L2 difference between the normals of the voted plane γ ′

and the bin plane γ . If the difference is smaller than a user-
defined threshold it means the plane γ ′ is proper, and the dot
product of f (x) and f (x′) is added to compute D( f ,γ) as
in Step 6 in Algorithm 3. Otherwise points x and x′ will be
throw away to filter those unsuitable planes.

After finishing Algorithm 3, the next step is to utilize the
obtained approximations to adjust the plane sampling rates
by setting plane’s parameters (r,θ ,φ) accordingly. A linear
mapping strategy is used to set the planar sampling steps:
the highest sampling rate to the planes space area with the
highest approximate symmetries.

6.5. Effects and Performance

Fig. 7(a) shows the symmetries of MR_Brain dataset at a
resolution of 256×256×109. To reduce the space, 1055507
planes are computed in the bar chart. The heights of bars rep-
resent the corresponding symmetry values, and the number
of bars represents the sampling rate at that planar space.For
clarity, only a few sampling bars are drawn. The purple line
shows the symmetry approximation calculated by the Monte
Carlo method. From Fig. 7(a), we can see that the planar
space between the 70th bin and 90th bin shows low sym-
metries and are given low sampling rates, correspondingly.
The red and green areas are intensely sampled, since they
have relatively high symmetries. Their corresponding spa-
tial regions are drawn in Fig. 7(b). They both pass through
the center of the brain, an repeatedly observed phenomena
for medical data. Similarly, Fig. 7(c) shows green areas that
have high symmetries for the Lobster dataset.

(a) Sampling histogram bars (MRBrain)

(b) MRBrain with intensively
sampled parts

(c) Lobster with intensively
sampled parts

Figure 7: Adaptive Sampling Examples for the Brain and
Lobster Dataset

Table 1 compares the computation time between uniform
planar sampling and adaptive planar sampling. Each of the
three tests shows a roughly 20% time reduction with the
adaptive sampling scheme.

Dataset processors Static Adaptive
MRBrain 54 99 74
Lobster 28 53 40
Frog 22 35 29

Table 1: Computation times in seconds. MRBrain is 256×
256×109, Lobster is 301×324×56 and Frog is 256×256×
44

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

7. Results

In this section, we present the experimental results of our
parallel symmetry detection algorithm running on a PC clus-
ter consisting of 64 compute nodes, 6 storage nodes and one
front end. Each compute node is a dual processor Opteron
250 (single core) with 8GB of RAM and 2× 250GB SATA
disk. MVAPICH based on MPICH (MPI − 1) is used for
the the Infiniband network for MPI communication. The
datasets in Figure 1 are a Lobster in 301× 324× 56, a
Frog in 256× 256× 44, a Teapot in 256× 256× 178, and
a Leg in 341× 341× 93. Our main test datasets include a
256×256×145 UNC brain dataset and a 512×512×1728
Visible Woman dataset. All tests were run using 22, 36 or 64
nodes of the cluster.

Static data distribution along a space filling curve gives
our parallel symmetry computation algorithm a balanced
workload. In Figure 8, the small variation of the computation
times used by each of the 36 processors shows that, with a
Hilbert space-filling curve implemented, our algorithm can
achieve better load balancing. This implies good scalability
for our parallel symmetry algorithm.

Figure 8: The computation time in seconds, for Brain
dataset, on each of 36 processors. The blue line indicates
the time without space filling-curve data distribution, and
the red line indicates time with space filling-curve data dis-
tribution.

Figure 9 gives the speedup factors obtained using differ-
ent number of processors. The multiresolution algorithm and
brute-force algorithm are computed against their sequential
counterparts. It is shown that our multi-resolution algorithm
achieves better speedup performance than the brute-force al-
gorithm. Approximately 87% and 81% parallel utilization
were observed for 16 and 32 processors, respectively.

