
Visualization of 3-D Wave Propagation in the Heart
- A New Technique

Dept. of Bioengineering

University of Utah, Salt Lake City, Utah

Han-Wei Shen, Prasad B. Gharpure, Christopher R. Johnson
Dept. of Computer Science Dept. of Computer Science

hwshen@cs.utah.edu gharpure@vissgi.cvrti.utah.edu crj@cs.utah.edu

Abstract

We present a new method, called differential volume
rendering, to speed up the process of volume animation
for flow visualization. Data coherency between consec-
utive simulation time steps is used to avoid casting un-
necessary rays from the image plane. We illustrate the
utility and speed of the differential volume rendering al-
gorithm with simulation data from electrical wave propa-
gation within a cellular automaton model of the ventricu-
lar myocardium. We can achieve considerable disk-space
savings and nearly real-time rendering of 3-d flow using
low-cost, single processor workstations.

Introduction

We have developed a cellular automaton model to
study electrical activation in the myocardium. Each el-
ement in the model simulates a region of the ventricu-
lar myocardium and has the following characteristics: ex-
citability, cycle length dependant absolute refractory peri-
ods and relative refractory periods. Anisotropy of impulse
propagation from one element to another is introduced
by a dependence of the propagation velocity on the lo-
cal fiber orientation, with the fastest conduction oriented
along the fiber axis. Details of the model may be found
in [l] . The model is primarily used to study factors that
affect the vulnerability of the heart to fibrillation. Hence,
most observations need to be concentrated on the prop-
agating activation wavefront. Volume visualization was
chosen to be the most suitable means of visualizing the
3-d nature of the wavefront throughout the entire my-
ocardium. The major drawback of conventional volume
visualization is that it is extremely resource (time and
memory) intensive. We have exploited the temporal co-
herence in simulated data to achieve a significant speedup
over traditional volume rendering schemes. To ensure nu-
merical stability, most flow simulations are computed us-
ing small time steps such that a very small fraction of the
total elements change their values from one step to the
next. If we concentrate our rendering efforts solely on the
changed cells, the number of rays that need to be cast
decreases dramatically and yields a sizable reduction in
terms of the amount of time devoted to rendering. Since

we concentrate on the differences in data throughout the
simulation, we call this new technique - Differential Vol-
ume Rendering.

Differential Volume Rendering

From preliminary studies of our wave propagation sim-
ulations, the only elements which changed values between
consecutive time steps were the activated cells and their
neighbors. In addition, when a sequence of propagating
images is animated, the viewing parameters usually don't
change. Thus, the pixels in the new image will keep the
same color values unless they corresponded to changed
data elements. The main idea of the differential volume-
rendering algorithm is to exploit the temporal coherence
between sets of volume data. Rays are cast along a path
corresponding only to changed data elements. By decreas-
ing the number of rays that need to be cast, and retaining
the color values from the non-changing pixels , a signif-
icant amount of time saving can be achieved for volume
animations.

Visualization Pipeline

The visualization pipeline of the differential volume ren-
dering method can be divided into two phases, static and
dynamic. In the static phase, operations are performed
once for a data set. Data is generated from a simula-
tion which might typically consist of hundreds or thou-
sands of time steps worth of information. The simulation
data of consecutive time steps is then compared to obtain
the positions of changed data elements. The positions
of those changed elements and their corresponding time
step values are output into a single differential file which is
the only information needed to produce animated volume
rendered images. Due to the small fraction of variation
between consecutive time steps, the differential file which
replaces the whole sequence of volume data yields tremen-
dous saving of disk space.

In the dynamic phase, the positions of changed ele-
ments are extracted from the differential file a t each time
step and the pixels where new rays need to be cast are
computed according to the viewing direction. The resul-
tant pixel positions are placed into a ray casting list, which

0-7803-2050-6/94 $4.00 01994 IEEE 684

. .-

mailto:hwshen@cs.utah.edu
mailto:gharpure@vissgi.cvrti.utah.edu
mailto:crj@cs.utah.edu

is referred to by the ray casting process before firing new
rays to produce the updated image. These operations are
classified as the dynamic phase because the pixels corre-
sponding to those changed elements are dependent on the
viewing direction. The pixel positions remain undeter-
mined until the user specifies the viewing parameters.

Time
Steps

Results and Discussion

Regular Ray Differential Ray Casting
Casting Pixel I Ray I Total

The software for the differential volume rendering al-
gorithm has been implemented using OpenGL, which is
portable across most hardware platforms. The parallel
projection and template-based 26 connected discrete ray
casting paradigms [2] were used in our implementation.
The performance measurements were evaluated on a SGI
Indy workstation with a single 100 MHZ MIPS R4000
processor.

Upon analysis of our simulation data, we noticed that
only a small fraction of elements changed states between
time steps. Table 1 compares the average rendering times
for a differential volume renderer and a traditional vol-
ume renderer using a 128 x 128 x 128 volume. The ren-
dering times for the first image are the same, with a sig-
nificant reduction for subsequent time steps. In our sim-
ulation data, the average time to render 100 images with-
out adopting the differential method was approximately
13.39 x 100 = 1339 seconds. Differential volume render-
ing achieved the same amount of rendering and the same
image quality in only 65.5 seconds, a savings of 95%. The
disk space taken by the 100 time steps of volume data was
2.10 x 100 = 210 M Bytes. By using the differential vol-
ume rendering algorithm, which only require the volume
data of the first simulation time step and the differential
file, we could reduce the allocated disk space to 2.1 + 2.08
= 4.18 M Bytes, a reduction of 95%.

The robustness of the differential volume rendering was
tested by varying the number of changed elements be-
tween time steps. Table 2 lists the rendering times for
different amount of changed elements in a 64 x 64 x 64
volume. When the percentage of changed elements was
over 50-60%, the performance of the differential volume
rendering algorithm became worse than the regular ray
casting method, due to the overhead needed to calculate
the pixel positions before casting new rays.

Although our algorithm has limitations when the num-
ber of changed elements exceeds SO%, for most flow vi-
sualization applications the number of changed elements
during the propagation at each time step constitutes only
a small fraction of the whole volume. Therefore] differen-
tial volume rendering represents an attractive technique
for flow visualizations.

Currently we are in the process of evaluating and
adopting different rendering paradigms as well as paral-
lelizing the algorithm to maximize performance.

% of Changed
Elements

Differential Ray Casting
Pixel I Ray I Total

70 13.401 0.118 I 0.173 0.291
80 13.397 0.112 I 0.153 0.265

Regular Method
5%

I I I I

90 I 13.398 I 0.105 I 0.129 I 0.234

Calculation Casting
0 2.372 2.372

0.151 0.127 0.234
0.482
0.643
0.898

45% 1.142

Table 2: Rendering time (in seconds) for different amount
of changed elements in a 64 x 64 x 64 volume

References

P. B. Gharpure and C. R. Johnson. A 3-dimensional
cellular automaton model of the heart. Proceedings of
the 15th annual international conference of the IEEE
EMBS, pages 752-753, 1993.

R Yagel and A. Kaufman. Template-based volume
viewing. Computer Graphics Forum, I 1 (3):153-167,
September 1992.

P.B. Gharpure, H. W. Shen, and C. R. Johnson. Vi-
sualization of scalar and vector fields in a cellular au-
tomaton model of the heart. Technical report, Dept.
of CS, Univ. of Utah, 1994.

685