Our multiresolution algorithm is based on the observation
that symmetry held in data at high resolution data will persist
in the lower resolution data, too. Figure 10 shows the sym-
metries calculated by Algorithm 1 with different error tol-
erances. With larger error tolerance, which is data at higher
resolution, the resulting symmetry is closer to the symmetry
calculated by the brute-force algorithm.

Table 2 shows different average computation times under

Figure 9: Speedup factors, for Brain dataset, of our algo-
rithms when using 1, 2, 4, 8, 16, 32 and 36 processors. The
blue line is the ideal speedup, the red line is the speedup
using the brute force method, and the yellow line is the
speedup using the multiresolution method with error toler-
ance of 1500.

Figure 10: The calculated reflective symmetries, for Brain
dataset, for one direction [θ = 0.1745φ = 0.1745]. The blue
line is using brute-force algorithm and the red line and yel-
low line are using multiresolution algorithm. Red line has a
higher resolution than yellow.

three different error tolerances by utilizing multiresolution
optimization. Figure 11 and Figure 12 show the calculated

Dataset processors Test1 Test2 Test3
Viswoman 64 1256 745 205
Brain 36 96 34 11
Frog 22 35 18

Table 2: Computation times for the Vis woman in seconds,
with multiresolution optimization under three different er-
ror tolerances. 64 processors are used for Viswoman, 36 for
Brain dataset and 22 for Frog dataset. Tests are arranged
for error tolerances of 5,000, 1,000, and 500 respectively. A
higher value represents a higher resolution.

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

primary symmetric planes for the tests described in Table
2. The primary symmetric planes are very similar to each
other. Our multiresolution symmetry computation algorithm
can attain a good result in a small amount of time, if the
user-defined error tolerance is properly selected.

Figure 11: The calculated primary symmetries for
128×128×72 brain data. The blue symmetric plane repre-
sents for the highest resolution Test1 in Table 2; the green
pla for lower resolution Test2 in Table 2 and the purple plane
for the lowest resolution Test3 in Table 2.

Figure 12: The calculated primary symmetries for
256×256×44 frog. Two symmetric planes (blue and green)
are derived from represent two different resolutions.

8. Applications

Previous works have introduced various applications using
symmetry. In this section, we present additional novel appli-
cations that are useful in volume visualization.

8.1. Cross-Section and Dual Rendering

A cross section is a common method for displaying the in-
ternal structure of a 3-dimensional volume object in two di-
mensions, which is especially useful in the area of medical
imaging. By slicing a volume data along the plane with the
highest calculated symmetries, we reveal more inner infor-
mation, since most primary symmetric planes go through the
object’s center. Furthermore, if the object is rendered along
the reflective plane with two different rendering techniques

on each side such as tissue vs bone structure, more informa-
tion can be expressed.

Fig. 13 is an example of exploiting symmetries for a CT
head dataset. Fig. 13(a) is the original rendered image with
the green primary plane is displayed Fig. 13(b) is rendered
with the dual rendered effect of Fig. 13(a) with respect to the
primary reflective plane. Half of the head is rendered with
iso-surfacing, and the other half with a raycasting technique
to draw two kinds of boundaries in skin and skull. We use
three orthogonal primary reflective planes to find the center
of objects and the corresponding main axis. In Fig. 13(c)
and Fig. 13(d), we show the three green, yellow, and purple
primary axes as planes perpendicular to each other. In Fig.
13(c), one quarter of data are removed to explore the inner
components, while in Fig. 13(d), the skull is drawn instead.
Fig. 13(e) is the cross section of the CT head by halving the
data along the primary reflective plane.

8.2. View Selection

For some medical volume data, the reflective symmetries
can be applied to find reasonable best view directions. In
this paper, we apply a similar idea presented in [PSG∗06].
Symmetry represents redundancy and should be avoided in
the view directions. Therefore, it is possible to recommend
a good viewpoint for 3D volume data by eliminating sym-
metrical redundancy. The view selecting procedure extracts
local maxima planes from the calculated symmetries. Then,
for each view direction vector, we dot-product the vector
with the local maxima planes’ normals. The score, for a
view direction v, is S(v) = ∑u∈W |v · u|Symmetry(u), where
W is the set of local maxima planes. So, the best viewpoint
which occurs at the highest score, means minimal symmet-
ric information presented. Fig. 14 shows several viewpoint
selecting examples by applying this idea. The difference be-
tween our method and the method in [PSG∗06] is that we
use the first and the second derivatives to obtain the lo-
cal maxima planes instead of the iterative method described
there since, we work with volume data. Several datasets are
tested and shown in Fig. 14, These selected view directions,
which intend to avoid the redundant symmetric information,
are solely determined by calculated symmetries. Symmetry-
based view selection can be a feasible, but it is not the only
way to choose optimal view direction. It is possible to com-
bine symmetry with other view selection methods to attain
better effects.

9. Conclusion and Future Work

We have presented a parallel reflective symmetry computa-
tion algorithm utilizing several different optimizations. We
show that the algorithm is efficient and stable for several dif-
ferent volume datasets. Our experiments also show that, the
primary reflective symmetric planes pass through the cen-
ters of the objects, a reasonable phenomenon that coincides

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

(a) Original Image (b) Dual Rendering

(c) Principal Symmetry Axes (d) Principal Symmetry Axes

(e) Section Crossing

Figure 13: Cross sections and dual rendering effects for the
CT Head Dataset (256×256×113)

with common sense. In the future work, we hope to extend
our algorithm to include other types of symmetry. For ex-
ample, the rotational symmetry is one possible area needing
to be considered. We also notice that further optimization of
symmetry computation is possible if we can transform a 3D
problem into several of 2D subproblems which can be solved
quickly in parallel environment.

We understand that not all volume data have reflective
symmetric features. Those data from scientific computation
such as energy distribution and simulation are too complex

(a) Best View (MRBrain Skin) (b) Best View (MRBrain Inner)

(c) Best View (Frog) (d) Best View (Lobster)

Figure 14: View Selection Examples

to be studied solely by symmetry property. Our work is a
complement to the current volume data visualization meth-
ods and hopefully to broaden its perspective in the future.

10. Acknowledgements

This work was supported in part by NSF ITR Grant ACI-
0325934, NSF RI Grant CNS-0403342, NSF Career award
CCF-0346883, and DOE SciDAC DE- FC02-06ER25779.
The Visible Woman dataset is provided by the National
Library of Medicine. The Brain dataset is a partial copy
of datasets in the "University of North Carolina Volume
Rendering Test Data Set" archive. The Frog dataset is bor-
rowed from Information and Computing Sciences Division,
Lawrence Berkeley Laboratory. The Teapot was from Ter-
arecon Inc. The Leg dataset was provided by the German
Federal Institute for Material Research and Testing (BAM),
Berlin, Germany. The Lobster dataset was acquired from the
VolVis distribution from SUNY Stony Brook, NY, USA.

References

[ATA85] ATALLAH M.: On symmetry detection. IEEE
Trans. on Computers 34, (1985), pp. 663–666.

[CA97] CROSSNO P., ANGEL E.: Isosurface extraction
using particle systems. In Proc IEEE Visualization ’97
(1997), pp. 495–498.

[CDF∗03] CAMPBELL P. C., DEVINE K. D., FLAHERTY

c© The Eurographics Association 2007.



Y. Hong & H. Shen / Parallel Reflective Symmetry Transformation for Volume Data

J. E., GERVASIO L. G., TERESCO J. D.: Dynamic Oc-
tree Load Balancing Using Space-Filling Curves. Tech.
Rep. CS-03-01, Williams College Department of Com-
puter Science, 2003.

[Ell95] ELLSIEPEN P.: Parallel isosurfacing in large un-
structured datasets. Visualization in Scientific Computing
’95 (1995), pp. 9–23.

[GS01] GAO J., SHEN H. W.: Parallel view-dependent
isosurface extraction using multi-pass occlusion culling.
In Proc IEEE symposium in Parallel and Large Data Vi-
sualization and Graphics ’01 (2001), pp. 67–74.

[GHS∗03] GAO J., HUANG J., SHEN H. W. KOHL J. A.:
Visibility culling using plenoptic opacity function for
large data visualization. In Proc IEEE Visualization ’03
(2003), pp. 341–348.

[HH92] HANSEN C., HINKER P.: Massively parallel iso-
surface extraction. In Proc IEEE Visualization ’92 (1992),
pp. 189–195.

[ISM∗92] ISHIKAWA S., SATO K., MINOVIC P., KATO

K.: An interactive 3D symmetry analysis system. in IAPR
Workshop on Machine Vision Applications, (Dec 1992),
pp. 375–378.

[KCD∗03] KAZHDAN M. AND CHAZELLE T. AND

DOBKIN D. AND FUNKHOUSER T. AND RUSINKIEWICZ

S. : A reflective symmetry descriptor for 3D models. Al-
gorithmica, 38,1 (Oct. 2003).

[KS99] KIM T. Y., SHIN Y. G: An Efficient Wavelet-
Based Compression Method for Volume Rendering. In
Proc. of Paciffic Graphics ’99, (1999), pp. 147–157.

[LM94] LACROUTE P., MARC L.: Fast volume rendering
using a shear-warp factorization of the viewing transfor-
mation. In Proc ACM SIGGRAPH ’94 (1994), pp. 451–
458.

[LMC02] LUM E., MA K., CLYNE J.: A hardware-
assisted scalable solution for interactive volume render-
ing of time-varying data. IEEE Trans. on Visualization
and Computer Graphics 8, 3 (2002), pp. 286–361.

[MJC∗94] MA K. L., JAMES S. P., CHARLES D. H.,
MICHAEL F. K.: Parallel volume rendering using bina-
ryswap compositing. IEEE Computer Graphics and Ap-
plications, 14(4), (1994), pp. 59–68.

[MIK93] MINOVIC P., ISHIKAWA S., KATO K.: Sym-
metry identification of a 3D object represented by oc-
tree. IEEE Trans. on Pattern Analysis and Machine In-
telligence 15, 5 (May 1993), pp. 507–514.

[MPH∗94] MA K. L., PAINTER J. S., HANSEN C. D.,
KROGH M. F.: Parallel Volume Rendering Using Binary-
Swap Compositing. IEEE Computer Graphics and Appli-
cations 14, 4 (1994), pp. 59–68.

[PSG∗06] PODOLAK J. AND SHILANE P. AND

GOLOVINSKIY A. AND RUSINKIEWICZ S. AND

FUNKHOUSER T.: A planar-reflective symmetry trans-
form for 3D shapes. In Proc. SIGGRAPH ’06 (Jul. 2006),
vol. 5.

[SHL∗96] SHEN H. W., HANSEN C. D., LIVNAT Y.,
JOHNSON C. R.: Isosurfacing in Span Space with Utmost
Efficiency (ISSUE). in Proc. IEEE Visualization ’96, 2
(1996), pp. 287–294.

[SL03] SCHULZE P., LANG U.: The Parallelized Perspec-
tive Shear-Warp Algorithm for Volume Rendering. Paral-
lel Computing 29, 3 (2003), pp. 339–354.

[SS97] SUN C., SHERRAH J.: 3D symmetry detection us-
ing the extended Gaussian image. IEEE Trans. on Pat-
tern Analysis and Machine Intelligence 2, 2 (Feb 1997),
pp. 164–168.

[ZPA93] ZABRODSKY H., PELEG S., AVNIR D. A.:
Completion of occluded shapes using symmetry. In Proc
CVPR, (1993), pp. 678–679.

[ZPA95] ZABRODSKY H., PELEG S., AVNIR D. A.:
Symmetry as a continuous feature. Trans. PAMI 17, 12
(1995), pp. 1154–1166.

c© The Eurographics Association 2007.


